Agent-based Modeling of Social Phenomena
for High Performance Distributed Simulations

Mateusz Paciorek and Wojciech Turek

AGH University of Science and Technology, Krakow, Poland
{mpaciorek,wojciech.turek}@agh.edu.pl

Abstract. Detailed models of numerous groups of social beings, which
find applications in broad range of applications, require efficient methods
of parallel simulation. Detailed features of particular models strongly
influence the complexity of the parallelization problem. In this paper we
identify and analyze existing classes of models and possible approaches
to their simulation parallelization. We propose a new method for efficient
scalability of the most challenging class of models: stochastic, with beings
mobility and mutual exclusion of actions. The method is based on a
concept of two-stage application of plans, which ensures equivalence of
parallel and sequential execution. The method is analyzed in terms of
distribution transparency and scalability at HPC-grade hardware. Both
weak and strong scalability tests show speedup close to linear with more
than 3000 parallel workers.

Keywords: Agent-based modeling - Social models - Scalability - HPC.

1 Introduction

Computer simulation of groups of autonomous social beings, often referred to
as Agent-based Modeling and Simulation (ABMS, ABM), is a fast developing
domain with impressively broad range of applications. Experts in urban de-
sign, architecture, fire safety, traffic management, biology and many other areas
use its achievements on a daily basis. Recently, its importance became clearly
visible in the face of Covid-19 pandemic, which caused urgent demand for accu-
rate simulations of large and varied populations. Researches continuously work
on new modeling methods, models of new problems, general-purpose tools and
standards [9], trying to provide useful results. However, reliable simulations of
detailed and complex phenomena, observed in the reality by domain experts,
require advanced simulation models, large numbers of agents and numerous rep-
etitions. The process of creating, verifying and validating such models is time
consuming and requires significant computational effort. The most natural ap-
proach is to parallelize the computation and use modern hardware, like GPUs
or HPC.

The considered computational problem typically does not belong to "embar-
rassingly parallel" class. The model update algorithm must repeatedly modify a

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

2 M. Paciorek et al.

single large data structure. If the modifications are performed by parallel pro-
cesses, the access to the data structure must be managed. Importantly, detailed
features of the simulation model strongly influence the complexity of the re-
quired synchronization. Efficient and transparent distribution of complex ABMs
simulation remains an open problem, especially when HPC-grade systems are
considered.

In this paper we discuss the existing approaches to the problem of parallel
execution of ABMs. We identify several classes of such models in the context
of simulation parallelization and synchronization. The conclusions allowed us to
propose a scalable method for modeling and simulation of the most challenging of
the identified classes, while removing hidden biases in model update order present
in existing approaches. The method presented in Section 4 is analyzed in terms
of distribution transparency (Section 5) and HPC-grade scalability (Section 6).

2 Distributed Simulations of Agent-based Models

Probably the most significant and successful application of software agents paradigm
is related to computer simulation. The methodology of Agent-based Modeling
(ABM) [9], is a widely used method for simulating groups of autonomous entities

in micro-scale. It generalizes many specific areas, like pedestrian dynamics, traf-

fic simulation, building evacuations and others. The simulation based on ABM
has been proven superior to approaches based on differential equation models

in many areas. The autonomy and differentiation of particular agents can more
accurately reflect phenomena observed in the modeled systems.

Simulation of ABMs is computationally expensive. There are several factors
which collectively increase the amount of required computations and memory,
including agent and environment model complexity, size of the environment and
the number of agents. The desire to simulate larger and more accurate models
encourage researchers to investigate the methods for parallelization of ABM sim-
ulations, which is the main focus of the presented work. The aim is to improve
performance by computing model updates in parallel and collecting the same
results as in case of sequential execution. The problem of "transparent distribu-
tion" is non-trivial due to the need of updating common model state by parallel
processes.

The typical approach to the problem is based on division of the environment
model [3]. Parallel process compute updates of agents in the assigned fragments
of the model and then perform synchronization of results with the processes
responsible for adjacent fragments. This synchronization is the key issue — its
complexity strongly depends on model characteristics. In the further analysis we
will discuss different types of models and existing synchronization strategies.

