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Abstract. A novel numerical method, based on a machine learning ap-
proach, is used to solve an inverse problem involving the Dirichlet eigen-
frequencies for the elasticity operator in a bounded domain filled with
a composite material. The inhomogeneity of the material under study
is characterized by a vector which is designed to control the constituent
mixture of homogeneous elastic materials that compose it. Using the
finite element method, we create a training set for a forward artificial
neural network, solving the forward problem. A forward nonlinear map
of the Dirichlet eigenfrequencies as a function of the vector design pa-
rameter is then obtained. This forward relationship is inverted and used
to obtain a training set for an inverse radial basis neural network, solving
the aforementioned inverse problem. A numerical example showing the
applicability of this methodology is presented.
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1 Introduction

Inverse problems applied to elasticity are usually promoted by the need to cap-
ture relevant information concerning the features and design parameters of the
elastic materials under study. There has been a great body of research related
to this problem, which the following ones can be mentioned:

– Reconstruction of inclusions (see [2] and [4])
– Non-destructive evaluation for mechanical structures (see [21])
– Parametric identification for elastic models: Lamé coefficients, elastic moduli,

Poisson’s ratio, mass density or wave velocity (see [3])
– Reconstruction of residual stresses (see [6])
– Model updating: dynamic control for mechanical structures ([9])

On the other hand, the use of spectral analysis to address elasticity prob-
lems is not new, for example, Babuška [5], Zienkiewicz ([37], [38]), Oden [24] and
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Boffi ([10], [12]), have analyzed the calculation of eigenfrequencies and eigenfunc-
tions using this numerical technique. Also, see Sun and Zhou [31] and references
therein. Forward numerical simulations of composites materials with local and
well-defined inhomogeneities have been widely applied through the Finite El-
ement Method (FEM), see for example Hassell and Sayas [20], Xu et al. [32]
and Rodrigues et al. [29]. However applications of this method for composite
(or inhomogeneous) materials is more complex. One of the reasons is that in
anisotropic and composite (or inhomogeneous) materials, the models and the
result interpretation are not easy to obtain using FEM, see Yan [33], Eigel and
Peterseim [16], Choi [14] and Zhou et al. [36]. Consequently, FEM is not able to
give an easy way to control the constituent mixture of composite materials.

Nowadays, machine learning algorithms (based on Artificial Neural Network
(ANN)) are widely used in many problems. In Griffiths et al.[19] the solution of
cornea curvature using a meshless method is discussed. In Liu et al. [22] a deep
material network, is developed based on mechanistic homogenization theory of
representative volume element and advanced machine learning techniques. The
use of neural networks to solve the Stokes and Navier Stokes forward problems is
studied in Baymani et al. ([7], [8]). The results show that the neural network has
higher accuracy than classical methods. In Ossandón and Reyes [25], Ossandón
et al. ([26] and [28]) the researchers solve the inverse eigenfrequency problems for
the linear elasticity operator, the anisotropic Laplace operator, and the Stokes
operator, respectively. Moreover, Ossandón et al. [27] solve an inverse problem
to calculate the potential coefficients associated with the Hamiltonian operator
in quantum mechanics.

In this article we are interested, in applying a machine learning approach,
to obtain a vector of design parameters α = (α1, α2, · · · , αm)T ∈ Rm, which
characterizes the thicknesses between the interfaces (we assume m interfaces)
of each elastic homogeneous material that make up the composite material un-
der study, as a function of eigenfrequencies of the elasticity operator. We note
that α is a vector of design parameters which control the constituent mixture
of the composite material. The methodology proposed is based on the design of
two ANNs (forward and inverse ANNs). The proposed ANNs are multilayered
Radial-Basis Function (RBF) networks, and they are chosen due to the nature
of the problem that is analyzed and the features exhibited by the neural network
(see Schilling et al. [30] and Al-Ajlouni et al.[1]). Our main goal pursued with this
article is to prove the effectiveness of the machine learning approach, evaluating
its speed and accuracy in comparison with an approach based only on FEM.
Therefore given a desired spectral behavior of the analyzed material, a specific
composition for the mixture can be determined calculating α. The successful ap-
plication of this methodology depends on the ability to face real inverse problem,
specifically acquiring the eigenfrequencies associated with the elastic composite
materials under study. In practice, using devices (or mechanisms) that use piezo-
electric transducers, we can measure both the eigenfrequencies and the design
parameters. Usually, the functioning of these mechanisms is based on resonance
techniques such as resonant ultrasound spectroscopy (see [34] and [35]).
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The article is organized as follows: first we start with a machine learning
analysis to solve general inverse problems which is described in section 2. The
constitutive relations for elastic composite materials are described in section
3, on the other hand in section 4 we introduce the corresponding forward and
inverse problems, and its respective solutions are displayed in sections 5 and 6.
In section 7, a numerical example is exposed, and finally the conclusions follow
in section 8. Figure 1 shows an example of the type of composite material this
article is analyzing, which is composed by homogenous domains.

