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Abstract. Feature selection in supervised classification is a crucial task
in many biomedical applications. Most of the existing approaches assume
that all features have the same cost. However, in many medical appli-
cations, this assumption may be inappropriate, as the acquisition of the
value of some features can be costly. For example, in a medical diagnosis,
each diagnostic value extracted by a clinical test is associated with its
own cost. Costs can also refer to non-financial aspects, for example, the
decision between an invasive exploratory surgery and a simple blood test.
In such cases, the goal is to select a subset of features associated with the
class variable (e.g., the occurrence of disease) within the assumed user-
specified budget. We consider a general information theoretic framework
that allows controlling the costs of features. The proposed criterion con-
sists of two components: the first one describes the feature relevance
and the second one is a penalty for its cost. We introduce a cost factor
that controls the trade-off between these two components. We propose
a procedure in which the optimal value of the cost factor is chosen in a
data-driven way. The experiments on artificial and real medical datasets
indicate that, when the budget is limited, the proposed approach is su-
perior to existing traditional feature selection methods. The proposed
framework has been implemented in an open source library3.

Keywords: cost sensitive feature selection · information theory · mutual
information

1 Introduction

Feature selection in supervised classification is a crucial task in many biomedical
applications. Feature selection improves the comprehensibility of the considered
model and allows to discover the relationship between features and the target
variable. Most importantly, it helps to build models with better generalization
and larger predictive power [7]. Last years have witnessed a rapid and substantial
advancement of feature selection methods coping with the high dimensionality
of data. However, most existing methods usually assume that all features have

3 Python package: https://github.com/kaketo/bcselector
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the same cost, which may be inappropriate as in some situations the acquisition
of feature values is costly. For example, in a medical diagnosis, obtaining some
information is inexpensive (e.g., gender or age of the patient), but each diagnos-
tic value extracted by a clinical test is associated with its own cost. In general,
feature costs may also correspond to non-financial factors, for example time or
difficulty in obtaining administrative data (e.g., due to privacy reasons) [18].
Other examples of feature costs include risk associated with certain diagnostic
examinations (such as general anesthesia [9], diagnostic X-rays [6]). Finally, the
costs may correspond to a choice of diagnostic procedure, e.g., the decision be-
tween invasive exploratory surgery and a simple blood test. Ignoring the costs
may lead to choosing features that yield a powerful model, but the model cannot
be used in practice as high cost is incurred in the prediction [21]. In such cases,
it may be better to have a model with an acceptable classification performance,
but a much lower cost.

In this work, we focus on a model-free feature selection approach based on
the information theory, which has several important advantages. First, it avoids
reliance on a particular classification model which allows to find all features
associated with the class variable, not only those which are indicated by the em-
ployed model. Information theoretic methods, unlike some classical approaches
(e.g., logistic regression with lasso regularization), are able to detect both lin-
ear and non-linear dependencies between features and class variables. Moreover,
some advanced criteria are able to discover interactions between features as well
as to take the redundancy of features into account. The information theoretic
approach is versatile as it can be used for both classification and regression
tasks, i.e., nominal and quantitative class variables, as well as for any type of
features. Finally, information theoretic filter methods are usually computation-
ally much faster than their model-based counterparts (such as lasso or random
forest variable importance measures). Methods from the latter group require fit-
ting complex classification models, which may be challenging for datasets having
a large number of features.

We propose a novel greedy feature selection method that takes into account
information on feature costs. In each step of the proposed procedure, we select
a feature that maximizes the proposed criterion. Our criterion consists of two
components describing the feature relevance and its cost, respectively. The first
term is an approximation of the conditional mutual information (CMI) between
a candidate feature and a target variable under the condition of already selected
features. The approximation of CMI is divided by a second term which is propor-
tional to the cost of the candidate feature. Moreover, we introduce a cost factor
that controls the trade-off between feature relevance (measured by CMI) and
its cost. We argue that the cost factor plays an important role in cost sensitive
feature selection, although it is neglected in most related methods. In particular,
its choice should depend on the assumed budget. What distinguishes our idea
from previous related methods is a data-driven method of choosing the optimal
value of the cost factor.
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The paper is organized as follows. We discuss related work in Section 2 and
introduce the basic concepts of the information theory in Section 3. In Section
4, we introduce the proposed method and discuss the results of the experiments
in Section 5. Section 6 concludes the paper.