The majority of ABM simulations uses discrete representation of the envi-
ronment as a grid of cells, with well defined neighborhood, distance and possible
states of cells. Such approach, which is often imprecisely referred to as cellu-
lar automaton (CA), significantly simplifies model data structures and update
algorithms, while preserving sufficient expressiveness.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

Agent-based Modeling of Social Phenomena for HPC 3

The problem of parallel update of CA-based simulations, which is discussed in
details in [4], is typically solved by defining overlapping margins along the border
of the environment fragments, which are available to two processes responsible
for updating the fragments. These margins, often referred to as buffer zones or
ghost cells, are updated by one process and sent to its neighbor for reading the
state of "remote cells".

Considering parallel state update we should differentiate two classes of update
algorithms, which:

1. always update one cell at a time (classic-CA),
2. update two or more cells at a time (CA-inspired).

If a model belongs to the first class, its simulation is an "embarrassingly par-
allel" problem — mutual exchange of ghost cells solves the model synchronization
problem. However, the second class is required by vast majority of ABM sim-
ulations. When an agent "moves" from one cell to another, the state of both
cells must change atomically and often the result limits possible moves of other
agents in the same simulation step. Migration of an agent to a cell shared with
a different process might result in a conflict. The conflict can be avoided if the
model is deterministic and each process has sufficient information to ensure move
safety [10].

Stochastic models prevent predicting updates performed by a remote process,
making the problem of model synchronization really hard. Interestingly, classic-
CA models do not expose this issue, which has been shown in [11], where a
simulation of city development has been successfully parallelized. Also, models
which can accept and handle collisions, can be parallelized relatively easy. For
example, the simulation of stochastic model of foraminifera (small, yet mobile
sea creatures) provides correct results in distributed configuration [3].

The presented analysis shows that many models can be efficiently parallelized
with relatively simple synchronization mechanisms. However, the remaining class
of models, which are CA-inspired stochastic models with mutual exclusion of
actions, is very important in many applications. The problem has been identified
in the domains different from ABM, like simulation of chemical reactions [1].

Synchronization mechanisms for distributed update of the considered class of
models have been considered in [2]. The authors propose three different strate-
gies to ensure lack of collisions in decisions of particular agents. Two of them
(location-ordered and direction-ordered) divide each simulation step into con-
stant number of sub-steps. In the location-ordered strategy only agents dis-
tanced by 2 cells are allowed to move simultaneously. In the direction-ordered
strategy agents moving in the same direction are allowed to move at the same
time. The third strategy, called trial-and-error, requires collecting plans from all
agents and solving conflicts using priorities. Agents which were not able to move
can try another destination. The procedure is repeated until all agents move or
decide to remain in their original cells. All three synchronization mechanisms
provide transparent distribution, all three require repetitive communication be-
tween processes during a single simulation step. The authors conclude that the
location-ordered and direction-ordered methods are more predictable in terms

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

4 M. Paciorek et al.

of computational cost, therefore only these methods have been implemented and
tested. The location-ordered strategy has been also described in [5] and used for
implementing pedestrian dynamics simulation for multiple GPUs.

The features of the described synchronization strategies will be analyzed and
discussed in the next section. The conclusions will formulate basis for a new
method proposed in this paper.

3 Discussion on Model Update Distribution

The two methods analyzed and implemented in [2], i.e. location-ordered and
direction-ordered, ensure constant synchronization costs and do allow to avoid
collisions in agent-based simulations. Their usage is however not without conse-
quences to the behaviors that can be observed in the simulation. A mechanism
similar to the location-based method has been implemented in the simulation
of emergency evacuation in [7] and proved to introduce patterns in the behav-
ior of evacuated people. Depending on the orientation of the identically shaped
and sized junction between a staircase and a building floor, a clear prioritization
could be observed. In one case the people inside the staircase were consistently
blocked by the inflow of the people evacuating the intersecting floor, while in the
other case the flow of the people in the staircase could not be interrupted and
the floor occupants were forced to wait for the higher floors to fully evacuate.