Fig. 1. Elastic composite material.

2 Solving inverse problems using machine learning
algorithms

Mathematically, solving an inverse problem consists of estimating a signal P
from data observations M where:

FT (P) = M, P ∈ X and M ∈ Y. (1)

In equation (1), X and Y are vector spaces with norm, and FT : X → Y is
called the forward operator. Let us observe that the forward operator has been
parametrized by T . For example in some non-destructive evaluation problems,
T denotes a well-known trajectory composed of several transmitter and receiver
locations (sensor locations).

Machine learning methodology can be used in order to obtain (approxi-

mately) a non-linear mapping F†T,θ : Y→ X satisfying:

F†T,θ(M) ≈ Pseek, M ∈ Y and Pseek ∈ X. (2)

Let us observe that F†T,θ (which is an ANN) has been parametrized also by
T and by θ ∈ Θ. The main idea when we use machine learning algorithms is to
make a choice of an optimal parameter θ∗ ∈ Θ given some training data. This
optimal parameter can be obtained by minimizing a functional to control the
quality of a learned F†T,θ. In other words, we propose solving the inverse problem

using machine learning algorithms amounts to learn F†T,θ from data such that it
approximates an inverse of FT .
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We assume that the metric spaces X and Y are endowed with the respective
norms: ‖ · ‖X : X→ R and ‖ · ‖Y : Y→ R.

2.1 Supervised learning

In supervised learning the input/output data set are known. The optimization
(minimization) problem that we propose to solve is:

min
θ∈Θ

{
1

2
‖FT ◦ F†T,θ ◦ FT (P)−M‖2Y + βRT (P)

}
. (3)

where the functional RT : X → R is known as a regularization functional that
penalizes unfeasible solutions. The parameter β measures this penalization.

2.2 Unsupervised learning

In the case of unsupervised learning the output data set is unknown. For his
problem we propose to minimize:

min
θ∈Θ

{
1

2
‖FT ◦ F†T,θ ◦ FT (P)−FT (P)‖2Y + βRT (P)

}
, (4)

Let us notice that in many cases it can be quite complicated to use directly
FT in the optimization algorithm, which can be a minimizing numerical method.
In these cases, it is convenient to also use an approximation (another ANN) FT,θ1
for FT . In addition, if this new network (called forward ANN) is well trained,
we can greatly reduce the calculation time involved in solving many times many
forward problems.

Finally, we must indicate that since in general the forward problems are well-
posed, the use of the operator FT ◦F†T,θ ◦FT in the optimization problem limits
the existence of unfeasible solutions, which together with the use of an additional
regularization functional RT could be suitable for choosing a ”good physical”
solution for the inverse problem.

3 Constitutive relations in elasticity

Let Ω ⊂ Rl (l = 2 or 3) be a nonempty, open, convex and bounded domain, with
its regular boundary Γ , filled with an elastic composite material characterized
by its Lamé functions γα(x), µα(x) (x ∈ Ω). In this work, α is a designed vector
of parameters used to modify the spectral response (eigenfrequencies and eigen-
functions) associated to an elastic material through the control of its constituent
mixture.

We denote the elastic composite tensor, for an isotropic medium, byCα
ijrq(x) =

γα(x)δijδrq+µα(x)(δjrδiq+δiqδir) (1 6 i, j, r, q 6 l), where δ·,· is the Kronecker
delta function. We remark that this tensor is positive definite.
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The generalized Hooke’s law, relating the mechanical displacements u (u(x))
with the associated stress tensor σα (σα(x,u) = γα(x)(∇ ·u)I + 2µα(x)E(u))
is given by:

σα
ij(x,u) = σα

ji(x,u) =
∑
r,q

Cα
ijrq(x)Erq(u), (5)

where:

Eij(u) =
1

2
(∂jui + ∂iuj) (6)

is the strain tensor.

4 The forward and inverse problems

4.1 The forward problem

As a forward problem, we consider the following eigenfrequency problem: given
α ∈ Rm+ , find λ ∈ R and the non-null valued functions u which are the solutions
of: {

−div(γα(x)(∇ · u)I + 2µα(x)E(u)) = λu for x ∈ Ω ,

u = 0 for x ∈ Γ .
(7)

where I is the identity matrix of size l × l.
We note (see [5]) that the only non-null solutions of (7) are a countable pair

sequence {(λn,un}n>1 of eigenfrequencies and eigenfunctions.
We define the function FN associated with (7):

FN : Rm+ → RN ,
−→
λN := (λ1, λ2, · · · , λN )T = FN (α). (8)

We remark that the function FN (N ∈ N) solves the forward problem asso-
ciated to (7).

