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Abstract. The challenge of EEG-based emotion recognition had in-
spired researchers for years. However, lack of efficient technologies and
methods of EEG signal analysis hindered the development of success-
ful solutions in this domain. Recent advancements in deep convolutional
neural networks (CNN), facilitating automatic signal feature extraction
and classification, brought a hope for more efficient problem solving.
Unfortunately, vague and subjective interpretation of emotional states
limits effective training of deep models, especially when binary classi-
fication is performed basing on datasets with non-bimodal distribution
of emotional state ratings. In this work we revisited the methodology
of emotion recognition, proposing to use regression instead of classifica-
tion, along with appropriate result evaluation measures based on mean
absolute error (MAE) and mean squared error (MSE). The advantages
of the proposed approach are clearly demonstrated on the example of
the well-established and explored DEAP dataset.

Keywords: EEG · Emotion recognition · Regression · Classification ·
CNN

1 Introduction

In recent years, electroencephalography (EEG) became an emerging source of
bioelectrical signals providing invaluable information concerning various aspects
of human brain activity. Among them, emotional states and their manifesta-
tions in the EEG signal still hide many secrets and raise expectations in several
research domains: medicine, psychology and human computer interaction.

EEG signal reflects a complex brain activity spectrum, requiring advanced
signal processing methods and feature extraction methodologies to be mean-
ingfully interpreted. Although recent advancements in deep learning techniques
have revealed a potential for EEG signal classification in several domains [1],
emotion analysis still seems to be one of the most challenging ones, especially
due to the subjective evaluation process, intrinsic noise and acquisition channels
crosstalk [2]. Data acquisition for emotion recognition tasks typically involves
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eliciting specific emotions in subjects, e.g. by watching video clips, appropri-
ately selected by experts. EEG is recorded during these sessions and emotion
self-assessment is usually conducted after each video clip.

The current research on deep learning has shown outstanding results in com-
puter vision and image processing [4]. Due to the nature of the EEG signal on
one hand and the fundamental principles and characteristics of deep learning
tools and methods on the other hand, it can be expected that these methods
will become the mainstream research technique for EEG signal processing in
the near future [5]. Especially the deep learning approach for the EEG-based
emotion recognition problem seems to leave considerable room for improvement.

The main motivation for our contribution regards the problem of ambiguities
inherent to the self-assessment (ground-truth ratings) of the subject’s emotional
state and their impact on the machine learning strategies applied. We propose
a novel approach for emotional state recognition with a convolutional neural
network (CNN), which is based on regression rather than on binary classification.
Our evaluation methodology puts more emphasis on the self-assessment nuances
and it also lets us interpret the results in a more suitable and understandable
manner.

2 Previous work

One of the first studies, originating the discussion on emotional state classifica-
tion and becoming an inspiration for the research community was published by
Koelstra et al. [6]. The authors have introduced a Database for Emotion Anal-
ysis using Physiological signals (DEAP) which encompasses a set of psycho-
physiological parameters acquired from users who were watching specially se-
lected music video clips.

DEAP dataset has originated numerous experiments on quantitative classi-
fication of emotional dimensions, namely valence (quality of emotion from un-
pleasant to pleasant) and arousal (emotion activation level from inactive to
active) in accordance with Russell’s valence-arousal scale [3], as well as domi-
nance (from a helpless and weak feeling to an empowered feeling) and personal
impressions encoded in liking parameter.

Extensive review of DEAP-based experiments was published by Roy et al. [8].
The authors concluded that the EEG signal suffers from considerable limitations
that hinder its effective processing and analysis. Due to low signal-to-noise ratio
(SNR), non-stationary characteristics and high inter-subject variability, signal
classification becomes a big challenge for real-life applications.

An important source of inspiration for our research was the paper by Craik
et al. [9]. The authors have reported a systematic review on EEG-related tasks
classification. One of the reviewed aspects concerned input formulation for a
CNN-based deep learning solution to the emotional state classification problem,
which became a supportive context for the present study. Despite of the fact that
most of the authors addressed the problem of signal artifact removal, inherent
signal characteristics are hardly addressed. It is difficult to identify persistent
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noisy channels or noise that is sparsely presented in multi-channel recordings.
Manually processed data was highly subjective and rendering it was difficult
for other researches to reproduce the procedures. Surprisingly, one of the main
findings reported by Craik et al. [9] was that – according to the authors’ best
knowledge – there were no studies demonstrating that deep learning can achieve
results comparable with classification methods based on handcrafted features.
Especially convolutional neural networks, although popular in image processing
domain, can hardly be found in the domain of EEG-based emotional state recog-
nition. In fact, just a few authors examined CNN architecture with frequency
domain EEG spectrograms prepared as an input [10–13]. They have concentrated
on motor impairment [10], mental workload [11, 13] and sleep stage scoring [12],
rather than on emotional state analysis/classification.

