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Abstract. Vector Particle-In-Cell (VPIC) is one of the fastest plasma
simulation codes in the world, with particle numbers ranging from one
trillion on the first petascale system, Roadrunner, to ten trillion parti-
cles on the more recent Blue Waters supercomputer. As supercomput-
ers continue to grow rapidly in size, so too does the gap between com-
pute capability and memory capability. Current memory systems limit
VPIC simulations greatly as the maximum number of particles that can
be simulated directly depends on the available memory. In this study,
we present a suite of VPIC memory optimizations (i.e., particle weight,
half-precision, and fixed-point optimizations) that enable a significant
increase in the number of particles in VPIC simulations. We assess the
optimizations’ impact on a GPU-accelerated Power9 system. Our opti-
mizations enable a 31.25% reduction in memory usage and up to 40%
increase in the number of particles.

Keywords: Particle-In-Cell method · Mixed-precision · Fixed-point ·
Plasma physics.

1 Introduction

Vector Particle-In-Cell (VPIC) is a high-performance particle-in-cell code that
models plasma phenomena such as magnetic reconnection, fusion, solar weather,
and laser-plasma interaction [2]. VPIC is one of the fastest PIC codes in the
world and has performed some of the largest plasma simulations in history,
ranging from one trillion particles on the first petascale system, Roadrunner [3],
to ten trillion particle simulations on the more recent Blue Waters supercom-
puter [5]. VPIC simulations use large numbers of particles (i.e., on the order
of trillions of particles [3]) to model real world phenomena. As we move the
VPIC code from CPUs to accelerators (i.e., GPUs), the number of particles in
VPIC simulations become limited by memory rather than compute capabilities;
modern CPUs can access up to 4 TB of memory while GPUs (such as Nvidia
A100) are limited to 80 GB, a factor of 50 difference. Moreover, data movement
between CPUs and GPUs is costly, with PCIe 4.0 limited to 32GB/s in one di-
rection. Specialized protocols and hardware have been developed to help address
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the issue; NVLink 3.0 achieves up to 300 GB/s in one direction [10]. Hardware
and software techniques for maximizing communication efficiency are a major
ongoing field of research [18]. At the code level, running VPIC on modern super-
computers with accelerators, while scaling up the number of particles, requires
rethinking how the code uses memory.

In this paper, we introduce a new particle representation and develop a suite
of optimizations for VPIC’s particle storage format (i.e., particle weight, half-
precision position, and fixed-point position optimizations) to tackle the memory
usage problem. Our new particle representation reduces particle memory usage
by up to 31.25%. We demonstrate that our optimizations enable significantly
larger simulations, and that the optimized simulations produce accurate scien-
tific results. Section 2 introduces VPIC’s particle representation and workflow;
Section 3 describes our method to increase particle count by reducing memory
usage; Section 4 presents our performance and accuracy tests; Section 5 provides
an overview of existing plasma simulation codes; and Section 6 summarizes the
key results and introduces future work.

2 VPIC Particles and Workflow

VPIC is a high-performance implementation of the particle-in-cell method used
for plasma simulations [11]. VPIC operates by defining a simulation space di-
vided into a grid of cells and modeling particle movement across the cells. In
other words, particles are distributed across an n-dimensional (n-D) space that
is decomposed into an n-D grid. The resolution of the grid determines cell size
and the maximum time step length. Figure 1a shows an example of a 2-D grid.
Each simulated particle is a macroparticle (Figure 1b) with a defined weight
(i.e., the number of real particles modeled by each macroparticle).

The grid resolution and the number of particles both affect simulation accu-
racy and computational costs. Fine resolution grids better approximate a con-
tinuous n-D space. However, such fine resolution grids increase computational
costs due to field operations, and the time step size must shrink accordingly to
ensure numerical stability. Thus the number of time steps increases for the same
period of simulated time, which further increases computational costs. Increas-
ing the number of particles can also improve accuracy by more closely modeling
real world plasma phenomena. High particle count primarily affects the parti-
cle advance stage with computational costs scaling linearly with the number of
particles. In standard PIC simulations, the cell size is close to the Debye length
(which is the smallest physical length scale in a plasma), and the time step is
set as large as possible. Between the number of time steps and particle count,
increasing particle count is generally preferred, as increasing the number of time
steps incurs higher computational and communication costs.

