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Abstract. The synchronous and proper contraction of cardiomyocytes
is essential for the correct function of the whole heart. Computational
models of a cardiac cell may spam multiple cellular sub-components,
scales, and physics. As a result, they are usually computationally ex-
pensive. This work proposes a low-cost model to simulate the cardiac
myocyte’s electromechanics. The modeling of action potential and active
force is performed via a system of six ordinary differential equations.
Cardiac myocyte’s deformation that considers details of its geometry is
captured using a mass-spring system. The mathematical model is inte-
grated in time using Verlet’s method to obtain the position, velocity, and
acceleration of each discretized point of the single cardiac myocyte. Our
numerical results show that the obtained action potential, contraction,
and deformation reproduces very well physiological data. Therefore, the
low-cost mathematical model proposed here can be used as an essential
tool for the correct characterization of cardiac electromechanics.

Keywords: Mass-spring Systems · Eletromechanical Coupling · Cardiac
Myocyte.

1 Introduction

Cardiac diseases are still the first cause of death in the world, taking an estimated
17.9 million lives per year, according to World Health Organization. Modeling
this organ is a complex task that begins with the model of a single cardiac
myocyte. Computational models of a cardiac cell may spam multiple cellular
sub-components, scales, and physics. In general, robust models with partial dif-
ferential equations are used for the electrical action potential propagation and
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the coupling to the mechanical deformation, i.e., the myocyte contraction [7].
The finite Element Method is widely used in solving these equations, but with
high computational costs [3].

For tackling the computational costs, the work of Silva et al [10] proposed
simplified models that reproduce the most important cardiac mechanics features.
These models capture how action potential influences active force, i.e., the so-
called electromechanical coupling. These models are based on few differential
equations and have low computational costs without losing quality to reproduce
the physiological phenomena.

Besides a simple active force model, it is also necessary to implement the
passive mechanical model, responsible for restoring a contracted cell to its ini-
tial configuration. In this case, a common choice is a mass-spring system (MSS),
which represents elastic materials by a finite set of masses connected by springs.
The ability to simulate the elastic behavior of bodies in real-time made MSSs
of great interest in computer graphics due to its simple formulation and com-
putational performance [6, 1]. They are used in animations and virtual reality
applications, especially in simulations of surgeries and biologic tissues [8].

A related work that simulates the heart mechanic with mass-spring systems is
presented by Weise et al. [12]. It proposes a discrete reaction-diffusion-mechanics
model, where Hooke’s law describes the elastic properties of the material. The
model was used for studying heart phenomena such as the effect of mechano-
electrical feedback.

Another works in this field use simplified methods based on cellular automata
for simulating the action potential propagation and the active force application.
A example of this kind of method is the Campos et al. [4], that proposes a mesh-
less simulator, where the 3D geometries are split in a discrete set of masses,
connected by springs. Its simple implementation resulted in very fast execution
times. Later, Campos et al. [5] proposed a more robust cardiac electromechanic
simulator, able to handle more complex geometries, with a discretization based
on tetrahedrons. It also contains more realistic features, such as volume preserva-
tion and anisotropy controlling in a mass spring system. The model reproduced
a cycle of contraction and relaxation of a human left ventricle.

In this sense, this work proposes a new tool for cardiac myocyte electrome-
chanics simulation, aiming for low computational costs and correct physiological
results. The action potential and active force are modeled by a system of six or-
dinary differential equations. The active force is responsible for contracting the
cell, and then a passive force acts for bringing the cell to its initial configuration.
The passive force is modeled by a mass-spring system. The cardiomyocite shape
is obtained via a confocal microscopy, which we discretize by a set of point masses
connected by springs, in a irregular mesh fashion. Our equations are integrated
in time using Verlet’s method to obtain the position, velocity, and acceleration
of mass point.
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2 Mass-Spring Systems

Mass-spring models have a simple formulation and fast execution time, making
them a suitable altenative for modeling elastic materials without the need of
higher computational resources. In such systems, masses are connected to their
neighbors by springs. Forces can be applied to the system deforming its spatial
distribution.

The cardiac tissue does not have a linear stress-strain relation but considering
small scale deformations, its contraction can be aproximated by a linear model,
using springs. The springs of the system will try to bring the system back to its
initial configuration after contraction. The proposed model is described below.

2.1 Mathematical Model

Considering one mass unity as a rigid body, the following Ordinary Diferential
Equations can be deduced to integrate trajectory and velocity, according to
classical mechanics.

F = ma (1)

v =
∂x

∂t
(2)

a =
∂v

∂t
(3)

This formulation can be manipulated in order to isolate derivatives and then
obtaining a linear system with two ODE’s.