Fig. 1: Patterns emerging in location-ordered method.

The synthetic example presented in Fig. 1 visualizes the mentioned problem
more clearly. In this example the agents try to reach the exit cell marked as £ X,
at which point they are removed from simulation. The arrows show the direction
of movements performed between the previous state and the current one. The
first scenario, shown in Fig. 1, leads to the situation where the time steps tg and
t7 repeat until all agents present in the top left area of the grid (colored blue)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

Agent-based Modeling of Social Phenomena for HPC 5

are evacuated. No more agents from the bottom area (colored yellow) will be
allowed to reach the exit until then. The same is the case for the blue agent at
the junction between the two parts of the grid.

This phenomenon will be present in all methods that prioritize some actions
above the others and a similar example could be derived for the direction-ordered
method. It is important to note that the measurement of the rate of agents
reaching the exit cell will not hint at the existence of the problem, as the agents
are steadily leaving the grid. Only the observation of more intricate details of
the simulation allows to note this behavior, e.g. tracking the distribution of time
spent without moving among all the agents. This should not be the case, as the
designer of the simulation model will be either unaware of the bias introduced
by the method or forced to work around this limitation.

©© 6o eeér EX EX|
000066 e EX t, @ CEEHES EX
©©© oo eér EX EX|
00000 er o EX 9999999 EX
06 6eeér o EX t, e:, |ox e |or EX|
© 066 6er o EX 9999999 EX
— First plan: successful
© 0006 o 6 EX @999999 EX
I©©©©©+ er & ExI t, I ENENENES EXI - First plan: failed
©eeoer o |©r EX ©:010:601910:01 9 & 9 & 9 o1 EX| — Second plan: successful

Fig. 2: Patterns emerging in trial-and-error method.

The other method presented in [2], called trial-and-error, introduces the
mechanism of collision resolving. Initially, agents are allowed to try to perform
an action, but in the case of collision only one of the colliding moves will occur
and other agents will be allowed another attempt. This process is repeated until
all agents either performed a move successfully or decided to stay in place. The
authors dismiss this method as it can generate varying amount of retries that
require repeated communications between computational nodes. Taking further
look at the implications of this method, one can observe unexpected behavior,
which can be seen in Fig. 2. The selective approach to the agents being allowed
another move when previous one caused collision generates another pattern. If
the circumstances do not allow the agent to move, it will stay in its original
cell (Fig 2, left). However, if the agent is allowed to attempt to move, even if
it collides, it can then exploit the new movement possibility generated by the
previous batch of moves. As shown in the example (Fig. 2, right), majority of
agents are allowed to take action that was unavailable to them in the initial state
of the grid. As a result, the example presents two configurations of agents that
will result almost 1 : 2 difference in the throughput of the corridor.

This analysis of the existing approaches to the synchronization and collision-
handling methods yields several requirements for the approach that could be
deemed transparent for the model, while retaining good scalability:

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

6 M. Paciorek et al.

— The amount of the communication related to the decision-making and colli-
sion handling should be predictable—as suggested in [2].

— No prioritization of moves or agents should be present unless explicitly im-
plemented in the model.

— All agents should have equal capabilities of observing environment, i.e. ei-
ther all decisions are based only on the initial state or all agents can track
intermediate changes in environment and decide accordingly.

These conclusions led us towards a new method of model update distribution.
This method, which is the main contribution of this paper, will be described in
the next section.

4 Distributed Model Update Algorithm

To satisfy requirements outlined in previous section, a new method has been
designed. As only the method of decision-making and conflict-resolving is the
main focus of this work, several important assumptions are made to facilitate
the understanding the method without unnecessary insights into the other parts
of the simulation system:

— Prior to the main body of the simulation the simulation state is divided
into parts that are then assigned to their respective "owner" computational
nodes.

— The mapping from the identifier of the cell to the owner node is known to
each node.

— Although the examples shown in the following sections use the Moore neigh-
borhood, this method can be easily adapted to allow agents to interact with
more distant cells.