A VPIC simulation is an iterative process across a defined number of time
steps: each iteration has four key stages (as shown in Figure 1c). First, the
electric and magnetic fields are gathered from the grid points to each particle’s
location (interpolate fields). Second, particles move around based on the forces
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calculated from the electric and magnetic fields (advance particles). Third, the
current generated by the particles’ movements is scattered for each cell (ac-
cumulate currents). Last, electric and magnetic fields are advanced based on
the accumulated current (advance EM fields), and the next iteration starts. For
large, particle-heavy simulations, the first three stages take most of the simu-
lation time, as each of these stages must operate on all the particles. In the
last stage, VPIC advances the electric and magnetic fields at each grid point.
The field advance stage is cheaper compared to prior stages since the number
of particles tends to greatly outnumber the number of grid points. Furthermore,
past I/O studies using VPIC noted that particles are responsible for the vast
majority of memory usage. The trillion particle run in [6] required only 80 GB
of storage for the electric and magnetic fields compared to the approximately
30 TB necessary for the particles. The 375-fold difference in memory require-
ment demonstrates that particle storage is a bottleneck for large scale VPIC
simulations.

(a) Grid and particles (b) Macroparticle

(c) VPIC iterative algorithm

Fig. 1: VPIC features: grid and particles (a); concept of macroparticle (b); and
VPIC stages (c).

The particle position can be stored in two different ways based on the coordi-
nate system: globally and locally. Global coordinates of particles are calculated
and stored based on their absolute position in the n-D space. In Figure 2a the
global positions of the particles are depicted in a 2-D space as (dx, dy). Alter-
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natively, particle positions can be stored in local coordinates with each particle
storing its cell index and position within the cell. In Figure 2b), each particle
position in the 2-D space is defined as (i∗Hx+dx, j ∗Hy +dy), where (i, j) is the
cell index, (Hx, Hy) is the cell size, and (dx, dy) is the local position of the parti-
cle. This representation requires extra space for the cell index but allows VPIC
to represent each particle position more accurately. This is because the distri-
bution of floating-point values follows an almost logarithmic distribution [16].
Values further away from zero are less precise, and approximately half of all
floating-point values exist in [−1, 1]. Thus, local coordinates within the smaller
cell have a more even and dense distribution of values to represent a particle
position. The original VPIC code uses local coordinates and single-precision for
storing particle positions.

(a) (dx, dy) (b) (i ∗Hx + dx, j ∗Hy + dy)

Fig. 2: Global and local particle coordinates.

3 Increase Particle Count by Reducing Memory Usage

In VPIC simulations, the larger the number of particles, the more physically
accurate the simulations and the greater the memory usage. Each particle is
a macroparticle of 32 bytes (as shown in Figure 3) that comprises 3 floats for
position, 3 floats for momentum, 1 integer for the cell index, and 1 float for
weight. There is a major disparity in memory usage between particle data and
all the other data used in the code. Figure 4 shows an example of disparity for a
VPIC simulation of 512 particles per cell; the particles are responsible for over
90% of the total memory usage. Larger VPIC simulations have thousands (or
more) of particles per grid cell [3], making particles the primary focus when it is
time to optimize memory usage. For instance, the simulations described in [1],
which study laser-plasma modeling, have up to 65, 536 particles per grid cell.
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struct particle {

float w; // Weight

float dx, dy, dz; // Position

int i; // Cell index

float ux, uy, uz; // Momentum

};

Fig. 3: Original VPIC particle
data structure.

Fig. 4: Breakdown of memory usage for a
simulation using 512 particles per cell.

3.1 Types of Optimizations

Our suite of optimizations reduce memory usage associated with particles’ weight
and position through reduced precision (i.e., half-precision) and alternative num-
ber representation formats (i.e., fixed-point). Accuracy is maintained by lever-
aging simulation properties and characteristics of the particle-in-cell method.

Table 1 describes the various types of precision formats for floating-point
numbers supported by existing architectures. The original VPIC code uses single-
precision by default (i.e., float), as shown in Figure 3. The three candidates for
reduced storage formats are FP16, TensorFloat [20], and Bfloat16 [17]. Compared
to FP16, TensorFloat requires more storage (19 bits), and Bfloat16 loses precision
(decimal digits). Thus we use FP16 for our optimizations.

Precision Sign Exponent Fraction Decimal Digits

Double (FP64) 1 11 52 ≈ 15.9
Single (FP32) 1 8 23 ≈ 7.2
Half (FP16) 1 5 10 ≈ 3.3
TensorFloat 1 8 10 ≈ 3.3
Bfloat16 1 8 7 ≈ 2.4

Table 1: Floating-point formats with their numerical representations.