∂x

∂t
= v (4)

∂v

∂t
=
F

m
(5)

The force can be categorized in two different types: passive and active forces.
Passive forces are made from particles to its neighboors through the springs when
its position changes. The active force is applied as a load external to the system,
in this case, modeling the active tension generated by the action potential in
the cell. In order to avoid the rigid-body displacement of translation, the mass
center of the cell is fixed. Considering only one mass linked to a wall by a spring,
as depicted in Figure 1a, the force can be calculated with Hooke’s Law. The
force exerted will be fp and the reaction of the wall will be fr.

fp = −fr = k(xL − x0) (6)

We arranged our spring and masses in a regular grid, where masses are connected
in a Moore Neighborhood fashion, as depicted in Figure 1b. In this manner, the
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(a) Mass coupled to a
spring and its deforma-
tion.

(b) Neighborhood of a mass.

Fig. 1. A simple mass-spring system and our mass-spring configuration.

total force exerted in a mass will be the sum of contributions of the neighbor-
hood composed by 8 other masses. Therefore, the total force will be the sum
of passive and active forces applied externally to the system. Equation 7 was
used to calculate passive forces, that are proportional to the deformation of the
spring.

fp = −[kelas(|l| − r)]
l

|l|
(7)

In addition to passive forces and active forces, a viscous damping force is con-
sidered. This damping force is calculated as shown in the equation 8.

fp =

[
kdamping

(l̇ · l)
|l|

]
l

|l|
(8)

After system initialization, a loop starts over a period of time. At each iteration,
the sum of passive, active, external and damping forces that a mass receives at
a given moment is calculated.

2.2 Critical damping

The spring mass system without the use of damping results in a state in which
the energy never dissipates. A factor called Damping Ratio denoted by ξ can be
used to calculate damping in a MSSs:

ξ =
kdamping

kdcritical
. (9)

Considering the equation of motion in the formulation described by equation 10,
the critical damping coefficient will be equal to the relation in equation 11. If
damping below the critical value is used, the damping ratio will be less than 1,
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characterizing an under-damped system. If the above value is used, we will have
an over-damped system and a damping ratio greater than 1.

mẍ+ kdẋ+ kex = 0 (10)

kdcritical = 2
√
km (11)

2.3 Area Preservation

To adjust the cardiac myocyte contraction to obtain a more physiological behav-
ior a force of area preservation is added, i.e., to reproduce the quasi-incompressible
feature of the cell.

(a) A mass and one adjacent surface
area.

(b) Force applied to preserve the area.

Fig. 2. Surface area preserving.

For each mass, two masses in the neighborhood are visited, forming a triangle,
as showed in Figure 2. The baricenter of the formed triangle is calculated using
the mean value between the three masses coordinates, displayed in equation 12.

xb =
1

3

3∑
j=1

xj (12)

The direction in wich force is applied is calculated through a vector between
the baricenter and the node receiving the preservation force. The force applied
will be proportional to a preservation area constant and the area of the triangle
formed by the nodes:

fprev = −kprevarea
(xi − xb)
||xi − xb||

. (13)
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2.4 Verlet’s Numerical Method

Verlet’s numerical method was used to solve the mathematical model in order
to obtain its position and velocity through time:

Verlet’s method can be deduced using Taylor’s Series Expansion for progres-
sive and regressive aproximations:

Xtn+1 = Xtn + Vtn∆t+
h2

2

Fn

m
+
h3

6
X

(3)
tn +O(h4), (14)

Xtn−1
= Xtn − Vtn∆t+

h2

2

Fn

m
− h3

6
X

(3)
tn +O(h4). (15)

Adding the two expansions we obtain:

Xtn+1
= 2Xtn + h2

Fn

m
−Xtn−1

+O(h4). (16)

The velocity of the mass can be obtained by Finite Diferences Method in its
centered aproximation:

Vtn+1
=
Vtn+1

− Vtn−1

2h
+O(h2). (17)

Therefore, this method aproximates the position with an error order of h4 and
velocity of h2.

3 Coupled Eletromechanical Model

For the mass system to model the cardiac myocyte with its contraction charac-
teristics and properties, the applied force must follow a cell active tension that
is associated to a cell action potential. To model the cell action potential, the
Minimal Model proposed in [2] was used and adjusted to reproduce the model
described in [11]:

du

dt
= −(Jfi + Jso + Jsi) (18)

dv

dt
= (1−H(u− θv))(v∞ − v)/τ−v −H(u− θv)v/τ+v (19)

dw

dt
= (1−H(u− θw))(w∞ − w)/τ−w −H(u− θw)w/τ+w (20)

ds

dt
= ((1 + tanh(ks(u− us)))/2− s)/τs (21)

Jfi = −vH(u− θv)(u− θv)(uu − u)/τfi (22)

Jso = (u− uo)(1−H(u− θw))/τo +H(u− θw)/τso (23)
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Jsi = −H(u− θw)WS/τsi (24)

τ−v = (1−H(u− θ−v ))τ−v1 +H(u− θ−v )τ−v2 (25)

