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Abstract. The genetic material we carry today is different from that
we were born with: our DNA is prone to mutations. Some of these mu-
tations can make a cell divide without control, resulting in a growing
tumor. Typically, in a cancer sample from a patient, a large number of
mutations can be detected, and only a few of those are drivers - mutations
that positively contribute to tumor growth. The majority are passenger
mutations that either accumulated before the onset of the disease but
did not cause it, or are byproducts of the genetic instability of cancer
cells. One of the key questions in understanding the process of cancer
development is which mutations are drivers, and should be analyzed as
potential diagnostic markers or targets for therapeutics, and which are
passengers. We propose PathMEx, a novel method based on simultane-
ous optimization of patient coverage, mutation mutual exclusivity, and
pathway overlap among putative cancer driver genes. Compared to state-
of-the-art method Dendrix, the proposed algorithm finds sets of putative
driver genes of higher quality in three sets of cancer samples: brain, lung,
and breast tumors. The genes in the solutions belong to pathways with
known associations with cancer. The results show that PathMEx is a
tool that should be part of a state-of-the-art toolbox in the driver gene
discovery pipeline. It can help detect low-frequency driver genes that can
be missed by existing methods.

Keywords: Somatic mutations · Cancer pathways · Driver mutations.

1 Introduction

Human cells are prone to mutations, and some of these may transform the cell
into one that divides indefinitely and has the ability to invade other tissues [3],
resulting in cancer. For most human cancers to develop, a sequence of between
two and eight mutations that target genes involved in specific cell functions
is needed [48]. Such mutations, which confer growth advantage to cells and are
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causally implicated in oncogenesis, are referred to as driver mutations [4]. Known
somatic mutations linked to cancer, often with additional information such as
known therapies that target the mutation, are being gather in databases [42, 30,
12, 29] that can be used in selecting patient treatment. Newly identified driver
genes can also be screened using druggability indices [10], and considered for
being targets for drug repositioning [34], leading the way to new therapeutic
modalities. Thus, experimental and computational techniques for discovering
driver genes are of great interest.

In recent years, the ability to discover driver mutations has advanced greatly
due to availability of large datasets generated using second-generation sequenc-
ing techniques [41]. The Cancer Genome Atlas (TCGA) [50] and other similar
projects perform sequencing of matched tumor and normal samples from hun-
dreds of patients with a given tumor type, allowing for detection of somatic
mutations present in tumor tissue. However, even with the increasing availabil-
ity of data, the problem of identifying driver mutations and genes that harbor
them (called driver genes) remains a challenge.

The main issue hampering discovery of driver mutations from sources such as
TCGA is that majority of somatic mutations acquired in human cells throughout
life are not causally linked to cancer - these are often referred to as passenger
mutations. It has been estimated that half or more of all mutations observed in
patients’ cancer tissues originate prior to the onset of cancer [44]. In addition
to these pre-existing mutations, cancer cells exhibit a mutator phenotype, that
is, and increase mutation rate [32]. This further contributes to the dominance
of passenger mutations over driver mutations in observed cancer tissue samples.
Altogether, while the number of driver mutations in a tumor is typically small –
a recent analysis of TCGA data shows it to be between 2 and 6 in most tumors
[20] – the total number of somatic mutations present in a single patient can
range between 10 to above 100, depending on tumor type and patient age. Most
mutations in a cancer tissue sample are thus passenger mutations that do not
contribute positively to cancer growth.