There were also several neural architectures containing convolutional lay-
ers, which were employed for examining the DEAP dataset and which might
therefore be treated as a meaningful reference. In their both works Li et al. [14,
15] proposed hybrid neural architectures interpreting wavelet-derived features,
with the CNN output connected to LSTM RNN modules, but they achieved low
classification accuracy. On the other hand, noticeable difference in classification
accuracy could be attributed to alternative input formulation. Yanagimoto et
al. [16] directly used signal values as inputs into a neural network, while Qiao
et al. [17] and Salama et al. [18] converted the input data into Fourier maps
and 3D grids respectively, considerably improving the classification accuracy.
Nevertheless, CNN application for processing spectrogram-based EEG data in
the frequency domain seems to be a quite novel strategy of outstanding and
unexplored potential.

In the context of valence-arousal dimensions and deep learning-based clas-
sification, Lin et al. [19] proposed an interesting multi-modal approach for the
DEAP dataset, achieving for bi-partitioned classification of valence and arousal
85.5% and 87.3% respectively. It must be noted, however, that the obtained
accuracy is greater than many other DEAP-based experiments, mainly due to
considering all the available physiological signals rather than just EEG.

Frequency-domain representation of the EEG signal, collected with numer-
ous electrodes (32 channels in the case of DEAP) and split into frequency sub-
bands, puts high demands on the neural network model, which must deal with
this highly-dimensional input data in conditions of the limited number of sub-
jects, stimuli, recording time, etc. Feature extraction is therefore an important
processing step applied by most authors to reduce the complexity of the neural
network and to let it learn effectively with low generalization error. It should be
noted that data dimensionality reduction may also be obtained by appropriate
selection of the EEG electrodes, e.g. on the basis of channel cross-correlation.

An extensive and detailed analysis of the most suitable approach for EEG
signal feature extraction was provided by Nakisa et al. [20]. The authors consid-
ered different time-domain, frequency-domain and time-frequency domain fea-
tures in the context of the selected datasets [6, 7]. Four-class (High/Low Va-
lence/Arousal) emotion classification process, based on a probability neural net-
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work (PNN) and 30 features selected with 5 alternative evolutionary compu-
tation algorithms, provided average accuracy reaching 65% within 100 itera-
tions. Supportive conclusion regarded DEAP-oriented EEG channels selection.
The authors noticed that FP1, F7, FC5, AF4, CP6, PO4, O2, T7 and T8 were
the most relevant electrodes in the context of emotion recognition. The above
findings and the current progress in deep learning-based feature extraction and
classification [21] led to an observation that automatically selected features from
a limited number of channels (9 for DEAP) may result in more spectacular re-
sults, particularly given that traditional classifiers like SVM-related ones reach
78% for bi-partitioned valence and arousal classes [22] on 16 frequency and time
domain features and respectively 63% and 58% for 3-partitioned valence and
arousal classes [23] on 11 frequency and time domain features. High accuracy of
non-deep learning approaches was also reported by other authors [24].

Inherent emotional dimensions in the DEAP dataset were subjectively quan-
tified by subjects, who assigned numerical ratings between 1 and 9. However,
most of the authors aggregated emotional dimensions into two groups: high
(greater or equal 5) and low (lower than 5) within each dimension respectively.
In consequence, the mean values of valence and arousal within four quadrants on
the Low-High/Arousal-Valence plane were as follows: Low-Arousal-Low-Valence
(LALV: 4.3 ±1.1; 4.2 ±0.9), High-Arousal-Low-Valence (HALV: 5.7 ±1.5; 3.7
±1.0), Low-Arousal-High-Valence (LAHV: 4.7 ±1.0; 6.6 ±0.8), High-Arousal-
High-Valence (HAHV: 5.9 ±0.9; 6.6 ±0.6). It must be noted that these means
were relatively close to each other (although statistically different), as compared
to the whole range of the possible values. Additionally, considering the fact that
the authors of DEAP selected only 40 video clips – out of initial 120 – namely
the most extreme ones in the context of valence/arousal, unambiguous quanti-
tative differentiating of emotional dimensions becomes a real challenge requiring
in-depth analysis.