3.2 Particle Weight

In VPIC, the macroparticle’s weight represents the number of real particles
modeled by the simulated particle. The particle weight either changes within a
limited range or does not change at all during a simulation. We use this property
to optimize memory usage by adjusting how weight is stored.

When the particle weight varies but has a limited range of values, we can
replace the single-precision weight with a 16-bit integer denoting a multiple
of a known base weight. Alternatively, the 16-bit integer can be an index for
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a lookup table of particle weights. Both methods allow 65,536 different weights
while reducing particle memory by 6.25%. We call this optimization short weight
(SW).

When the particle weight remains constant for all particles of the same species
throughout a simulation, particle weight can be removed entirely and replaced
with a per species constant weight. This solution reduces memory usage by 12.5%
over original VPIC. We call this optimization constant weight (CW). Figure 5
shows the reduction in memory usage for both optimizations (i.e., SW and CW).

Fig. 5: Particle memory usage for default single-precision VPIC and VPIC with
our short weight (SW) and constant weight (CW) optimizations.

3.3 Particle Position

The position of a particle in the original VPIC code is represented by three
float values in single-precision (32 bits). We optimize the code by switching the
representation to half-precision (16 bits). Figure 6 shows that by deploying half-
precision we can reduce memory usage by 18.75% compared to the original VPIC
and 31.25% when combined with the constant weight optimization (or CW).
For a fine resolution grid, half-precision can produce simulations of sufficient
accuracy while enabling larger simulations, as we will show in Section 4.

3.4 From Half-Precision to Fixed-Point

Half-precision particle position may incur an accuracy penalty in comparison
to the default single-precision. Particle positions in each cell in VPIC using
local particle coordinates are normalized to [-1,1], and thus we can use 16-bit
fixed-point numbers instead of half-precision to minimize the loss in accuracy [7].
Fixed-point numbers allow us to maximize the number of bits used for precision.
The fixed-point Qm.n format specifies m bits for the integer and n bits for the
fractional portion. We use the Q1.14 fixed-point format for storing position. One
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Fig. 6: Particle memory usage comparison between original VPIC, VPIC with
our half-precision (HP) optimization, and VPIC with both half-precision and
constant weight optimizations applied (HP+CW).

bit is for the sign, one bit for the integer portion, and the remaining 14 bits for
the fractional portion. The Q1.14 format uses the same amount of memory as
half-precision but has an additional four bits (approximately one decimal digit)
for improving accuracy.

3.5 Particle Momentum and Cell Index

Particle momentum and cell index are represented by three single-precision floats
and a 32-bit integer respectively. Momentum is left unchanged in this work. Mo-
mentum values are normalized to c (speed of light). Initial tests indicate that
switching the momentum values from single-precision to half-precision would re-
sult in insufficient accuracy. Particle cell index determines which cell the particle
resides in and is kept at the default 32-bit integer. A short 16-bit integer has
insufficient range for large-scale simulations.

4 Performance and Accuracy

We present four test scenarios. The first test models laser-plasma interaction and
is used for measuring runtime performance and memory usage of the original
VPIC and the optimized version. The remaining three tests constitute a set of
simple benchmark problems for analyzing the impact of our optimizations on
the VPIC’s numerical accuracy. All the tests were conducted on a four-node,
GPU-accelerated IBM Power9 system. Each node has 155 GB of memory and
32 cores with 128 threads; two nodes host two Nvidia Tesla V100 GPUs each
for a total of 4 GPUs. A single GPU is used, which is sufficient for testing and
simplifies both data collection and analysis.
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4.1 Performance

For testing runtime and memory performance, we have four problem sizes de-
signed to use the GPU’s full 16 GB memory capacity. Problem size is determined
by the total number of particles in the system. The base case requires 16 GB
to run using the original single-precision VPIC. The remaining cases increase in
size until only our optimized versions can successfully run. Runtime tests are
repeated 10 times and the average runtime is used to compare configurations.
Memory usage is measured using the Space Time Stack tool provided by the
Kokkos Tools profiling utilities [12]. The tool tracks Kokkos allocations and the
maximum memory usage on the GPU.