On common approach to separate driver from passenger mutations is to cal-
culate the background mutations rate that would be exhibited by passenger
mutations, and consider those mutations that are encountered more frequently
as drivers. This approach typically considers mutations a result of a Poisson pro-
cess, which allows for quantifying the statistical significance of any deviations
from the background mutation rate. For example, MutSig [9] uses a constant
mutation rate across all genes, and can also use methods for functional pre-
dictions of mutation significance, such as SIFT [37], CHASM[7], Polyphen-2 [1]
and MutationAssessor [40], to account for the fact that mutations differ sub-
stantially in their effects on the mutated protein [2]. MutSigCV [24] uses factors
such as chromatin state and transcriptional activity to estimate gene-specific
background mutation rates. PathScan [51] utilizes a Poissonian mutation model
that involves gene lengths, and for a gene set given by the user calculates the
probability of observing that many mutations or more under a null hypothesis
that the mutations are passengers. If the probability is low across many samples,
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the genes are considered driver genes. MuSiC [14] extends PathScan by adding
knowledge about correlation between mutation rates and factors including clin-
ical variables such as age, molecular variables such as Pfam family to which the
genes belong, and sequence correlates such as base composition of the site and
proximity among mutation sites. DrGaP tool [17] considers 11 different types
of mutation types, with factors including G/C content near the mutation site
and methylation status of the site, in estimating the background mutation rate.
Detection of driver genes using the gene-centric methods mentioned above is
complicated by the fact that rarely a single driver gene is mutated across many
patients with a given tumor. Only few genes, such as TP53 or BRCA1, are mu-
tated in large fraction of cases. Most of individual genes are mutated in less than
5% of patients suffering form the same cancer type [39]. Thus, large number of
samples is required to detect statistically significant deviations from background
mutation rates.

To alleviate the problems associated with relying only on mutation frequen-
cies of individual genes, a new approach of using patterns of mutations spanning
multiple genes has emerged in recent years. It has been observed that in many
types of tumors, only one mutation per pathway is needed to drive oncogene-
sis [35, 47, 52]. Thus, the minimal set of mutated genes required for cancer to
develop would consist of several sets of genes, each corresponding to a critical
pathway such as angiogenesis. Within each gene set, exactly one gene would be
mutated in each patient. That is, all patients would be covered by a mutation in
a gene from the set, and there would be no excess coverage, that is, no patient
will have more mutations than one in the genes from the set. This pattern has
been often referred to as mutual exclusivity within a gene set. In actual patient
data, additional mutations in driver genes may be present, especially in older
patients or in cases of slow growing tumors. Also, some of the mutations may
be missed due to observation errors. Thus, instead of detecting the presence
or absence of mutual exclusivity in a set of genes covering all patients, driver
detection algorithms involve a score that penalizes for deviations from a driver
pattern, that is, for zero mutations in a patient, or for more than one mutation.
Finding the optimal set of genes with respect to such a score has been shown
to be an NP-hard problem [46], and heuristic search procedures are utilized to
find a set of genes closest to the high-coverage mutual exclusivity pattern. The
approach of finding a gene set through a pattern search procedure has been used
by several tools, including Dendrix [46] and Multi-Dendrix [25], and RME [36].
Further methods extend this approach by helping deal with observation errors
in the data [43], with cancer subtypes [26], and with computational efficiency of
the search for driver genes [53, 6].

Further advances in driver gene detection methods resulted from observations
that show that cancer driver mutations are not confined to a specific set of loci
but, instead, differ substantially in individual cases. Only when seen from the
level of pathways, that is, genes related to a specific cellular process, a clearer
picture emerges. This evidence has given rise to network-oriented driver detec-
tion methods, such as HotNet [45], which incorporates protein-protein networks
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and uses a heat diffusion process, in addition to gene mutation frequency, to
detect a driver subnetwork. Another network-based technique, MEMo [11], uti-
lizes mutation frequency in individual genes together with gene interactions to
form highly mutated cliques, and then filters the cliques using mutual exclusivity
principle. We have recently proposed QuaDMutNetEx [5], a method that utilizes
human protein-protein interaction networks in conjunction with mutual exclu-
sivity. These methods involve a graph with genes as nodes, and gene-gene or
protein-protein interactions as edges, and do not incorporate the existing knowl-
edge of how groups of genes and edges connect into larger functional pathways.