4.2 The inverse problem

We consider the following inverse problem associated to (7):
Find α ∈ Rm+ such that{

−div(γα(x)(∇ · udn)I + 2µα(x)E(udn)) = λdn u
d
n in Ω,

udn = 0 on Γ,
(9)

where the given pair
{
λdn,u

d
n

}
n
, with n ∈ N and n ≤ N < +∞, characterizing

the desired spectral behavior.
We define the function F−1N , which is the inverse function of FN , associated

to (9):
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6 Ossandón et al.

F−1N : RN → Rm+ , α = F−1N (
−→
λN ). (10)

We remark that the function F−1N (N ∈ N) solves the inverse problem asso-
ciated to (9).

5 Solution of the forward problem

5.1 Variational Formulation

We define the functional space

V = U =

{
v = (v1, v2, · · · , vl) ∈ [H1(Ω)]l; vi = 0 on Γ, 1 6 i 6 l

}
,

(11)

associated with the norm ‖v‖21,Ω = (

l∑
i=1

‖vi‖21,Ω)1/2.

The corresponding variational form of equation (7) is given by:

aα(u,v) :=

∫
Ω

(γα(x)(∇·u)(∇·v)+2µα(x)E(u) : E(v))dx =λ

∫
Ω

u ·vdx. (12)

Thus the weak formulation for the eigenfrequency problem in elasticity, con-
sidering homogeneous boundary conditions, is given by: Find (λ,u) ∈ (R,U)
such that

aα(u,v) = λ (u,v)0,Ω ∀v ∈ V, (13)

where (·, ·)0,Ω is the inner product of [L2(Ω)]l.

5.2 Discretization

To obtain the discrete form of the variational formulation (13), the approach is
based on Pk-Lagrange Finite Element (k > 1) in Ω is used.

Let {Th}h>0 be a regular mesh discretizing Ω (see Ciarlet [15]), composed by
triangles Ti (i = 1, ...,Mh) of diameter hTi , such that h := sup

Ti∈Th
hTi measures the

size of the mesh Th. Furthermore, we consider the finite element space Vh ⊂ V
of piecewise polynomials Pk (k > 1).

Let (λh,uh) ∈ (R,Vh) be the eigenpair solution to the discrete weak form
of (13). The Rayleigh quotient for each discrete eigenfrequency λh is given by:

λh =
aα(uh,uh)

(uh,uh)0,Ω
= FN (α) . (14)

Finally, let us mention that the Babuska-Brezzi condition (see [5], [10], [11],
[13], [15] and [23]) satisfied by the approximation spaces, ensures the wellposed-
ness of the discrete weak form of (13).
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6 Solution of the inverse problem using machine learning

A the machine learning approach can be used to solve the inverse problem pre-
viously discussed. Afterwards a the machine learning algorithm can reconstruct
the nonlinear inverse mapping F†θ,N : RN → Rm+ that approximate F−1N above

defined. Let F†θ,N be an inverse Artificial Neural Network (ANN) with activation
functions defined by a Radial Based Function (RBF). The structure will consist
in one input layer containing n neurons, one hidden layer containing s neurons
and an output layer containing m neurons. Let us notice that θ is a vector pa-
rameter associated with the specific network topology. The use of this type of
ANN is treated by Girosi et al. [17] and Girosi and Poggio [18]. In these articles,
the authors analyze, in detail, the regularization features of an RBF ANN.

To perform the construction of the above inverse network (which solves the
inverse problem), we define a forward RBF ANN Fθ1,N : Rm+ → RN , used as
an approximation of the direct operator FN , with one hidden layer containing
s1 neurons and one output layer containing N neurons. Let us remark that,
we use the forward network Fθ1,N instead of FN to accelerate the calculation of
eigenfrequencies. In this case θ1 is a vector parameter associated to the topology
of Fθ1,N . An optimal estimation for θ1 is given by:

θ∗1 = min
θ1

{
1

2
‖FN (α)−Fθ1,N (α)‖2RN

}
. (15)

Once calculated θ∗1, we can obtain an optimal estimation for θ using:

θ∗ = min
θ
J(θ) = min

θ

{
1

2
‖Fθ∗

1 ,N
(α)−Fθ∗

1 ,N
◦ F†θ,N ◦ Fθ∗

1 ,N
(α)‖2RN

}
. (16)

Obtaining θ∗1 and θ∗ is usually known as the training process associated with
the forward and inverse networks respectively. Let us notice that the training
process can be performed, for example, using a backpropagation algorithm (see
[17] and [18]): starting with an initial parameter vector θ0, the training algorithm
iteratively decreases the mean square error updating θ, where each iteration is
given as follows:

θi+1 = θi − εL · ∂J(θi)

∂θi
, (17)

where ε controls the length of the update increment and L is a matrix that
defines the backpropagation algorithm to be used.

