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Abstract. In this work we present an application of modern deep lear-
ning methodologies to the numerical solution of partial differential equa-
tions in transport models. More specifically, we employ a supervised deep
neural network that takes into account the equation and initial con-
ditions of the model. We apply it to the Riemann problems over the
inviscid nonlinear Burger’s equation, whose solutions might develop dis-
continuity (shock wave) and rarefaction, as well as to the classical one-
dimensional Buckley-Leverett two-phase problem. The Buckley-Leverett
case is slightly more complex and interesting because it has a non-convex
flux function with one inflection point. Our results suggest that a rela-
tively simple deep learning model was capable of achieving promising
results in such challenging tasks, providing numerical approximation of
entropy solutions with very good precision and consistent to classical as
well as to recently novel numerical methods in these particular scenarios.

Keywords: Neural networks · Partial differential equation · Transport
models · Numerical approximation methods for PDEs · Approximation
of entropy solutions.

1 Introduction

In this work, we are interested in the study of a unified approach which combines
both data-driven models (regression method by machine learning) and physics-
based models (PDE modeling).

Deep learning techniques have been applied to a variety of problems in science
during the last years, with numerous examples in image recognition [11], natural
language processing [23], self driving cars [7], virtual assistants [13], healthcare
[15], and many others. More recently, we have seen a growing interest on apply-
ing those techniques to the most challenging problems in mathematics and the
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solution of differential equations, especially partial differential equations (PDE),
is a canonical example of such task [18].

Despite the success of recent learning-based approaches to solve PDEs in re-
latively “well-behaved” configurations, we still have points in these methodolo-
gies and applications that deserve more profound discussion, both in theoretical
and practical terms. One of such points is that many of these models are based
on complex structures of neural networks, sometimes comprising a large number
of layers, recurrences, and other “ad-hoc” mechanisms that make them difficult
to be trained and interpreted. Independently of the approach chosen, the litera-
ture of approximation methods for hyperbolic problems primarily concern in the
fundamental issues of conservation and the ability of the scheme to compute the
correct entropy solution to the underlying conservation laws, when computing
shock fronts, in transporting discontinuities at the correct speed, and in giving
the correct shape of continuous waves. This is of utmost importance among com-
putational practitioners and theoretical mathematicians and numerical analysts.

Furthermore, with respect to learning-based schemes to solve PDEs in phy-
sical models, we have seen little discussion about such procedures on more chal-
lenging problems, for instance, such as fractional conservation laws [3], compres-
sible turbulence and Navier-Stokes equations [8], stochastic conservation laws
[12] and simulation for darcy flow with hyperbolic-transport in complex flows
with discontinuous coefficients [10, 2]. Burgers equation has been extensively
studied in the literature (see, e.g., [9]). Burgers equations have been introduced
to study different models of fluids. Thus even in the case of classical scalar one-
dimensional Burgers equation, where the classical entropy condition (e.g., [16])
singles out a unique weak solution, which coincides with the one obtained by the
vanishing viscosity method, there is no rigorous convergence proof for learning-
based schemes. See [21] for a recent study of multi-dimensional Burgers equation
with unbounded initial data concerning well-posedness and dispersive estimates.
Roughly speaking, in solving the Riemann problem for systems of hyperbolic
nonlinear equations, we might have nonlinear waves of several types, say, shock
fronts, rarefactions, and contact discontinuities [9].

Related to the transport models treated in this work, the purelly hyperbolic
equation ut+Hx(u) = 0 and the corresponding augmented hyperbolic-parabolic
equation uεt+Hx(uε) = εuεxx, we mention the very recent review paper [6], which
discusses machine learning for fluid mechanics, but highlighting that such ap-
proach could augment existing efforts for the study, modeling and control of fluid
mechanics, keeping in mind the importance of honoring engineering principles
and the governing equations [2, 10], mathematical [21, 3] and physical founda-
tions [8, 9] driven by unprecedented volumes of data from experiments and ad-
vanced simulations at multiple spatiotemporal scales. We also mention the work
[19], where the issue of domain knowledge is addressed as a prerequisite essential
to gain explainability to enhance scientific consistency from machine learning
and foundations of physics-based given in terms of mathematical equations and
physical laws. However, we have seen much less discussion on more challenging
PDE modeling problems, like those involving discontinuities and shock’ solutions
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numerical approximation of entropy solutions in hyperbolic-transport problems,
in which the issue of conservative numerical approximation of entropy solutions
is crucial and mandatory [1, 12].

This is the motivation for the study accomplished in this work, where we
investigate a simple feed-forward architecture, based on the physics-informed
model proposed in [18], applied to complex problems involving PDEs in transport
models. More specifically, we analyze the numerical solutions of four initial-value
problems: three problems on the inviscid nonlinear Burgers PDE (involving shock
wave and smooth/rarefaction fan for distinct initial conditions) and on the one-
dimensional Buckley-Leverett equation for two-phase configurations, which is a
rather more complex and interesting because it has a non-convex flux function
with one inflection point. The neural network consists of 9 stacked layers with
tanh activation and geared towards minimizing the approximation error both for
the initial values and for values of the PDE functional calculated by automatic
differentiation. The achieved results are promising.