Here, we propose PathMEx, a novel driver gene detection technique that
combines the pattern-based and pathway-based detection approaches. It is built
around simultaneous optimization of patient coverage, mutual exclusivity and
pathway overlap among putative cancer driver genes. We evaluated our method
on three cancer mutation datasets obtained from literature and from the Cancer
Genome Atlas. Compared to the state-of-the-art tool Dendrix, our method shows
higher values of the Dendrix score, a metric used to judge the quality of cancer
driver gene sets.

2 Methods

The proposed algorithm for detecting driver mutations in cancer operates at
the gene level. That is, on input, we are given an n by p mutation matrix G,
where n is the number of cancer patients with sequenced cancer tissue DNA and
sequenced matched normal tissue, and p is the total number of genes explored.
The matrix is binary, that is, Gij = 1 if patient i has a non-silent somatic
mutation in gene j; otherwise, Gij = 0. More generally, Gij can also be set to
one if a gene is part of region with a copy-number alteration, or has a mutation
in its regulatory region, although such data is less readily available compared
to mutations in gene coding regions. A row vector Gi represents a row of the
matrix corresponding to patient i. The solution we seek is a sparse binary vector
x of length p, with xj = 1 indicating that mutations of gene j are cancer driver
mutations. In the proposed approach, the solution vector should capture driver
genes that are functionally related, for example are all part of a pathway that
needs to be mutated in oncogenesis. If we want to uncover all driver genes, we
should apply the algorithm multiple times, each time removing the genes found
in prior steps from consideration. We will often refer to the nonzero elements of
x as the mutations present in x.

In designing the algorithm for choosing the solution vector x, we assumed
that any possible vector is penalized with a penalty score based on observed
patterns of driver mutations in human cancers. We expect that each patient has
at least one mutation in the set of genes selected in the solution; however, in some
cases, the mutation may not be detected. Also, while several distinct pathways
need to be mutated to result in a growing tumor, typically one mutation in each
of those pathways suffices. The chances of accumulating additional mutations in
the already mutated pathway before the cancer is detected are low, and decrease
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with each additional mutation beyond the first one. We capture this decreasing
odds through an increasing penalty associated with solution vector x given the
observed mutations Gi in patient i

E(Gi, x) = |Gix− 1|. (1)

The term Gix, that is, the product of row vector Gi and the solution vector x,
captures the number of mutations from solution x present in patient i. We incur
no penalty if the number of mutated genes from x in a given patient is one. If the
patient is covered by no mutations, the penalty is one. If the patient is covered
by more than one mutation, the penalty is equal to the number of mutations in
excess of the one required for cancer to develop.

We also expect the genes in the solution to be functionally related, that is,
we expect high pathway overlap in the solution. To capture this, we provide a
reward (i.e., a negative penalty) for genes in the solution that belong to the
same pathway. For a gene j, we denote by Pj the set of pathways that contain
j. Further, for a gene j, we can define the set of co-pathway genes, Πj , that is,
the set of genes that share a pathway with j, as

Πj = {k : k 6= j, Pk ∩ Pj 6= ∅} . (2)

To promote selection of genes from the same pathway, for every gene j we define
a pathway overlap term added to the objective function that is being minimized

O(j, x) = max(−xj ,−
∑
k∈Πj

xk). (3)

If gene j is selected to be part of the solution, and it shares pathways with at
least one of other genes in the solution, the objective will be decreased by 1.

The final objective function being minimized is a combination of the high-
coverage mutual exclusivity terms and the pathway overlap terms

L(G, x) =

n∑
i=1

E(Gi, x) +

p∑
j=1

O(j, x) (4)

=

n∑
i=1

|Gix− 1|+
p∑
j=1

max(−xj ,−
∑
k∈Πj

xk). (5)

We also introduce a limit on the number of genes in the solution, K, by requiring∑p
j=1 xj ≤ K. The solution x is a binary indicator vector, where elements xj = 1

correspond to genes being selected as the set of driver genes. Below, if we need
to express solution as a set instead of an indicator vector, we will use Zx =
{j : xj = 1}.