2 Related work

Feature selection methods based on the information theory have attracted signif-
icant attention in recent years. Various criteria have been proposed ranging from
a simple MIM filter [11] (involving the computation of the mutual information
between a class variable and a candidate feature) to more powerful methods like
CIFE [12], JMI [22] or IIFS [15] that take into account high-order interactions
between features as well as possible redundancies between features. We refer to
review articles [19] and [3]. In the latter one, the authors analysed dozens of
feature selection methods both theoretically and experimentally. Most of the in-
formation theoretic methods only produce a ranking of the features and do not
select a subset of relevant ones (see however [13]).

In the machine learning literature, there are some attempts to include cost
information in the feature selection. The task is challenging as it is necessary
to find a trade-off between the feature relevance and its cost. The method most
related to our approach was proposed by [2] in which the popular information
theoretic filter mRMR was modified by adding a penalty for the feature cost
to the term describing the feature relevance. In our contribution, we propose
a more general framework in which feature relevance can be measured by any
approximation of conditional mutual information. Moreover, the method pro-
posed in [2] lacks the choice of cost factor parameter; our method aims to fill
this gap. Another related method has been described in the recent paper [8]. In
this approach, the feature relevance is measured using an increase of the Akaike
Information Criterion (AIC). The feature relevance term is simply divided by the
cost. Unlike in our method, there is no cost factor. Importantly, the method is
based on a parametric model whose quality is measured using the AIC, whereas
in our approach we consider a more flexible, model-free criterion which is able to
detect non-linear dependencies among variables. There are also some attempts
to modify existing classification methods in which the feature selection is em-
bedded in the base learner. For example, [23] proposed a random forest-based
feature selection algorithm that incorporates the feature cost into the base de-
cision tree construction process. In particular, when constructing a base tree,
a feature is randomly selected with a probability inversely proportional to its
associated cost. Although the method is appealing, it is not clear how to control
the trade-off between the feature relevance and its cost and how to optimize
the prediction performance within the assumed budget. Davis et al. [5] present
a cost sensitive modification of the ID3 decision tree algorithm. They propose
a new cost sensitive feature selection criterion that maximizes the information
gain while minimizing the cost. The modification of the lasso method for logistic
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regression was considered in [17]. The authors introduced a regularization term
which depends on the feature costs.

3 Background

In this section, we review the basic concepts used in the information theory:
the mutual information and the conditional mutual information [4], which are
necessary to introduce a general framework of feature selection. First, we discuss
some notations. We consider a target class variable Y and a vector of features
X = (X1, . . . , Xp), where p is the number of all considered features. In addition,
we denote by XS a subvector of X corresponding to a subset of some features
S ⊆ {1, . . . , p}.

3.1 Mutual Information

The mutual information (MI) is the basic measure of dependence between two
variables. MI between the class variable Y and a candidate feature Xk is defined
as

I(Y,Xk) = H(Y )−H(Y |Xk),

where H(Y ) is the entropy of the class variable and H(Y |Xk) is the conditional
entropy. MI is a popular non-negative measure of association and equals 0 only
if Y and Xk are independent. The MI can be also interpreted as the amount of
uncertainty in the class variable which is removed by knowing the other variable
Xk. In this context, it is often called information gain. In the context of feature
selection, the MI is used to assess the individual relevance of the feature Xk, i.e.,
it measures marginal dependence between Y and Xk. Estimation of the MI is
a challenging problem, especially in the case of continuous features [14]. In our
experiments, we discretize all continuous features and use a plug-in estimator of
the entropy in which the probabilities are estimated by fractions.