The above findings, addressing the ambiguity in emotional state classifica-
tion, suggest revisiting deep learning-based approaches. Specifically, the quanti-
zation of the emotional dimensions and reformulating the problem from binary
(low-high) classification into the regression task will be covered in the following
part of this paper.

3 Materials and Methods

The DEAP database [6], introduced in the previous section, was published by
Queen Mary University of London for the purpose of emotion analysis on the ba-
sis of physiological signals, including EEG. The data consists of recordings of 32
participants who were watching music videos. Forty 1-minute long videos were
carefully selected to induce emotions falling into 4 general categories: LAHV,
LALV, HAHV and HALV, as described above. The recorded data comprises 32
EEG channels conforming to the international 10-20 system and 8 additional
channels representing various physiological signals, including EOG (horizontal
and vertical eye movements), EMG (activity of zygomaticus major and trapez-
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ius muscles), GSR, respiration, blood volume pressure and temperature. In our
research only the EEG channels were used.

Every participant rated every video he/she had watched, in terms of four
distinct emotional qualities: valence, arousal, dominance and liking. Each rating
was expressed as a real number from the range [1, 9]. The two first qualities
(valence, arousal) defined our research goal: to predict the participant’s rating
on the basis of the EEG signal recording.

3.1 EEG data preprocessing

The EEG signal recorded from a participant watching one film comprises 8064
time-domain samples per electrode, which corresponds to 63 seconds at sampling
frequency of 128 Hz. Power spectral density is computed for each frame of size
128 samples (one second, von Hann window applied) with 50% overlap (hop-
size: 64 samples). This yields a spectrogram with 125 time points (frames) and
frequency resolution of 1 Hz. The frequencies below 4 Hz and above 45 Hz are
rejected (in fact, they are already filtered out in the originally preprocessed
DEAP dataset). The spectrogram values are then scaled logarithmically so that
they fit within [0, 1] range. The first 5 frames are rejected, and the spectrogram
is rescaled along the frequency axis (antialiasing filter applied) to the final shape
of 20× 120 (frequency × time). An example is presented in Fig. 1.

Fig. 1. Spectrogram of the first EEG channel (Fp1 electrode) recorded for the first
participant watching the first video (n denotes the frame index)

Each spectrogram is cut into chunks of 10 frames each (which corresponds to
ca 5 seconds) with overlap of 50%. This yields 23 chunks for a single spectrogram.
The corresponding chunks coming from all the 32 electrodes (i.e. the chunks rep-
resenting the same time range within all 32 spectrograms) are grouped together,
forming the single object (input tensor) to be recognized by the network. Every
recording of a single film watched by a single user is therefore represented by
separate 23 fragments (input tensors) of size 32 × 20 × 10 (electrodes × fre-
quency bands × time frames). All these 23 fragments have the same target value
(defining our training goal) which is simply equal to the participant’s rating of
the film under consideration. Each tensor is an individual input object for a
convolutional neural network described in the next section.

We decided to apply a 4-fold crossvalidation scheme with fixed division into
the training, testing and validation subsets. Every experiment was based on the
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EEG data from 40 films of a single participant only. It was therefore repeated
for all 32 participants individually (and for each of the 4 folds) and averaged
results are reported (Sect. 4).

Considering the data from a single participant, 10 films were included in the
testing set, another 10 films – in the validation set and the remaining 20 films
were used for training. Complete films were always used, i.e. we did not mix
fragments (input tensors) from different films. In Fig. 2 the assignments of indi-
vidual films to particular subsets (in each of the 4 folds) are shown in the bottom
4 rows. Ts denotes the testing set, Vd – the validation set and the blank fields
indicate the films used for training. The reason for these particular assignments

Fig. 2. Film-to-subset assignments in the individual folds

is explained in the upper part of the table in Fig. 2. Most of the first 20 films
have on average higher valence ratings (H) than the last 20 films (L). As for the
arousal, the first and the last 10 films tend to be rated higher than the middle
20. Therefore, the chosen assignment yields more balanced testing set (and also
the validation and the training ones), containing 5 H’s and 5 L’s both for valence
and arousal, irrespective of the fold number (although the ratings of individual
participants may occasionally deviate from this simple H/L distinction).