The crucial concept introduced in the method is a plan. One or more plan
is produced by each agent in each simulations step. Each plan consists of the
following information:

— action—the change the algorithm intends to apply to the state of the handled
cell or its neighbor.

— consequence—the optional change to the state of handled cell that is required
to accompany the application of the action.

— alternative—the optional change to the state of handled cell that is required
to accompany the rejection of the action.

None of these is guaranteed to be applied to the simulation state. Instead, the
proposed distributed simulation update algorithm, after collecting plans from
all agents, decides which actions, consequences and alternatives are executed.

A good example of this mechanism might be a model in which agents track
their age (measured in iterations) and traverse the cells of the grid. The plan
of an agent would be following: the action is inserting a copy of the agent with
increased age into neighboring cell, the consequence is removing the agent from

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

Agent-based Modeling of Social Phenomena for HPC 7

the original cell, and the alternative is replacing the old agent with its copy with
increased age. If a plan is accepted, the result will be the application of action
and consequence (add aged agent in neighboring cell, remove from the original
cell). If a plan is rejected, the result will be application of alternative (keep aged
agent in the original cell).

The possibility of multiple plans might be further explained by extending
the example model with reproduction: if agent fulfills some criteria, it is allowed
to create a new agent of the same type in adjacent cell. In such case, another
planof the same agent could comprise of action of placing a new agent in the
target cell, with empty consequence and alternative.

The important assumptions, emerging from this concept, are following:

— No two plans created by the same agent can contradict or depend on each
other, as their acceptation or rejection is resolved independently—e.g. the
agent cannot try to move into two different cells.

— Consequences and alternatives are not subject to rejection and must always
be applicable.

The core of the method is the course of each simulation iteration, which has
been described in Algorithm 1. The exchange executed in lines 6, 16 and 24 is
realized by grouping the exchanged elements by their cell identifiers and sent to
the owners of these identifiers.

There are a few model-specific components, marked bold in the Algorithm

— A component responsible for the creation of the initial grid state.

— createPlans - creation of the plans basing on the the cell and its neighbors.
— isApplicable - accepting or rejecting the plan basing on the target cell.

— apply - application of the given plan to the given cell.

The actual model part of the implementation is unable to determine whether
any given neighbor cell is owned by the current node or is the "ghost cell". The
same lack of knowledge pertains to the origin of any plan that is being resolved.
Therefore there can be no influence of the distribution of the grid on the decision
making algorithm itself.

The only part of the algorithm affected by the distribution and communica-
tion between computational nodes is the necessity of the exchange of the plans
(Algorithm 1, line 6) if the plan would affect the cell owned by another com-
putational node. The plans are not resolved immediately, which results in all of
them being handled in the same point in the iteration. Therefore the only possi-
ble effect of the distribution would be the change in the order of their resolving
(e.g. locally created plans first, then plans from other nodes in order dictated by
the order of communication events). However, this possibility is eliminated by
the introduction of the obligatory randomization of the order of plans handling
(Algorithm 1, line 7).

As a side note, if the model explicitly requires ordering of the plans appli-
cation, the randomization step can be easily replaced by sorting (preceded by
shuffling, if the order is not total, to ensure no bias).

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

8 M. Paciorek et al.

Algorithm 1: Steps of the single iteration of simulation.

// plans creation step

plans < emptyList;

foreach cell in localCells do
cellNeighbors «+ getCellNeighbors(cell);
plansForCell + createPlans(cell, cellNeighbors);
plans.append(plansForCell);

localPlans — exchange(plans);
shuffledLocalPlans < shuffle(localPlans);

// actions application step

reactions <— emptyList;

9 foreach plan in shuffledLocalPlans do

10 targetCell < localCells.getCell(plan.getAction().getTargetId());
11 if isApplicable(targetCell, plan) then

N0 A W N

®

12 apply (targetCell, plan.getAction());

13 reactions.append(plan.getConsequence());
14 else

15 L reactions.append(plan.getAlternative());

16 localReactions < exchange(reactions);

// reactions application step
17 foreach reaction in localReactions do
18 targetCell < localCells.getCell(reaction.get TargetId());
19 L apply (targetCell, reaction);

// "ghost cells" update step
20 edgeCells < emptyList;
21 foreach cell in localCells do
22 if isEdgeCell(cell) then
23 L L edgeCells.append(cell);

24 ghostCells + exchange(edgeCells);

5 Transparency of Simulation Distribution

The method described in previous section has been added to the framework
discussed in detail in [3]. To ensure the method does fulfill the transparency of
distribution requirements presented in Section 3, the experimental verification
was designed and executed.