Based upon a feedforward neural network approach and a simple algorithm
construction, we managed to obtain a significant reduction of the error by simply
controlling the input parameters of the simulations for the two fundamental
models under consideration, namely, to the Burgers equation (cases rarefaction,
shock and smooth) as well as to the Buckley-Leverett problem, respectively. Such
results are pretty interesting if we consider the low complexity of the neural
model and the challenge involved in these discontinuous cases. It also strongly
suggests more in-depth studies on deep learning models that account for the
underlying equation. They seem to be a quite promising line to be explored for
challenging problems arising in physics, engineering, and many other areas.

What remains of this paper is organized as follows. In Section 2, we introduce
the key aspects of hyperbolic problems in transport models we are considering
in this work, along with a benchmark numerical scheme for comparison purposes
with the traditional approach found in the specialized literature. We also offer
a brief overview of the relevant approximation results for data-driven models
and physics-based models in the context of PDE modeling linked to the feed-
forward neural network approach. The proposed methodology considered in this
work is presented in Section 3, considering stable computations and conservation
properties of the feedforward neural network approximations. In Section 4, we
present some numerical experiments to show the efficiency and accuracy of the
computed solutions verifying the available theory. Finally, in the last Section 5,
we present our concluding remarks.

2 Hyperbolic problems in transport models

Hyperbolic partial differential equations in transport models describe a wide
range of wave-propagation and transport phenomena arising from scientific and
industrial engineering area. This is a fundamental research that is in active
progress since it involves complex multiphysics and advanced simulations due
to a lack of general mathematical theory for closed-analytical solutions. For
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instance, see the noteworthy book by C. M. Dafermos [9] devoted to the mathe-
matical theory of hyperbolic conservation and balance laws and their generic
relations to continuum physics with a large bibliography list as well as some
very recent work references cited therein related to recent advances covering
distinct aspects, theorecical [3], numerical [5] and applications [8]. In addition,
just to name some very recent works, see some interesting results covering dis-
tinct aspects, such as, theoretical [3] (uniqueness for scalar conservation laws
with nonlocal and nonlinear diffusion terms) and [14] (non-uniqueness of dissipa-
tive Euler flows), and well-posedness [21] for multi-dimensional Burgers equation
with unbounded initial data, numerical analysis [5] (a posteriori error estimates)
and numerical computing for stochastic conservation laws [12] and applications
[8] (Euler equations for barotropic fluids) and the references cited therein for
complimentary discussion to highlight difficulties on the unavailability of uni-
versal results for finding the global explicit solution for Cauchy problems to the
relevant class of hyperbolic-transport problems involving scalar and systems of
conservation laws.

A basic fact of nonlinear hyperbolic transport problems is the possible loss
of regularity in their solutions, namely, even solutions which are initially smooth
(i.e., initial datum) may become discontinuous within finite time (blow up in
finite time) and after this singular time, nonlinear interaction of shocks and
rarefaction waves will play an important role in the dynamics. For the sake of
simplicity, we consider the scalar 1D Cauchy problem

∂u

∂t
+
∂H(u)

∂x
= 0, x ∈ R, t > 0, u(x, 0) = u0(x), (1)

where H ∈ C2(Ω), H : Ω → R, u0(x) ∈ L∞(R) and u = u(x, t) : R × R+ −→
Ω ⊂ R. Many problems in engineering and physics are modeled by hyperbolic
systems and scalar nonlinear equations [9]. As examples for these equations,
just to name a few of relevant situations, we can mention the Euler equations
of compressible gas dynamics, the Shallow water equations of hydrology, the
Magnetohydrodynamics equations of plasma physics and the Buckley-Leverett
scalar equation in petroleum engineering [10] as considered in this work. For this

latter model, the flux function is smooth, namely, H(u) = u2

u2+a(1−u)2 in Eq. (1),

0 < a < 1 (H(u) is not convex with one inflection point, then an associated
Riemann problem may be more complicated and the solution can involve both
shock and rarefaction waves). Another interesting model is the inviscid Burgers’
scalar equation used in many problems in fluid mechanics, where the flux function
is H(u) = u2/2 in Eq. (1). A nonlinear phenomenon that arises with the Burgers
equation, even for smooth initial data, is the formation of shock, which is a
discontinuity that may appear after the finite time. Together these two mo-
dels [2], the Buckley-Leverett equation and Burgers’ equation, are suitable and
effective fundamental problems for testing new approximation algorithms to the
above mentioned properties as is presented and discussed in the present work.