3.2 Conditional mutual information and its approximations

The conditional mutual information (CMI) is a crucial concept in the feature
selection [3]. Most feature selection methods based on the information theory
are forward sequential procedures that start from an empty set of features and,
in each step, add a new feature from a set of candidate features. The CMI is
used to measure how the candidate feature is associated with the class variable
conditioned on the already selected features. The CMI is defined as

I(Y,Xk|XS) = H(Y |XS)−H(Y |Xk,XS),

where Y is a class variable, Xk is a candidate feature and XS is a vector of
features corresponding to already selected features. Importantly, it may hap-
pen that the candidate feature Xk is associated with the class variable, i.e.,
I(Y,Xk) > 0 but it is redundant when considering together with features S.
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The simplest example is the situation when S contains a copy of Xk. Another
interesting situation is the case when I(Y,Xk) = 0 and I(Y,Xk|XS) > 0, i.e.,
there is no marginal effect of Xk, but the interaction between Xk and features
from the set S exists. Estimation of the CMI is a very challenging problem, even
for a moderate size of conditioning the set S and it becomes practically infeasible
for the larger S. To overcome this problem, various approximations of CMI have
been proposed, resulting in different feature selection criteria. We refer to [3]
and [10] which clarify when various feature selection criteria can be indeed seen
as approximations of the CMI. In the following, we briefly review the most pop-
ular ones. The simplest approximation is known as MIM (mutual information
maximization) criterion defined simply as Imim(Y,Xk|XS) = I(Y,Xk), which
totally ignores the conditioning set. The other popular method is MIFS (Mutual
Information Feature Selection) proposed in [1]

Imifs(Y,Xk|XS) = I(Xk, Y )−
∑
j∈S

I(Xj , Xk), (1)

in which the first term I(Xk, Y ) describes the feature relevance and the second is
penalty enforcing low correlations with features already selected in S. Brown et.
al. [3] have shown that if the selected features from S are independent and class-
conditionally independent given any unselected feature Xk then CMI reduces to
so-called CIFE criterion [12]

Icife(Y,Xk|XS) = I(Xk, Y ) +
∑
j∈S

[I(Xj , Xk|Y )− I(Xj , Xk)]. (2)

Note that CIFE criterion is much more powerful than MIM and MIFS as it
takes into account possible interactions of order 2 between candidate feature Xk

and features selected in the previous steps. There are also criteria that take into
account higher-order interactions, see e.g., [15] and [20].

4 Controlling costs in feature selection

4.1 Problem statement

In this section, we describe an information theoretic framework for feature se-
lection. It has to be recalled that Y is a class variable which is predicted using
features X1, . . . , Xp. We assume that there are costs c1, . . . , cp ∈ (0, 1] associated
with features X1, . . . , Xp. It can be denoted that by C(S) =

∑
j∈S cj a cost asso-

ciated with a feature subset S ⊆ {1, . . . , p}. The total cost is TC =
∑p
j=1 cj . In

addition, the assumption that we have a total admissible budget B ≤ TC, can
be made. The goal is to find a subset of features that allows to predict the class
variable accurately within the assumed total budget B. The budget is a user-
based parameter that can be manipulated according to current needs. Within
an information theoretic framework, the problem can be stated as

Sopt = arg max
S:C(S)≤B

I(Y,XS), (3)
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i.e., we aim to select a feature subset Sopt that maximizes joint mutual infor-
mation between the class variable Y and the vector XS within the assumed
budget.

4.2 Greedy forward selection

Note that the number of possible subsets in the problem (3) may grow exponen-
tially, which means that it is possible to solve it only for a small or moderate
number of features. Moreover, the estimation of I(Y,XS) is a challenging prob-
lem when S is large. In this work, we consider a sequential forward search which
starts from an empty set of features and in each step adds a feature from a set
of candidate features. We first describe the algorithm which finds the optimal
feature subset within the assumed budget B, for the fixed value of a cost factor
r (see Algorithm 1 for a detailed description). The core element of our algorithm
is a cost sensitive criterion of adding a candidate feature. In the i-th step, from
a set of candidate features Fi(r) (see Algorithm 1), we select the feature with
index ki(r) such that

ki(r) = arg max
k∈Fi(r)

Iapprox(Y,Xk|XSi−1(r))

crk
, (4)

where Iapprox is one of the approximations of CMI (see Section 3.2 for examples),
Si−1(r) is a set of features selected in the previous step. Note that criterion (4)
can be written in the alternative form arg maxk∈Fi(r)[log Iapprox(Y,Xk|XSi−1(r))−
r log ck]. The first term corresponds to the relevancy of the candidate feature,
whereas the second term is a penalty for its cost. We aim to select a candidate
feature that maximizes the conditional mutual information with the class vari-
able given already selected features, but at the same time we try to minimize
the cost.