The exemplary model implemented using the new method was a simple
predator-prey scenario involving rabbits and lettuce, similar to the one described
in [3]. Each cell is either occupied by a lettuce agent, a rabbit agent, or is an
empty cell. In each iteration each agent can perform an action. Lettuce is allowed
to grow by creating new lettuce agent in a random neighboring cell, limited by
the growing interval. Rabbit is allowed to take one of the three actions, de-
pending on the energy parameter of the agent: if below zero, the rabbit dies (is

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

Agent-based Modeling of Social Phenomena for HPC 9

removed from the grid); if above reproduction threshold, the rabbit reproduces
by creating a new rabbit agent in a random neighboring cell; otherwise, the
rabbit moves towards the lettuce, expending some of its energy.

In addition to the energy of the rabbit agent, both agent types track their
"lifespan", i.e. the number of iterations since their creation. No two agents of the
same type can occupy the same cell. If any action leads to the situation where
agent of one type would be in the same cell as the agent of the other type, the
lettuce is consumed (removed from the grid) and the rabbit increases its energy
level. The reproduction threshold, energy gained from consumption, energy cost
of movement, initial energy of rabbits and lettuce growing interval are the main
parameters of the simulation and can be adjusted.

The implemented system collects metrics during the simulation execution.
In the case of the mentioned simulation, the metrics collected for each iteration
are following (naming uses camel case notation mirroring the one used in the
implementation):

— rabbitCount - the number of the rabbits present on the grid.

— rabbitReproductionsCount - the number of rabbit reproductions.

— rabbitTotalEnergy - the total energy of all rabbits present on the grid.
— rabbitDeaths - the number of rabbit deaths.

— rabbitTotalLifespan - the cumulative lifespan of rabbits that died.

— lettuceCount - the number of the lettuces present on the grid.

— consumedLettuceCount - the number of the lettuces consumed.

— lettuceTotalLifespan - the cumulative lifespan of consumed lettuces.

The HPC system used to run the experiments was a Prometheus super-
computer located in the AGH Cyfronet computing center in Krakow, Poland.
According to the TOP500 list, as of November 2020 it is 324th fastest super-
computer. Prometheus is a peta-scale (2.4 PFlops) cluster utilizing HP Apollo
8000 nodes with Xeon E5-2680v3 CPUs working at 2.5GHz. Each of the nodes
connected via InfiniBand FDR network has 24 physical cores (53,604 cores total).

5.1 Stochastic experiments

The first set of experiments was performed within 1000 iterations each and using
the constant size of the grid: 480x500 cells. To observe the influence of the
changes in parameters on the simulation course and results, four batches of
experiments were conducted, each using different set of parameters, later referred
to as "variants" numbered 0-3. The detailed description of the parameters and
the variants can be found in [8] (where the "variant 0" is referred to as "default").
Each variant was then executed in different degrees of distribution - using 1, 2, 4,
6, 8, 10, 20, 40, 60, 80 and 100 nodes, 24 cores each. Each unique combination of
the variant and the distribution degree was executed 10 times to obtain sample
of size necessary for the variance analysis used in later steps.