The problem of minimizing the non-linear objective function L(G, x) over
possible solution vectors x can be reformulated into a constrained mixed integer
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linear program

minimize
x,u,v

n∑
i=1

ui +

p∑
j=1

vj (6)

subject to xj ∈ {0, 1} 1 ≤ j ≤ p
Gix− 1 ≤ ui 1 ≤ i ≤ n
1−Gix ≤ ui 1 ≤ i ≤ n
− xj ≤ vj 1 ≤ j ≤ p

−
∑
k∈Πj

xk ≤ vj 1 ≤ j ≤ p

p∑
j=1

xj ≤ K

with p binary variables, n + p continuous variables, and 2n + 2p + 1 inequality
constraints. That is, the size of the problem grows linearly with the number of
samples, n, and the number of genes, p.

Mixed-integer linear programs (MILP) are known to be NP-hard in general.
However, the optimal solution can be obtained quickly for problems of small
size. For cancer driver detection problems involving a large number of genes,
where exact solutions are not available in any reasonable time, we designed a
meta-heuristic algorithm, PathMEx, that combines network-based exploration
of the solution space with optimal search for small subproblems.

Algorithm PathMEx

1: procedure PathMEx(G,C,K, T, s, sp)
2: χ = RandomSubset(s,{1, ..., p})
3: for t← 1, ..., T do
4: Gχ = Select Columns χt from G
5: Zx = Minimize L(Gχ, x) (eq. 5) using eq. 6 MILP
6: ΠZ = {k : k /∈ Zx, Pk ∩ Pj 6= ∅, j ∈ Zx}
7: χ′ = Zx∪ RandomSubset(sp − |Zx|,ΠZ)
8: χ = χ′∪ RandomSubset(s− |χ′|,{1, ..., p} \ χ′)
9: end for

10: return Zx
11: end procedure

If the problem is small enough, PathMEx directly solves the MILP problem
and returns a globally optimal solution. In other cases, the main PathMEx algo-
rithm goes through T iterations, as shown in the pseudocode. In each iteration
PathMEx considers a candidate set χ of s genes, where s is chosen to make
the problem tractable for a MILP solver. In our tests, we set s = 200. In each
iteration, a subproblem involving only genes from χ is solved by a MILP solver,
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and a globally optimal subset Zx ∈ χ is selected as the current solution. The
solution set Zx has up to K genes. A new candidate set χ is created by keeping
all genes in the solution Zx, and choosing additional genes to make the size of
the new candidate set equal to s. These include up to sp genes that are either
in Zx or are randomly selected from all the pathways that contain genes from
Zx. It also includes other genes selected at random until the candidate set size
reaches s.

3 Results and Discussion

We evaluated the proposed algorithm using cancer mutation data from the Can-
cer Genome Atlas (TCGA) [50] and from literature. We used two datasets that
were originally used by the authors of Dendrix [46]: somatic mutations in lung
cancer (LUNG), and a dataset relating to Glioblastoma Multiforme (GBM) that
includes not only somatic mutations but also copy number alternations. We also
used a larger dataset of somatic mutations in samples from Breast Invasive Car-
cinoma (BRCA) downloaded from TCGA, in which, following standard practice
[24], we removed known hypermutated genes with no role in cancer, including
olfactory receptors, mucins, and a few other genes such as the longest human
gene, titin. The characteristics of the datasets are summarized in the Table 1.