3.2 Convolutional neural network model

Having analyzed the extensive review presented by Roy et al. [8], we decided to
use a simple, yet effective CNN architecture shown in Fig. 3.

Fig. 3. Applied model architecture

The architecture is implemented as Sequential model with Keras interface
for TensorFlow library. Apart from the dropout layers, there are some additional
elements (not shown) aimed at generalization properties enhancement: L2 ker-
nel regularizer (regularization coefficient: 0.01) in both convolutional layers and
a GaussianNoise layer (σ = 1.5) applied before the first convolutional layer.
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4 Experiment objectives and design

Polarity inference is the most fundamental task in many emotion recognition
or sentiment analysis problems. Does she like me or not? Are they interested or
bored? We often tend to ignore the possible shades of gray between the extremes.
The DEAP dataset construction principles seem to support this view, provided
that the 40 films had been deliberately selected (out of the initial collection of
120 videos) to maximize the strength of the elicited emotions. More precisely,
the database contains these films, which happened to lie closest to the 4 extreme
corners in the valence-arousal 2D space, as rated by at least 14 volunteers per
film in a preliminary step of video material selection [6].

Using the collected videos in the actual experiments, targeted at emotion
recognition from the physiological signals, follows naturally the same principle.
A typical approach found in most research works, including also the original
paper by Koelstra et al. [6], aims at classification of the videos in two classes:
low and high, with respect to any of the four aforementioned emotional qualities.
For example, if the valence rating of a film exceeds 5, the film is automatically
included in the ”high valence” class (”low valence” in the opposite case). This
approach seems natural, straightforward and valid. However, taking into account
the actual data collected from the subjects participating in DEAP database
construction, it is probably overly simplistic, as we demonstrate below.

The first thing to consider is the histogram of the participants’ ratings (Fig. 4).
Its unusual shape results from the fact, that the participants usually tried to give

Fig. 4. Histogram of valence ratings

integer scores, although the available input method was based on a continuous
scale (ranging from 1.0 to 9.0, as mentioned before). Now we can clearly see the
problem of ”neutral responses”: over 100 ratings were very close to 5 or – if we
take a slightly broader tolerance – 221 ratings fell within the range [4.5, 5.5].
Considering the total number of ratings (1280 = 40 films evaluated by 32 users),
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this accounts for over 17% ratings which were probably intended to mean ”no
opinion”. Splitting the data with a hard threshold of 5 into positive/negative
valence ratings will inevitably lead to significant confusion, irrespective of the
particular machine learning or classification approach.

Moreover, assigning the same class (”low”) for films labelled ”1” and ”4”,
while separating the ”4”s (”low”) from the ”6”s (”high”) seems also arguable.
Although the emotional valence rating is highly subjective and it probably does
not follow any simple linear scale or distance measure suggested by Fig. 4, pre-
dicting the actual rating instead of the ”low-high” quantization seems much
more appropriate.

Finally, we have to take into account that the participant’s rating is the result
of an intrinsic decision-making process based not only on purely emotional reac-
tions but on many other premises as well. They may include prior knowledge and
personal attitude towards the video content, the general worldview, the social,
political and cultural background and – last but not least – the comparison with
the previously watched videos and the ratings given. These factors may easily
change the final rating of the current video within certain limits, independently
on the actual emotions deducible from the recording of the physiological signals.
This change may be relatively small in terms of sheer numbers, but in some cases
it may easily shift the film from the ”low” to the ”high” class, or vice versa.

This, again, supports the claim that prediction of the participant’s rating (i.e.
regression) should be the preferred approach to the analysis of the DEAP dataset
(and other collections based on similar data acquisition principles). It should be
noted that increasing the number of classes, as an alternative to regression,
would probably not be as effective, because we could not directly represent the
relations between consecutive classes on the ordinal scale in our machine learning
approach (and in the evaluation procedures).