It is clearly visible that the simulation model displays high variance in the
results, even within the identical configurations. As is visible in Fig. 3, which

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

10 M. Paciorek et al.
(a) (b)
le5 lettuceCount - variantQ 15015 lettuceCount - variant1
—+ 24 = 14— 40 1920 : —+= 24— 14— 480 1920
—— 48 == 192~ 960 —— 2400 —= 48 == 192 = 960 = 2400
1.0 = 96 —— 240 —— 1440 1.251 = 96 = 240 —— 1440
2 0.8 £ 1.001
g g :
E 0.6 E 0.751
o 153
g g
0.4 0.504
0.2 0.254
0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration
(c) (d)
le5 lettuceCount - variant2 le5 lettuceCount - variant3
—+= 21 = a0 1920 25 —+ 24— 44— 40 1920
1.25 —+— 48 =192~ %0 —= 48— 192 b= 960 —— 2400
- = 96 —— 240 —— 1440 20 b= 96— 240 —— 1440
o 1.00 ° R
E] E]
E g1
2075 2
£0.50 g
0.25 05

400 600
iteration

200

800

1000

200

400 600 800 1000

iteration

Fig.3: Comparison of lettuceCount metric over time in stochastic execution.
Each plot represents different model parameters configuration. Series correspond
to means with standard deviations collected for different distribution degree.

Table 1: Summary of average p-values and percentage of p-values below threshold

variant 0 variant 1 variant 2 variant 3
avg. p|<0.05]|avg. p|<0.05|avg. p|<0.05]|avg. p|<0.05
rabbitCount 0.47 [4.2% | 0.42 [3.9% | 0.48 |1.8% | 0.44 | 1.4%
rabbitReproductionsCount| 0.47 | 2.9% | 0.44 |4.2% | 0.48 |2.7% | 0.45 | 1.1%
rabbitTotalEnergy 0.47 [3.9% | 0.42 |4.1% | 0.48 |2.5% | 0.44 | 1.4%
rabbitDeaths 0.48 |3.0% | 0.44 |4.7% | 0.48 |2.7% | 0.45 | 2.7%
rabbitTotalLifespan 0.48 [3.3% | 0.44 |3.9% | 0.48 [3.0% | 0.46 |3.2%
lettuceCount 0.55 [2.4% | 0.44 |5.7% | 0.52 |0.1% | 0.47 | 1.8%
consumedLettuceCount | 0.47 |2.8% | 0.42 |4.5% | 0.48 |3.0% | 0.44 | 1.6%
lettuceTotalLifespan 0.50 [3.2% | 0.45 | 7.3% | 0.47 [5.2% | 0.53 | 1.5%

represents the change of one of the metrics (lettuceCount - chosen randomly) in
the time, the bands created by the means are noticeably wide and do not overlap
perfectly. However, each of the variants presents some tendency obeyed by all

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

Agent-based Modeling of Social Phenomena for HPC 11

series representing different degrees of distribution. Both Fig. 3a and 3b display
intense oscillations at the start, followed by the stabilization of the former and
rise of the latter. Fig. 3¢ shows slower oscillations and very high variance in the
following part, and Fig. 3d shows sharp rise at the beginning and a slow decrease
to a nearly constant value.

To refrain from the imprecise visual analysis, the Kruskal-Wallis test [6] was
used to determine whether the values obtained from different numbers of nodes
are likely to represent the same distribution. For each iteration of each variant,
the 10 collected series of each metric were treated as a sample for the respective
distribution degree. For the majority of the iterations the values exceeded the
threshold, with sporadic segments where the p-value is temporarily below the
threshold.

To further evaluate the possibility of the samples not representing the same
distributions, the average p-value for each plot was calculated, with the addition
of the percentage of the values below the threshold. The results including all the
metrics are summarized in Table 1. As the average p-value was always signifi-
cantly above the threshold (0.42 — 0.55) and the percentage of negative results
was low, the most plausible explanation for the occurrences of the negatives is
the high variability of the model itself. Possibly the more extensive experiments
(e.g. sample sizes larger than 10) would eliminate the outlying results.

5.2 Deterministic experiments

To ensure that the minor discrepancies observed in the previous experiments are
a result of the high sensibility of the model to the random decisions, another
set of experiments was conducted. The general course and parameters of the
experiment remained identical to the previous one, but the random factors were
completely eliminated from the model and the method. Randomness in the moves
of agents was replaced by the direction prioritization, while the randomized
traversal of the plans was substituted with sorting. Instead of 10 times, each
instance was executed only once, as there is no explicit randomness present in
the system.