Algorithm 1: Finding the optimal subset for the fixed cost factor r

Input : Y ,X = (X1, . . . , Xp),r,B
S0(r) = ∅, F1(r) = {1, . . . , p}
Iapprox-cum(r) = 0
for i = 1, . . . , p do

ki(r) = arg maxk∈Fi(r)
Iapprox(Y,Xk|XSi−1(r))

crk

if C(Si−1(r) ∪ ki(r)) ≤ B then
Si(r) := Si−1(r) ∪ ki(r)
Fi+1(r) := Fi(r) \ ki(r)
Iapprox-cum(r) = Iapprox-cum(r) + Iapprox(Y,Xki(r)|XSi−1(r))
S(r) = Si(r)

else
S(r) = Si−1(r)
break for loop

end

end
Output : S(r), Iapprox-cum(r)
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The cost factor r controls the trade-off between the relevancy of the candidate
feature and its cost. Indeed, for r = 0, the cost ck is ignored, whereas for larger
r, the cost term plays a more important role. An interesting question arises: how
to choose the optimal value of the parameter? In related papers, it is often stated
that cost factors should be specified by the user according to his needs, see e.g.,
[2]. However, in practice, it is not clear how to select the optimal r. We argue
that the choice of r should depend on the assumed budget B. Indeed, when B
is large, say it is close to a total cost TC, then there is no need to take costs
into account, so r should be close to zero. On the other hand, if B is small, then
we need to take more into account the costs in order to fit into assumed budget,
so r should be large. In order to find the feature subset corresponding to the
optimal r, we propose the following procedure, described by the Algorithm 2. We
run Algorithm 1 for different values of r, ranging between 0 and certain value
rmax. For each r we calculate the cumulative increments of the CMI related
to the added candidate features. Finally, we choose ropt corresponding to the
largest cumulative increment and the feature subset corresponding to ropt. The
value rmax is chosen in the following way. Let Imax := maxk I(Xk, Y ) and Imin :=
mink I(Xk, Y ) be the maximal and the minimal MIs, respectively. Next, let c(1) ≤
c(2) ≤ . . . ≤ c(p) be the feature costs sorted in ascending order. For r = rmax,
we should select the cheapest feature regardless of its relevance. In particular,
we could potentially have Imax/(c

rmax

(2) ) ≤ Imin/(c
rmax

(1) ), as the cheapest feature

with cost c(1) should be selected regardless of the value of mutual information.
Using the above equation, we define rmax := log(Imax/Imin)/ log(c(2)/c(1)). The
number of values in the grid 0, . . . , rmax depends on the user preferences. For a
denser grid, the optimal value of r can be chosen more precisely, but at the same
time the computational cost of the procedure increases.

Algorithm 2: Finding the optimal feature subset with cost factor op-
timization

Input : Y ,X,B
for r = 0, . . . , rmax do

Run Algorithm 1 to obtain S(r) and Iapprox-cum(r)
end
ropt := arg maxr=0,...,rmax

Iapprox-cum(r)
Output : S(ropt)

5 Experiments

The main goal of the experiments was to compare the proposed cost sensitive
feature selection procedure with traditional feature selection that ignores infor-
mation about feature costs (we used a standard sequential forward search with
CIFE criterion as a representative traditional method). Regarding the proposed
cost sensitive approach, we used the greedy procedure described in Algorithm
1 in which the conditional mutual information was approximated with CIFE
criterion (2). We used the logistic regression model to calculate the ROC AUC
score for the selected set of features. Moreover, the cost factor r was selected
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using the Algorithm 2. We performed experiments on both artificial and real
medical datasets. The proposed framework has been implemented in a publicly
available Python package https://github.com/kaketo/bcselector.