Table 1: Summary of datasets used in testing PathMEx.
Dataset samples (n) genes (p) mutations

GBM 84 178 809
LUNG 163 356 979
BRCA 771 13,582 33,385

In judging the quality of a solution Zx, that is, a set of putative driver genes,
we used two metrics, coverage and excess coverage. Coverage is defined as the
number of patients covered by at least one gene from Zx divided by the total
number of patients. Excess coverage is defined as the number of patients covered
by more than one gene from Zx divided by the number of patients covered by
at least one gene from Zx. These metrics together capture how well a gene set
conforms to the pattern expected of driver genes. Both of the metrics range from
0 to 1. Perfect solution has coverage of 1, and excess coverage of 0, indicating
that every single patient has exactly one mutation in genes from solution Zx.
We also used the Dendrix score, the objective function maximized by Dendrix
[46], defined as the number of patients covered by at least one gene from Zx set
minus the coverage overlap, that is, the total count of all mutations in excess of
one mutation per patient in genes from Zx.

We ran PathMEx and Dendrix on the three datasets: GBM, LUNG, and
BRCA. For two small datasets, GBM and LUNG, we explored solutions including
up to 10 genes; for BRCA, a much larger dataset, we searched for solutions
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Table 2: Comparison between Dendrix and PathMEx.
Method Genes in Solution Dendrix Score

GBM: Glioblastoma multiforme
Dendrix 9 68
PathMEx 10 70

LUNG: Lung Adenocarcinoma
Dendrix 9 106
PathMEx 10 113

BRCA: Breast Invasive Carcinoma
Dendrix 19 392
PathMEx 20 423

Table 3: Coverage and Excess Coverage.
Method Coverage Excess Coverage

GBM: Glioblastoma multiforme
Dendrix 0.85 0.05
PathMEx 0.90 0.07

LUNG: Lung Adenocarcinoma
Dendrix 0.74 0.12
PathMEx 0.77 0.11

BRCA: Breast Invasive Carcinoma
Dendrix 0.56 0.10
PathMEx 0.61 0.10

including up to 20 genes. PathMEx automatically picks the best solution with
size up to a given range. For Dendrix, which analyzes solutions of a fixed, user-
provided size, we performed independent runs for each solution size ranging from
2 to the chosen limit (10 for GBM and LUNG, 20 for BRCA), and picked the
solution with the highest value of Dendrix score. Each Dendrix run involved
107 iterations, as recommended by Dendrix authors. For PathMEx, which is a
descent method depending on the randomized initialization, we conducted 10
runs, each consisting of 100 iterations, and picked the solution with the lowest
value of the objective function among these 10 runs.

PathMEx relies on prior knowledge of biological pathways, which we obtained
from the MSigDB repository of canonical pathways [27]. These include pathways
from KEGG, Biocarta, Pathway Interaction Database, and Reactome. We re-
moved 46 pathways related to disease, most notably KEGG PATHWAYS IN CANCER
and other cancer-specific pathways, to avoid biasing the method towards re-
discovering only known cancer genes. We ended up with 1284 pathways that
remained after the filtering step. Each pathway is treated as a set of genes that
are members of the pathway.

The results of the tests, presented in Table 2, show that PathMEx con-
sistently returns higher quality solutions than Dendrix. In each of the three
datasets, PathMEx reached a higher value of the Dendrix score. Table 3 shows
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Table 4: PathMEx solution gene sets and their statistical significance.
Gene Set Estimated p-value

GBM: Glioblastoma multiforme
CDKN2B CDK4 RB1 ERBB2 TNK2
KPNA2 WEE1 CES3 INSR IQGAP1 <0.001

LUNG: Lung Adenocarcinoma
KRAS STK11 EGFR EPHB1 MAP3K3
ABL1 PAK6 JUP CYSLTR2 FES 0.003

BRCA: Breast Invasive Carcinoma
TP53 GATA3 MAP3K1 CDH1 MAP2K4
LOC283685 HUWE1 UBR4 ATP10A
BCL6B ADCY7 TICAM1 AKT3 ELN
GNAS HGF PXDN CD38 MX2 SLC13A5 0.002

that PathMEx also achieved higher patient coverage, while showing no consistent
increase in excess coverage compared to Dendrix across the datasets.