In each instance all collected data differed only at the least significant deci-
mal digits due to differences in rounding, as the metrics are collected and saved
separately by each core. This behavior is a result of the aggregation and for-
matting of the metrics, and has no effect on the course of simulation. No other
differences were present. The comparison footage! of sample 100x100 cells ex-
periment executed on single core and on 100 cores (10x10 cores, 10x10 cells per
core) is available for additional visual verification of distribution transparency.

6 Scalability Experiments
As the crucial role of the implemented method is related to the handling of the
distribution and the coordination of the communication between computational

! https://youtu.be/9W-zmyQo-K8

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

12 M. Paciorek et al.

nodes, the scalability tests were necessary. Tests were conducted using the same
implementation and model as described in previous section.

6.1 Weak scaling

The first scalability experiments were the weak scaling tests. The size of the
problem was variable to achieve constant size per core—1e4 cells per core. The
experiment was executed 5 times on each of the following numbers of nodes: 1,
2,4, 6,8, 10, 20, 40, 60, 80, 100 and 120, which translates to the number of cores
ranging from 24 to 3600. Therefore, the final sizes of the grids varied from 2.4e5
cells to 3.6e7 cells. Each run consisted of 1000 iterations, the first 100 of which
were omitted in final calculations to exclude any outlying results caused by the
initialization of the simulation system. The execution times measured on each
core were averaged to achieve a single time value for each run.

(a) (b)

le2 le3
8.0 -
31 -
7.5
—_ t =3
2.7.0 52
k=]
) Jr 151
g + - 13 .
=6.5 } ' @
., -
" 1
6.04 ,
55 J[01 =
T o o (=3 =3 (=3 [=3 [=3 T o O (=3 (=3 (=3 (=3 (=3
o < o0 O < N =3 (=3 o < O < [(=3 (=3
o <t (=2} < N < O o <+ (=) < =} < o
- — o o - — o [ag]
number of cores number of cores

Fig. 4: Execution times and speedup for weak scaling.

The results were grouped by the number of cores and aggregated into means
and standard deviations, which are presented in Fig. 4. The first plot (Fig. 4a)
presents the execution times of the iterations 100-1000 for each number of cores.
The vertical lines show the standard deviation of the measurements. Addition-
ally, the speedup adjusted to weak scaling experiments (i.e. with corrections for
the changing problem size) was calculated. The average execution time on 1
node was used as the reference time. This metric is shown in Fig. 4b, with the
ideal linear speedup marked with red dotted line. After the initial nearly-perfect
scalability, the values became lower than the ideal. However, the deviation from
the ideal was expected due to the non-negligible amounts of communication.

6.2 Strong scaling

The second scalability experiments were the strong scaling tests. The problem
size was kept constant—2.4e7 cells. Due to the memory limitations, the lower

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

Agent-based Modeling of Social Phenomena for HPC 13

numbers of nodes were not included, and the experiment was executed on 10, 20,
40, 60, 80, 100, 150 and 200 nodes, that is 240 - 4800 cores. The effective problem
size for each core ranged from 1eb cells to 5e3 cells. All other aspects—number
of iterations, data collection and aggregation—were identical to the weak scaling
experiments.

led le3
1.04 ~ 6 N
0.8
= =4
=0.6 3
o (53
£ - Q -
=04 a2
2_
0.2 -
0.0 ~ - 01— . .
SO f=3 = =3 f=3 [=3 (=3 SO =3 =3 f=3 (=3 (=1 [=3
<t 00 O < IS (=3 (=3 (=3 <t © o < [(=3 (=3 (=3
o <t (=) < N < o o0 o<t (=3} < (=)} O o0
—_ = A < — = N o <t
umber of cores umber of cores

Fig. 5: Execution times and speedup for strong scaling.