5.1 Artificial dataset

The advantage of using an artificially generated dataset is that we can easily
control the relationship between the feature relevancy and its cost. Below we
present a method of generating the artificial data. We consider p original features
with a cost equal to 1. The additional features are obtained from the original
features by adding noise. The cost of additional features is inversely proportional
to the variance of the noise. The above framework mimics a real scenario. For
example, in a medical diagnosis we can perform the expensive diagnostic test
which yields the accurate value of the feature or alternatively we can choose the
cheaper diagnostic test which gives an approximate value of the feature. As an
example, one may consider the medical ultrasonography (USG): the 3D scans
are more effective and precise than traditional 2D scans, but they are also more
expensive; the 2D scan can be regarded as an approximation of the 3D scan.

Generation of artificial data

1. Generate p independent random variables X1, · · · , Xp ∼ N(0, 1) of size n.

Let x
(j)
i be the i-th value of j-th feature. We set c1 = c2 = · · · = cp = 1.

2. For each observation i = 1, . . . , n, calculate the following term:

σi =
e
∑p

j=1 x
(j)
i

1 + e
∑p

j=1 x
(j)
i

.

3. Generate target variable Y = {y1, · · · , yn}, where yi is drawn from the
Bernoulli distribution with the success probability σi.

4. Generate p noisy random features e1, · · · , ep, where ej ∼ N(0, σ).
5. Create additional p noisy features, defined as: X ′j := Xj + ej . For each noisy

feature we assign cost c′j = 1
σ+1 .

6. Steps 4 - 5 are repeated for different values of σ and finally we obtain (k +
1)× p features, where k is a number of repetitions of steps 4 - 5.

We present the illustrative example for n = 10000, p = 4 and k = 4. This setting
yields 20 features in total (4 original and 16 noisy features). Noisy features were
generated for four values of σ, randomly selected from [1, 10]. Figure 1 (top-left
panel) shows the mutual information between considered features and the target
variable. It is important to note that the mutual information for noisy features
is always lower than for the original features. The left-bottom panel presents the
costs of the considered features; note that noisy features have much lower costs
than the original features. In the right panel we present the averaged results of
10 trials of feature selection performed for various fractions of the total cost. On
OX axis, the budgets are described as a percent of the total cost. On OY axis,
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we can see the ROC AUC score of the logistic regression model built on the
selected features within the assumed budget. We can see that until 60% of the
total cost, cost sensitive method performs better. This is due to the fact that,
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Fig. 2. Artificial dataset. Cumulative increases of CIFE for different values of r and
different budgets. Vertical lines correspond to maximum of the curves.

in this case, traditional methods can only use a fraction of all original features
(say 1 or 2 out of 4 original features) within the assumed budget, which de-
teriorates the predictive performance of the corresponding classification model.
On the other hand, the cost sensitive method aims to replace the original fea-
tures by their cheaper counterparts, which allows to achieve higher accuracy of
the corresponding model. When the budget exceeds 60% of the total cost, the
traditional feature selection method tends to perform better than the proposed
method, which is associated with the fact that, in this case, traditional methods
include all original features (i.e., those which constitute the minimal set allowing
for accurate prediction of the target variable) which results in a large predictive
power of the corresponding model. For a larger budget, cost sensitive methods
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include both noisy features as well as the original ones. The noisy features be-
come redundant when considering together with the original ones. This results
in slightly lower prediction accuracy of the corresponding model. As expected,
the cost sensitive methods are worth considering when the assumed budget is
limited.

Figure 2 visualizes the selection of the cost factor r described by the Algo-
rithm 2, for one trail. Vertical dashed lines correspond to the optimal parameter
values for different values of the budget.