4.1 Experimental validation

In a single experiment (for a single participant), the training set for the convolu-
tional neural network described in Sect. 3.2 included 460 input objects (20 films
× 23 input tensors), according to Sect. 3.1. For each dimension of the input
tensor, the mean µtrain and standard deviation σtrain within the training set
were computed and used for data normalization of all the three sets: training
(Tr), testing (Ts) and validation (V d):

Trnorm = Tr−µtrain

σtrain
(1)

Tsnorm = Ts−µtrain

σtrain
(2)

V dnorm = V d−µtrain

σtrain
(3)

The goal of the supervised training was to obtain proper regression, i.e. to
minimize the mean squared error (MSE) between the output of the last layer
(a single neuron with a unipolar sigmoidal activation function, Sect. 3.2) and the
target participant’s rating value (ground-truth). The target value was divided by
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10.0 to make it fit within the range [0.1, 0.9]. The network was trained with Adam
optimizer [8]. After numerous preliminary experiments, the maximum number of
epochs and the batch size were set to 600 and 100, respectively. The validation
dataset (Sect. 3.1) was used to select the best model in terms of validation MSE
minimization.

Apart from this, two additional experiments were done. In one of them (”re-
gression opt”), no validation set was used (or, more precisely, it was merged with
the training set for the total number of 30 training films) and the optimal model
was selected on the basis of the MSE value for the testing set. In this case, the
obtained results may be interpreted as the theoretical maximum that might be
reached, provided that the optimal stopping criterion is known beforehand. The
other experiment is based on high/low classification instead of regression, so it
is basically a reference for comparison of the results. In this case, all the partici-
pant’s ratings and the network outputs are thresholded (below 0.5→ 0; greater
or equal 0.5 → 1). It is worth to note, however, that this binary representa-
tion of the targets is used for the training process only. The CNN, once trained,
is tested and evaluated in the same way as in the case of the regression-based
experiments, as described in the following section.

4.2 Evaluation metrics

Following the non-binary formulation of the training target, also the evaluation
methods, used for the analysis of the testing set results, should be defined in
a more ”fine-grained” way. Mean square error (MSE) and mean absolute er-
ror (MAE) between the CNN outputs and the participant’s ratings seem to be
reasonable measures, telling us how big the discrepancy is on average. We also
used a standard binary classification metric (CLS) based on thresholding both
the outputs and targets with the fixed threshold of 0.5 and simply counting the
objects for which the match occurred.

These three measures (MSE, MAE and CLS) were computed in two ways: for
individual input tensors representing the film fragments (23 independent results
for a single film) and for the whole films. In the latter case, the arithmetic mean
of the outputs obtained for all the 23 input objects representing the same film
was treated as the final prediction and compared with the target.

As an additional form of result presentation, we computed the percentage of
films within a given range of MAE values (with respect to the true participant’s
rating). This computation was done on the whole-film basis, as defined above.

Apart from the objective evaluation measures, individual results were also
carefully inspected and verified manually. This allowed us to detect a significant
problem, responsible for degradation of the results in many cases. It occurred
especially for these users and folds for which most of the ratings in the training
set were close to the middle 5. In such cases the network tended to get stuck
in the local minimum, producing non-diversified results, also close to 5 (Fig. 5,
left). This problem may be viewed as a direct consequence of resigning from the
”hard” binary classification approach which had forced the network to decide on
either the high or low value at the output.
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Fig. 5. Left: participant’s ratings (black) and network output (grey) for all 230 frag-
ments from the test set (user 10, fold 2; each sequence of 23 consecutive fragments
represents one film); Right: the sigmoidal function used to transform the target values
in order to force the network to produce more diversified output values

As a remedy, a special scaling of the targets in the training set, with a sig-
moidal function, was applied (Fig. 5, right). This ”soft alternative” to the binary
classification drew the target values more to the extremes, encouraging the net-
work to leave the ”mid-level comfort zone” during training, while preserving the
relative order of the rating values. The result for the same user/fold pair is pre-
sented in Fig. 6. Naturally, it should be remembered that training the network

Fig. 6. Left: training result for the same dataset as in Fig. 5, but with the targets
transformed with the sigmoidal function; Right: the same result but with the mean
output ratings per film

with target values transformed with a sigmoidal function requires that in the
testing phase its outputs are transformed with the inverse function, before any
comparison or evaluation is performed.

4.3 Results

All the training sessions were independently done for the valence and for the
arousal ratings. In every experiment, the training was repeated three times and
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the mean values of the evaluation metrics are reported in Table 1 (valence) and
Table 2 (arousal).