We test VPIC scalability in terms of the number of particles using simulations
modeling laser-plasma interactions. Figure 7 shows the scalability for the original
VPIC code and when using our four optimizations (i.e., with short particle weight
(SW), with constant particle weight (CW), using half-precision particle position
(HP), and using fixed-point particle position (FP)). Missing columns indicate
failed simulations that crash due to insufficient memory. We control problem
size by adjusting the number of particles per cell (Nppc). The grid resolution
and number of time steps are kept constant.

Fig. 7: Memory usage in GB of original VPIC and VPIC with our optimizations.
Number of particles is proportional to the number of particles per cell (Nppc).

Our optimizations demonstrate a significant reduction in memory usage, as
shown in Figure 7. The optimizations to particle position (HP and FP) provide
the greatest reduction in memory usage; when combined with constant weight
(CW), they can increase the total number of particles by a factor of up to
40%. Figure 8 demonstrates that our optimizations also have minimal effect
on runtime performance. Specifically, no negative effect is observed on runtime
performance; in fact runtime can improve thanks to the hardware needing to
move less data through its memory system and between processors. In other
worlds, the optimized VPIC minimizes the amount of data movement between
CPU and GPU. This results in a relatively small improvement in performance
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Fig. 8: Runtime in seconds of original VPIC and VPIC with our optimizations.

that largely cancels out the additional overhead from converting data between
different formats when entering and exiting the advance particle stage (i.e., from
single-precision to half-precision and vice versa, from floating-point to fixed-point
and vice versa) where the optimizations are deployed.

4.2 Accuracy

Measuring VPIC accuracy is difficult due to the lack of rigorous error quantifica-
tion for the PIC method. Numerical accuracy testing is conducted with three dif-
ferent benchmark problems. In each test, we compare the original single-precision
VPIC against VPIC with our half-precision and 16-bit fixed-point optimizations.

The first benchmark problem is a simple 1-D problem with periodic boundary
conditions and an arbitrary number of particles Np. Each particle has a constant
weight 1

Np
and an initial momentum of V0 = 0. The initial potential and electric

field are given by

φi(x) =

{
x(1 − xi), 0 < x < xi
xi(1 − x), xi < x < 1

φb(x) =
x2 − x

2
, φ(x) =

Np∑
i=1

φi(x)wi + φb(x), E(x) = −∂φ
∂x

This test has an analytical solution for particle position described by

xi =
1

Np

[(∑
k

xk0

)
− Np + 1

2
+ i

]
− 1

Np

[∑
k

(xk0 − xi0) − Np + 1

2
+ i

]
cos(t)

Using the analytical solution we can track errors in an individual particle’s po-
sition over time. For simplicity, we set the number of particles to two.

Table 2 describes the relative memory usage, and accuracy for each particle
position representation. The 16-bit fixed-point setting guarantees an additional
decimal digit of precision compared to 16-bit floating point.
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Format Space reduction (# times) Accuracy (Digits)

32-bit floating-point 1.00x 7.225
16-bit floating-point 0.81x 3.311
16-bit fixed-point 0.81x 4.515

Table 2: Relative memory usage, run-times, and accuracy for each potential
particle position representation.

This two-particle test problem can demonstrate the effects of our optimiza-
tions combined with grid resolution on particle position accuracy. Relative posi-
tion error is tracked across 1,000,000 time steps with two different grid resolutions
(i.e., 10, 000 and 6, 000 cells). The accuracy results for the two resolutions are
shown in Figure 9a and Figure 9b respectively. Both the 16-bit floating-point
and the 16-bit fixed-point formats trade storage space for precision as shown
theoretically in Table 2: 16-bit floating-point maintains 3.311 decimal digits of
precision while 16-bit fixed-point maintains 4.515 digits, a significant drop from
the 7.225 digits for 32-bit floating-point. Figure 9a demonstrates that a suffi-
ciently high resolution grid can make up for the drop in accuracy when using
16-bit floating-point or fixed-point for particle position.

It is important to note that grid resolution, time step length, and simulation
length are directly related. High resolution grids cause the time step length to
shorten, which in turn causes the number of time steps and the overall runtime
to increase for a fixed simulation length. As a result, most simulations keep
grid resolution as coarse as possible to minimize the number of simulated time
steps. Striking a balance between grid resolution and accuracy is important.
Figure 9b shows the same test with a lower resolution grid (i.e., 6,000). The
effect of grid resolution on accuracy is clearly shown by the 16-bit floating-point
format failing to maintain sub 10% relative error in this test. The fixed-point
format has a notable increase in accuracy over half-precision and is comparable
to the 32-bit single-precision floating-point; both 16-bit fixed-point and 32-bit
floating-point achieve sub 10% relative error throughout the test Our results
indicate that 16-bit fixed-point not only enables larger simulations than 32-bit
single-precision but also improves accuracy over half-precision.