Finally, we remark that the regularization functional RT for our specific
problem is not required because Fθ∗

1 ,N
◦F†θ∗,N ◦Fθ∗

1 ,N
(from its definition) only

allows the ”good physical” solution.
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7 Numerical result

Let us consider the problem (7), where Ω =]1, 3[×]1, 2[⊂ R2 (x = (x, y)>) and
Γ = Ω−Ω. A representative diagram showing the domain of our example is the
Figure 2. Figure 3 shows the function that models the interfaces between each
of the homogenous domains. In this example α = (α1, α2)T = (α, α)T.

Let us assume that γj =
νjEj

(1+νj)(1−2νj) , µj =
Ej

2(1+νj)
(1 6 j 6 3), where Ej is

the Young’s modulus and νj is the Poisson’s ratio for the elastic homogeneous
material of the domain Ωj (see Figure 2). Table 1 shows the values for Ej and
νj (1 6 j 6 3) used in our example.

Table 1. Coefficients used in this numerical example.

Material E (Young’s modulus) GPa ν (Poisson’s ratio)

Cooper (j = 1) 124 0.34

Stainless steel (j = 2) 200 0.30

Aluminum (j = 3) 79 0.35

Let us define:

Ω̃α,1(x) =


1 if 1 < x 6 1.5− α

2
, 1 < y < 2.0,

1.5 + α
2 − x
α

if 1.5− α

2
< x 6 1.5 +

α

2
, 1 < y < 2.0,

0 if 1.5 +
α

2
< x < 3.0, 1 < y < 2.0,

(18)

Ω̃α,2(x) =



0 if 1 < x 6 1.5− α

2
, 1 < y < 2.0,

x− 1.5 + α
2

α
if 1.5− α

2
< x 6 1.5 +

α

2
, 1 < y < 2.0,

1 if 1.5 +
α

2
< x 6 2.5− α

2
, 1 < y < 2.0,

2.5 + α
2 − x
α

if 2.5− α

2
< x 6 2.5 +

α

2
, 1 < y < 2.0,

0 if 2.5 +
α

2
< x < 3.0, 1 < y < 2.0,

(19)

and

Ω̃α,3(x) =


0 if 1 < x 6 2.5− α

2
, 1 < y < 2.0,

x− 2.5 + α
2

α
if 2.5− α

2
< x 6 2.5 +

α

2
, 1 < y < 2.0,

1 if 2.5 +
α

2
< x < 3.0, 1 < y < 2.0.

(20)
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Note that
∑3
j=1 Ω̃α,j(x) = 1.

The relationships Ω̃α,j(x), 1 6 j 6 3 are functions related to sets Ωj , 1 6
j 6 3 (see Figure 3) where a1 = 1.5 − α

2 , a2 = 1.5 + α
2 , a3 = 2.5 − α

2 and a4
= 2.5 + α

2 respectively. These functions (which are a partition of the unity) are
employed with the purpose to model the constituent mixture of homogeneous
materials in order to obtain composite materials with new physical properties.
It is important to remark that inhomogeneities considered in this example only
depend only on the x variable and do not depend on y variable (see Figure 2).

We also define the variable Lamé coefficients characterizing the inhomo-
geneities of elastic materials understudy

γα(x) =

∑3
j=1 γjΩ̃α,j(x)∑3
j=1 Ω̃α,j(x)

and µα(x) =

∑3
j=1 µjΩ̃α,j(x)∑3
j=1 Ω̃α,j(x)

, (21)

In this example, the thickness α = a2-a1 = a4-a3 is the design parameter
used to control the constituent mixture of the composite material. Let us observe
that:

lim
α→0

γα(x) =

3∑
j=1

γj1Ωj
(x) and lim

α→0
µα(x) =

3∑
j=1

µj1Ωj
(x) (22)

where

1Ω1
(x) =


1 if 1 < x < 1.5, y ∈]1, 2[,

0.5 if x = 1.5, y ∈]1, 2[,

0 elsewhere,

(23)

1Ω2(x) =


1 if 1.5 < x < 2.5, y ∈]1, 2[,

0.5 if x = 1.5, y ∈]1, 2[,

0.5 if x = 2.5, y ∈]1, 2[,

0 elsewhere,

(24)

and

1Ω3
(x) =


1 if 2.5 < x < 3.0, y ∈]1, 2[,

0.5 if x = 2.5, y ∈]1, 2[,

0 elsewhere.