Table 1. Results (valence)

Film fragments Whole films
MSE MAE CLS MSE MAE CLS

Classification 0.128 0.298 58.9% 0.096 0.252 60.0%

Regression 0.052 0.181 59.2% 0.046 0.172 60.2%

Regression opt 0.038 0.153 67.5% 0.032 0.143 71.4%

Table 2. Results (arousal)

Film fragments Whole films
MSE MAE CLS MSE MAE CLS

Classification 0.134 0.307 59.6% 0.106 0.268 60.9%

Regression 0.050 0.173 60.4% 0.046 0.165 62.2%

Regression opt 0.035 0.145 68.2% 0.031 0.137 70.3%

Figures 7 and 8 reveal how many films were rated sufficiently close to the
ground-truth in terms of MAE. For example, the last column in the last group of
Figure 7 tells us that the absolute difference between the CNN output and the
participant’s rating was less than 4.5 in 98.8% of all the films. It is worth noting
that this result (and all other presented results) is averaged over individual
results from 384 training sessions (3 repetitions × 32 participants × 4 folds) and
that the CNN output is in fact the mean of 23 outputs for 23 different fragments
of the same film.

Fig. 7. Percentage of films within a given MAE range (valence)
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Fig. 8. Percentage of films within a given MAE range (arousal)

4.4 Discussion

The obtained results clearly show the advantages of the proposed approach. Al-
though the binary classification accuracy (CLS) is only slightly better for the
regression-based model than for the classification-based one (60.2% vs 60% and
62.2% vs 60.9% for the valence and arousal, respectively), the MSE and MAE
values are definitely smaller (roughly two times smaller). In fact, this outcome is
understandable when we take into consideration that the thresholding, used for
producing the binary class labels, inevitably leads to discarding all the nuances
present in the participants’ ratings. Nevertheless, the practical usefulness of the
obtained small MSE and MAE values seems quite clear, when we note, for exam-
ple, that over two-thirds (three-fourths) of the films will get the arousal rating
prediction within ±2 (±2.5) from the ground-truth, if we apply our regression-
based CNN training approach.

Considering the binary classification accuracy itself, it has to be agreed upon
that the obtained result, slightly exceeding 60% (or 70% for the optimally de-
termined early stopping criterion), is not very impressive. One potential reason
for that is the relatively small training set, especially when we consider the huge
dimensionality of the input space.

Increasing the number of training examples may be obtained in several ways,
e.g. by including the data from other participants or by increasing the number
of spectrogram chunks, either by shortening them or by increasing the overlap.
The first option (training on the data coming from many participants) would
also be the most general and useful one. However, the heterogeneity of the EEG
characteristics among the participants, poses significant problems in obtaining
good generalization properties of the CNN models. The second option (generat-
ing more training objects from the EEG signal) is related to the question of the
optimal range and resolution of the input data both in terms of the frequency
content (e.g. how many bands and what frequency range should be analyzed)
and the temporal characteristics (e.g. duration of the analyzed film fragments).

Instead of increasing the training set size, we may also search for dimension-
ality reduction. The EEG signals coming from adjacent electrodes are usually
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quite significantly correlated, and some EEG channels may be more useful in
emotion analysis that the others. Similarly, some frequency ranges might prob-
ably be excluded from the input data or, at least, represented with decreased
resolution. These are just a few examples of the research directions that will be
considered in our future work.

5 Conclusion

In the presented work, we compared two Russell’s emotional state evaluation
methodologies in the task of valence/arousal prediction on the basis of the EEG
signal. We confronted state-of-the-art binary classification with our regression-
based approach. Our motivation was supported by the detailed analysis of the
representative DEAP dataset, highlighting the pitfalls and difficulties result-
ing from simple high/low label assignment. We also proposed new evaluation
metrics (MSE/MAE) conforming to the reformulated emotion recognition task.
Subject-oriented experimental evaluation of the proposed methodology, based on
a convolutional neural network trained on EEG signal spectrograms, revealed the
improvement in the obtained results, both in terms of the new metrics and bi-
nary classification accuracy. The CNN trained to perform the regression task
yielded much higher target rating prediction rates (with respect to the binary
classification), with the difference reaching 26.2 percentage points (arousal) and
19.5 percentage points (valence), for MAE tolerance range of ±0.2.

Future works will concentrate on analysis of automatic vs handcrafted EEG
signal feature selection, including both EEG channels and frequency range se-
lection. We will also investigate potential solutions for improvement of the gen-
eralization properties of the proposed CNN model.

As a final conclusion, we encourage the research community to revise the
evaluation methodology used in emotional state recognition tasks and to consider
regression as more appropriately reflecting the subjective nature of emotional
state ratings reported by the users.
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