The second benchmark problem models the two-stream instability, which
is an electrostatic instability commonly seen in plasma physics. Two counter
streaming electron beams move in a stationary ion background [22]. The streams
are vulnerable to electrostatic perturbations that result in charge bunching be-
havior [21]. The simulation is based on the two-stream instability deck described
in [9]. The two-stream test focuses on verifying the conservation of momentum.
In Figure 10a, we observe how the conservation of momentum is maintained
extremely well by all three variations of VPIC for the first 600 time steps. After
600 time steps, errors for fixed-point start growing while the errors for 32-bit
and 16-bit floating-point remain low for a few dozen time steps before growing
and eventually plateauing. Half-precision and 16-bit fixed-point notably plateau
with lower relative error than single-precision.

The third benchmark problem simulates the Weibel instability [15]. Simi-
lar to the two-stream instability, the Weibel instability can arise from counter

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_35

https://dx.doi.org/10.1007/978-3-030-77964-1_35


Optimize Memory Usage in VPIC 11

(a) 10,000 cells (b) 6,000 cells

Fig. 9: Accuracy comparison VPIC simulations with different grid resolution.
Particle weight is kept constant and particle position is shown using 32-bit
floating-point, 16-bit floating-point, and 16-bit fixed-point.

streaming beams. Unlike the two-stream instability, the Weibel instability has
electromagnetic perturbations that result in elongated structures in the plasma
(filamentation). The process converts the kinetic energy of the particle beams
into magnetic field energy [19]. The purpose of this test is to verify that en-
ergy is conserved with the particle format optimizations applied. Figure 10b
clearly shows that total energy is conserved very well with less than 0.1% rel-
ative error across 10 million time steps for the Weibel instability. The curves
for single-precision, half-precision, and fixed-point are tightly grouped together.
Thus with our optimizations applied, conservation of energy is upheld with min-
imal variation compared to original VPIC.

(a) Two-stream instability. (b) Weibel instability.

Fig. 10: Conservation of momentum relative error for the two-stream instability
(a) and conservation of energy relative error for the Weibel instability.
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5 Related Work

Current state-of-the-art plasma simulation codes include VPIC, OSIRIS [13],
WarpX [23], and PIConGPU [4]. These codes have all been used to run plasma
simulations with approximately 10 trillion particles at the largest scale [5], [14], [8].
Both WarpX and PIConGPU use a similar particle representation format as
VPIC. All three codes use single-precision for performance reasons. To the best
of our knowledge, no other particle-in-cell code has investigated the use of half-
precision or fixed-point representation for optimizing particle format.

6 Conclusions and Future Work

This paper demonstrates how the combination of constant weight and lower pre-
cision position in the VPIC code reduces memory usage by up to 31.25% and
enables up to 40% increase in the number of particles using the same amount of
memory for particle-heavy simulations. The optimizations improve performance
by reducing the amount of data movement, which compensates for any additional
operations introduced. Unlike other work in mixed-precision algorithms, our op-
timizations use reduced precision for storage rather than accelerating computa-
tion. We also show that our optimizations not only greatly increase simulation
scale on memory constrained hardware, but can also achieve similar accuracy as
the original single-precision VPIC. The fixed-point optimizations, in particular,
show great promise thanks to the higher precision compared to half-precision.
The higher precision allows for lower grid resolutions which ultimately decreases
the number of time steps in the simulation. It is important to note that our
optimizations may require changes to simulation parameters, namely the grid
resolution. A grid resolution that produces accurate results for single-precision
VPIC may not be accurate enough with half-precision or fixed-point. Such sim-
ulations may need to be adjusted to fully benefit from our optimizations.

Future work includes studying the algorithmic changes necessary to enable
lower precision storage for particle momentum and the impact of these changes
on both scalability and accuracy. We also plan to develop heuristics and method-
ologies to help physicists use our suite of optimizations. Adjustments to simu-
lation parameters (e.g., grid resolution, step size and number of steps) are nec-
essary to maintain accuracy. Different classes of plasma simulations also need
to be studied to better understand which classes benefit from our optimizations
the most and what changes to simulation settings are required to use our opti-
mizations.
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