τ−w = τ−w1 + (τ−w2 − τ
−
w1)(1 + tanh(k−w (u− u−w)))/2 (26)

τso = τso1 + (τso2 − τso1)(1 + tanh(kso(u− uso)))/2 (27)

τs = (1−H(u− θw))τs1 +H(u− θw)τs2 (28)

τo = (1−H(u− θo))τo1 +H(u− θo)τo2 (29)

v∞ =

{
1, u < θ−v
0, u ≥ θ−v

(30)

w∞ = (1−H(u− θo))(1− u/τw∞) +H(u− θo)w∗∞, (31)

where uo, uu, θv, θw, θ
−
v , θo, τ

−
v1, τ

+
v , τ

−
w1, τ

−
w2, k

−
w , u

−
w , τ

+
w , τfi, τo1, τo2 , τso1, τso2,

kso, uso, τs1, τs2, ks, us, τsi, τw∞, w
∗
∞ are 28 adjustable parameters of the model

with values reported in [2].

The model presented in [10] proposes two ODE’s to capture the cell’s active
tension triggered by an action potential:

dTai
dt

= c0(k(V )− Tai) (32)

dTa

dt
= ε1(V, Tai)(Tai − Ta) (33)

k(V ) =
1

σ
√

2π
e

−1
2 (V−1

σ )2 (34)

ε1(V ) =

{
x1 para V > x2 e Tai < x3
c0 otherwise.

(35)

The parameters used were adjusted using a Genetic Algorithm as described
before in [10]. The parameters of the coupled electromechanical model are pre-
sented in Table 1.

The active tension obtained in equation 33 was multiplied by a factor of 85
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uo 0.529297 τ−w2 62.9688 kso 0.253711 c0 0.0166016
θv 0.0673828 u−w 58.0469 τs1 2.36621 x1 0.0001
θw 0.00195313 τ+w 0.59668 τs2 11.4453 x2 0.78
θ−v 0.0976563 τfi 273.633 ks 2.25586 x3 0.2925
θo 0.932618 τo1 0.644532 us 0.903321
τ−v1 57.7148 τo2 477.344 τsi 1.76816
τ+v 1101.56 τso1 14.1992 τw∞ 0.785157
τ−w1 1.96973 τso2 25.4492 w∗∞ 0.500977

Table 1. Parameters of the coupled model.

(a) Action potential. (b) Active tension.

Fig. 3. Action potential and active tension.
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4 Results

4.1 Computational aspects

A C++ code was developed to simulate the coupling of units of masses with
springs in horizontal, vertical, and diagonal links, considering the force each
mass applies to its neighbors. The tool allows the representation of irregular
geometries. This is essential to reproduce the complex geometry of single cardiac
myocytes, as presented in Figure 4b, which was obtained in the laboratory. A
similar numerical mesh is also presented in Figure 4a.

(a) Generated mesh. (b) Real myocyte image.

Fig. 4. A real myocyte image and its corresponding mesh.

4.2 Numerical results

We tested our model by simulating a cycle of contraction and relaxation. The
results for action potential and active tension are presented in Figure 3b. The
active force reaches its peak around 170ms, where it applies 100% of stress. After
that, it returns to 0% of stress.

The active tension drives the mass-spring system which results in the con-
traction and relaxation of the single cardiac myocyte, as presented in Figure
5.

Figure 6 shows the shortening of the myocyte in the x-direction. We applied
three different values of active stress, Ta = 30kPa, Ta = 40kPa and Ta = 50kPa
causing a maximum deformation of 12%. The cell responded to active stress as
expected, achieving its maximum contraction when stress is maximum.

5 Conclusion

In this work, we present a low-cost model to simulate the electromechanics of a
single cardiac myocyte. The modeling of action potential and active force was
performed via a system of six ordinary differential equations. Cardiac myocyte’s
deformation that considers details of its complex geometry was captured us-
ing a mass-spring system with an irregular mesh. The mathematical model was
integrated in time using Verlet’s method to obtain the position, velocity, and
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(a) t = 0ms. (b) t = 119ms.

(c) t = 150ms. (d) t = 247ms.

(e) t = 300ms. (f) t = 574ms.

Fig. 5. Simulations results at different time-steps t.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_41

https://dx.doi.org/10.1007/978-3-030-77964-1_41


Modeling the electromechanics of a single cardiac myocyte 11

Fig. 6. Contraction curve

acceleration of each discretized point of the single cardiac myocyte. Our numeri-
cal results show that the obtained shortening reproduces very well physiological
data. The comparison was made considering measures in [9]. In this work, the
measured contraction displayed a shortening of 8% to 10% of the cell volum.
Therefore, the low-cost mathematical model proposed here can be used as a tool
to help the characterization of cardiac electromechanics.

As future work, we intend to perform a sensitivity analysis in order to eval-
uate the significance of each parameter in the simulations. We also intend to
quantitatively compare our simulations to experimental data.
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