5.2 MIMIC-II dataset

We performed an experiment on the publicly available medical database MIMIC-
II [16] which provides various medical data about patients from the intensive
care unit and their diseases. We randomly selected 6500 patients and chose
hypertension disease as the target variable. We used 33 variables which refer
to basic medical interviews and results of various medical tests. The costs of
the features are provided by the experts and they are based on the prices of
diagnostics tests in laboratories. We used the cost data described in [17]. Before
running the algorithm, the original costs are normalized in such a way that
cj ∈ (0, 1]. It should be noted here that in most countries the relations between
the prices of different diagnostic tests are similar.
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Fig. 3. MIMIC-II dataset. Basic characteristics of features.
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Figure 3 depicts the values of mutual information between considered fea-
tures and the target variable as well as the costs of the features. Features are
sorted according to the increasing cost. Values of the first four features (Marital
status, Admit weight, Gender and Age), which are based on basic interviews
with patients, are really cheap to collect. Note that the variable Age is highly
correlated with the class variable although it has low cost. Therefore, we can
expect that this feature will be selected as relevant by both traditional and cost
sensitive methods. Values of the remaining features are possible to obtain us-
ing various medical tests. We can distinguish three groups of features: results
of blood tests, blood pressure measurements and urine analysis. There are two
conspicuous features: NBP systolic (number 14) and urea nitrogen in serum or
plasma (number 23), both of them are moderately correlated with the target
variable, but their cost is rather high.
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Fig. 4. Feature selection for MIMIC-II dataset.

Figure 4 visualizes the results of feature selection for various budgets for
traditional and cost sensitive methods. The figure shows how the ROC AUC
depends on the number of features used to train the model. The parameter r is
calculated for each budget, therefore the sets of selected features may be different
for different values of budget B. Observe that the variable age is selected as the
most relevant feature in all cases. This can be easily explained as age has small
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Fig. 5. MIMIC-II dataset. Cumulative increases of CIFE for different values and r and
different budgets. Vertical lines correspond to maximum of the curves.

cost and high mutual information with the target variable. The first discrepancy
between the methods can be seen in the second step, where the traditional
method selects expensive urea nitrogen in serum and the cost sensitive method
selects weight which is really cheap and has a positive value of the MI. In the next
steps, the cost sensitive algorithm favors cheap features with moderate value of
the MI, which explains why mean heart rate or mean platelet volume in blood
are selected. The most important observation is that the cost sensitive feature
selection method achieves higher accuracy when the budget is low. For higher
budgets, the traditional methods tend to perform better (see left-bottom and
right-bottom panels in the Figure 4). Thus, we observe the similar situation as
for the artificial dataset. For a larger budget, traditional methods can include
all relevant features, which results in a large predictive power of the model. For
a limited budget, cost sensitive methods select features that serve as cheaper
substitutes of the relevant expensive features.

Figure 5 visualizes the Algorithm 2. We can observe how the cumulative
increments of the approximation of the CMI (CIFE approximation in this case)
depend on r for different budgets. The vertical lines correspond to maximum
of the curves. As expected, we obtain larger values of ropt for smaller budgets,
which is in line with the discussion in Section 4.2. When the budget is large,
one should rather focus on the relevancy of the candidate features and not their
cost. This explains why ropt is smaller in this case.

6 Conclusions

In this paper, we proposed an information theoretic framework for cost sensitive
feature selection. We developed a generic algorithm which allows to use various
approximations of the conditional mutual information to assess the relevance
of the candidate feature. Moreover, we use the penalty for the cost of the can-
didate feature. The strength of the penalty is controlled by the cost factor r.
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Importantly, we proposed a method of choosing the optimal value of r. The ex-
periments on artificial and real datasets indicate that the proposed cost sensitive
method allows to select features that yield a more accurate classification model
when restrictions on the budget are imposed. The proposed method can be espe-
cially recommended when the assumed budget is low. There are many interesting
issues left for future research. In this work, we assumed that each feature has
equal extraction cost. However, in many medical applications, features are ex-
tracted in groups rather than individually, that is, the feature extraction cost is
common for a whole group of features and one pays to simultaneously select all
features belonging to such group instead of a single feature at a time. It would
be interesting to adapt our method to such a case. Another interesting prob-
lem is to consider many target variables (e.g., many diseases) simultaneously,
which in the machine learning community is known as a multilabel classification
problem. In such cases, it is challenging to approximate the conditional mutual
information as instead of a single variable Y we consider a multivariate variable
Y = (Y1, . . . , YK).
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