(25)

The purpose of this example is to obtain numerically a specific composition
for the mixture (calculating α) with a desired spectral behavior of the composite
material (solve the inverse problem).

The forward RBF ANN Fθ1,N is trained with data provided by simulations

obtained using FEM (P2 finite elements): α(i) = 0.4 − 0.02(i − 1), (
−→
λN )(i) =

FN (α(i)), 1 6 i 6 N1, being in this case N1 = 20. We use equation (15), applying
the backpropagation algorithm for the training data, in order to obtain the opti-
mal vector parameter θ∗1 (associated with the forward RBF ANN topology) and
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performing the approximation for FN . After training the forward network, we use
it to simulate a larger amount of data N2 >> N1, with α(i) = 0.4− 0.002(i− 1)
(1 6 i 6 N2 = 200), to obtain a set of training data for the construction of the

inverse RBF ANN F†θ,N . In this case we also use the backpropagation algorithm
in the training process, using equation (16) to obtain the optimal vector pa-
rameter θ∗ (associated with the inverse RBF ANN topology). Finally, we have
the inverse network trained and we can use it to solve numerically the inverse
problem. Figure 4 shows a comparison of the evolution, when the value of the
simulated data is Ns = 2000 and α(i) = 0.4 − 0.0002(i − 1), 1 6 i 6 Ns, of the
first 4 Dirichlet eigenfrequencies: 1) directly calculated using the FEM and 2)
calculated from the forward RBF ANN with the data input obtained from the
ANN: Fθ∗

1 ,N
◦ F†θ∗,N ◦ Fθ∗

1 ,N
(α(i)). As seen in this figure, the Dirichlet eigenfre-

quencies calculated using ANNs approximate quite well the calculated Dirichlet
eigenfrequencies using FEM. However when α→ 0 the accuracy of the approxi-
mation decreases. This problem can be solved increasing the size of the data set
as α converges to zero.

The computational performance is summarized in table 2. The merit figure
used are the mean squared error (MSE) and the computational time (using ANN:
CT ANN) vs FEM: CT FEM), required for the simulations of our example. Let
us notice that CT ANN is calculated taking into account the computational time
required to obtain the training data set, using the FEM results, which are needed
by the forward RBF ANN. Let us observe the CT ANN compared with the CT
FEM (CT ANN << CT FEM), remarking the good computational performance
attained using the MSE. It is important to remark that the difference between the
data set prepared using FEM (N1 = 20) and the data set used for the simulation
(Ns = 2000) in this example, implies the difference between the computational
times CT ANN and CT FEM, and also the MSE. It is possible to improve the
MSE by increasing N1, implying a longer training time for the forward RBF
ANN, and thus increasing the CT ANN.

The computer, used to obtain the results shown in this section, has a 2.4
GHz Intel Core Duo processors with 3GB of RAM.

Table 2. Computational performance summary.

Ns MSE:
1

Ns

Ns∑
i=1

(α(i) − α̂(i))2 CT ANN (seconds) CT FEM (seconds)

2000 1.8440e− 06 65.9468 5330.69

8 Conclusion

A novel numerical method, based on a machine learning approach, is used to
solve an inverse problem associated with the calculation of the Dirichlet eigenfre-
quencies for the elasticity operator in a bounded domain filled with a composite
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Fig. 2. Composite material used in the numerical example.

Fig. 3. Functions used in the numerical example.

material. The numerical results shows that the calculation, using RBF ANNs, of
the vector of design parameters α = (α1, α2)T = (α, α)T (in this case α is the
thickness between the interfaces of each homogeneous material that compose
the material used in the numerical example) from the eigenfrequencies of the
elastic composite material, has a relatively negligible error and clearly the time
consumption performance shows very important improvements compared to a
more traditional approach based only on FEM (see Table 2). In summary, we
have proved the effectiveness of a method that can be used as a control design
tool: given a desired spectral response, we can control (motivated for the design)
the constituent mixture of an elastic composite material. The method improves
time performance without compromising the accuracy of the numerical results.
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12 Ossandón et al.

Finally, as a consequence of the notable improvements in the time calculation
of our methodology, it can be used, in future works, to design real-time controllers
for the mixture of composite materials.
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Fig. 4. Comparison of the first 4 calculated eigenfrequencies.
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