As shown in Fig. 5a, the measured execution times follow the roughly hy-
perbolic shape, which is expected for this type of experiment. The speedup was
calculated with the reference value of the average execution time on 10 nodes
(240 cores), as the size of the problem did not allow it to be computed in more
coarse distribution. The speedup results (Fig. 5b) suggest superlinear scaling, as
the values for the larger numbers of cores are above the ideal (red dotted line).
The explanation for such results can be the alleviation of the pressure on the
memory, which were the reason the experiments with less than 10 nodes were
not feasible. As the system is running on JVM, the memory management can
introduce additional overhead when the problem parts are large in comparison
to the available memory.

7 Conclusions and Further Research

In this work we analyzed the issues present in popular approaches to the problem
of ABM simulation distribution. The most important ones concerned the intro-
duction of undesired—and, in some cases, difficult to detect—changes to the sim-
ulation model. We proposed the new approach to this problem that ensures no
changes to the model, unless the simulation designer intends to introduce them.
This solution proved to retain the high scalability expected from the efficient
distribution method, while displaying no influence on the simulation outcomes,
regardless of the degree of distribution. The method has an additional advantage

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

14 M. Paciorek et al.

of flexibility of the neighborhood definition - the approaches described in Section
3 would require more synchronization cycles to achieve the same.

To further explore the new solution, we intend to focus on adapting models
based on real life scenarios. Our concurrent work suggests that it is possible
to use this method in the microscopic pedestrian dynamics simulation of epi-
demic spread in urban environment. Another direction of study possible due to
the qualities of the proposed solution is the adaptation of models that require
interaction with non-adjacent cells (outside of Moore neighborhood).

Acknowledgements The research presented in this paper was partially sup-
ported by the funds of Polish Ministry of Science and Higher Education assigned
to AGH University of Science and Technology. This research was supported in
part by PLGrid Infrastructure.

References

1. Bezbradica, M., Crane, M., Ruskin, H.J.: Parallelisation strategies for large scale
cellular automata frameworks in pharmaceutical modelling. In: 2012 Int. Conf. on
High Performance Computing & Simulation (HPCS). pp. 223-230. IEEE (2012)

2. Bowzer, C., Phan, B., Cohen, K., Fukuda, M.: Collision-free agent migration in spa-
tial simulation. In: Proceedings of 11th Joint Agent-oriented Workshops in Synergy
(JAWS 2017), Prague, Czech (2017)

3. Bujas, J., Dworak, D., Turek, W., Byrski, A.: High-performance computing frame-
work with desynchronized information propagation for large-scale simulations.
Journal of Computational Science 32, 70-86 (2019)

4. Giordano, A., De Rango, A., D’Ambrosio, D., Rongo, R., Spataro, W.: Strategies
for parallel execution of cellular automata in distributed memory architectures.
In: 2019 27th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). pp. 406-413 (2019)

5. Klusek, A., Topa, P., Was, J., Luba$, R.: An implementation of the social distances
model using multi-gpu systems. The International Journal of High Performance
Computing Applications 32(4), 482-495 (2018)

6. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. Jour-
nal of the American statistical Association 47(260), 583-621 (1952)

7. Paciorek, M., Bogacz, A., Turek, W.: Scalable signal-based simulation of au-
tonomous beings in complex environments. In: International Conference on Com-
putational Science. pp. 144-157. Springer (2020)

8. Paciorek, M., Bujas, J., Dworak, D., Turek, W., Byrski, A.: Validation of signal
propagation modeling for highly scalable simulations. Concurrency and Computa-
tion: Practice and Experience p. e5718 (2020)

9. Railsback, S.F., Grimm, V.: Agent-based and individual-based modeling: a practi-
cal introduction. Princeton university press (2019)

10. Turek, W.: Erlang-based desynchronized urban traffic simulation for high-
performance computing systems. Future Generation Computer Systems 79, 645—
652 (2018)

11. Xia, C., Wang, H., Zhang, A., Zhang, W.: A high-performance cellular automata
model for urban simulation based on vectorization and parallel computing technol-
ogy. International J. of Geographical Information Science 32(2), 399-424 (2018)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_32 |

https://dx.doi.org/10.1007/978-3-030-77964-1_32