To quantify the statistical significance of the results, we employed the ran-
domization approach used previously [46]. For every gene, the binary column
vector describing in which patient the gene is mutated is randomly reshuffled.
The results of reshuffling of all genes form a new dataset, that is, a new matrix
G. Each randomized dataset preserves the underlying frequencies of mutations
of individual genes, but any multi-gene patterns of mutations such as mutual
exclusivity may only arise by chance. We created 1024 reshuffled datasets, and
ran PathMEx on each of them. As with the original non-randomized dataset, for
each reshuffled dataset we performed 10 runs, and picked the solution with the
lowest value of the objective function from among them. Finally, as the estimate
of the p-value, we quantified the fraction of the 1024 reshuffled datasets in which
the value of the objective function minimized by PathMEx (eq. 5) is lower than
or equal to the value obtained on the original non-randomized dataset. As shown
in Table 4, the p-values for all three datasets are a magnitude below the 0.05
threshold.

The genes in the solutions are members of pathways known to be associ-
ated with cancer. We visualized the most enriched pathways for each dataset
in Figures 1-2. For each dataset, among all pathways covering the genes in the
solution, we first selected the pathway most enriched in solution genes, that is,
the pathway with the highest ratio of pathway genes in the solution to all genes
in the pathway. We then removed the genes covered by that pathway from con-
sideration, and repeated the process, until only genes that were not members of
any pathway remained not covered.

To validate the ability of PathMEx to discover rare putative cancer driver
genes, in each of the three datasets we focused on the genes in the solution
with the fewest number of mutations. In the brain tumor dataset, six out of ten
genes identified by PathMEx are each mutated in only 1 out of 84 patients. Out
of these, four have been previously implicated in cancer: IQGAP1 is believed
to play a role in cell proliferation and cancer transformation [19] and has been
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Fig. 1: Pathways covering driver genes for GBM dataset (left) and the LUNG
dataset (right). Red nodes represent pathways from MSigDB, blue nodes repre-
sent genes in the PathMEx solution. For each gene, in parentheses, we provide
the number of patients in the dataset that harbor a mutation in that gene.

Fig. 2: Pathways covering driver genes for BRCA dataset. Red nodes represent
pathways from MSigDB, blue nodes represent genes in the PathMEx solution.
For each gene, in parentheses, we provide the number of patients in the dataset
that harbor a mutation in that gene.

implicated in breast cancer [38], KPNA2 promotes cell proliferation in ovarian
cancer [18], TNK2 has been recently recognized as an oncogenic kinase [33], and
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WEE1 is already a target for cancer therapy [15]. While no cancer role has been
so far identified for carboxylesterase 3 (CES3), it is known to be expressed in the
source tissue of our samples, the brain [16]. In the lung cancer dataset, out of 10
genes identified by PathMEx, 5 genes have only 2 mutations each in a group of
163 samples. All five genes have been previously linked to various types of cancer.
Role of ABL1 in cancer is well established. FES is a known proto-oncogene [28].
PAK6 has been shown to suppress growth of prostate cancer [31]. JUP has been
implicated in prostate and breast cancers [23]. Finally, expression of CYSLTR2
gene is a prognostic marker in colon cancer [49] and is causative of melanoma
[8]. In the breast cancer dataset, in which we increased the solution size limit
to 20, three genes with only 3 mutations each in a cohort of 771 patients were
identified by PathMEx as putative cancer genes. All three have been previously
linked to cancer: MX2 to lung cancer [21], and CD38 and SLC13A5 to leukemia
[13, 22].

4 Conclusions

We have shown that the proposed novel method PathMEx, which combines
maximization of patient coverage and gene mutual exclusivity with maximization
of pathway overlap is highly successful in detecting rare cancer driver genes.
The method shows higher quality scores than existing state-of-the-art mutual
exclusivity-based tool Dendrix on three cancer datasets, and has the ability to
find genes that are members of pathways with known role in cancer. These results
indicate that PathMEx can help detect low-frequency driver genes that may be
missed by existing methods, and that it should be part of a state-of-the-art
toolbox in the driver gene discovery pipeline.
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