By using an argument in terms of traveling waves to capture the viscous
profile at shocks, one can conclude that solutions of (1) satisfy Oleinik’s entropy
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condition [16], which are limits of solutions uε(x, t) → u(x, t), where u(x, t) is
given by (1) and uε(x, t) is given by the augmented parabolic equation [17]

∂uε

∂t
+
∂H(uε)

∂x
= ε

∂2uε

∂x2
, x ∈ R, t > 0, uε(x, 0) = uε0(x), (2)

with ε > 0 and the same initial data as in (1).
Thus, in many situations it is of importance to consider and study both

hyperbolic-transport problems (1) and (2) and related conservation laws as
treated in this work, and some others, of which are described in [3, 12]. In this
regard, a typical flux function H(u) associated to fundamental prototype mo-
dels (1) and (2) depends on the application under consideration, for instance,
such as modeling flow in porous media [10] and problems in fluid mechanics [2].
Moreover, it is noteworthy that in practice the calibration of function H(u) can
be difficult to achieve due to unknown parameters and, thus, for instance, data
assimilation can be an efficient method of calibrating reliable subsurface flow
forecasts for the effective management of oil, gas and groundwater resources in
geological models [22] and PDE models [4, 20]. We intend to design a unified
approach which combines both PDE modeling and fine tuning machine learning
techniques aiming as a fisrt step to an effective tool for advanced simulations
related to hyperbolic problems in transport models such as in (1) and (2).

2.1 A benchmark numerical scheme for solving model (1)

First, we define a fixed x-uniform grid with a non-constant time step (xj , t
n),

where (j, n) ∈ Z × N0. In the space coordinates, the cells’ middle points are
xj = jh, and the cells’ endpoints are xj± 1

2
= jh± h

2 . The cells have a constant

width h = xj+ 1
2
− xj− 1

2
= xj+1 − xj = ∆x. Time step ∆tn = tn+1 − tn is non-

constant subject to some Courant–Friedrichs–Lewy (CFL) stability condition.
For simplicity of notation we simply use k = ∆tn. In order to numerically solve
Eq. (1), instead of functions u(·, t) ∈ Lp(R) for t ≥ 0, we will consider, for each
time level tn, the sequence (Unj )j∈Z of the average values of u(·, tn) over the
x-uniform grid as follows

Unj =
1

h

∫ x
j+1

2

x
j− 1

2

u(x, tn) dx, (3)

for all time steps tn, n = 0, 1, 2, · · · and in the cells [xj− 1
2
, xj+ 1

2
], j ∈ Z, where for

t0 we have the sequence (U0
j )j∈Z as an approximation of the pertinent Riemann

data under study. Note that, in Equation (3), the quantity u(x, t) is a solution
of (1). The discrete counterpart of the space Lp(R) is lph, the space of sequences

U = (Uj), with j ∈ Z, such that ‖U‖lph =
(
h
∑
j∈Z |Uj |p

) 1
p

, 1 ≤ p < ∞ (for

each time step tn, as above). Following [1, 2], now suppose that the approximate
solution Uh has been defined in some strip R× [0, tn), n ≥ 1. Then we define Uh

in R× [tn, tn+1) as setting Uh(x, t) constant and equal to Unj , by using (3), in the
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rectangle (xj−1/2, xj+1/2]× [tn, tn+1) where we see that the Lagrangian-Eulerian
numerical scheme applied to (1) reads the conservative method

Un+1
j = Unj −

k

h

[
F (Unj , U

n
j+1)− F (Unj−1, U

n
j )
]
, (4)

with the associated Lagrangian-Eulerian numerical flux [1, 2],

F (Unj , U
n
j+1) =

1

4

[
h

k
(Unj − Unj+1) + 2

(
H(Unj+1) +H(Unj )

)]
. (5)

The classical Lax-Friedrichs numerical flux for (4), found elsewhere, is given by:

F (Unj , U
n
j+1) =

1

2

[
h

k
(Unj − Unj+1) +

(
H(Unj+1) +H(Unj )

)]
. (6)

Here, both schemes (6) and (5) should follow the stability CFL condition

max
j

{
|H ′(Unj )| ,

∣∣∣∣∣H(Unj )

Unj

∣∣∣∣∣
}
k

h
<

1

2
, (7)

for all time steps n, where k = ∆tn and h = ∆x, H ′(Unj ) is the partial derivative

of H, namely
∂H(u)

∂u
for all Unj in the mesh grid.

3 Proposed methodology

The neural network employed here is based on that described in [18]. There a
“physics-informed” neural network is defined to solve nonlinear partial differen-
tial equations. That network takes into account the original equation by explicitly
including the PDE functional and initial and/or boundary conditions in the ob-
jective function and taking advantage of automatic differentiation widely used in
the optimization of classical neural networks. It follows a classical feed-forward
architecture, with 9 hidden layers, each one with a hyperbolic tangent used as
activation function. More details are provided in the following.

The general problem solved here has the form

ut +N (u) = 0, x ∈ Ω, t ∈ [0, T ], (8)

where N (·) is a non-linear operator and u(x, t) is the desired solution. Unlike
the methodology described in [18], here we do not have an explicit boundary
condition and the neural network is optimized only over the initial conditions of
each problem.

We focus on four problems: the inviscid nonlinear Burgers equation

ut +

(
u2

2

)
x

= 0, x ∈ [−10, 10], t ∈ [0, 8], (9)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_31

https://dx.doi.org/10.1007/978-3-030-77964-1_31


A study on a feedforward neural network to solve PDEs 7

with shock initial condition

u(x, 0) = 1, x < 0 and u(x, 0) = 0, x > 0, (10)

discontinuous initial data (hereafter rarefaction fan initial condition)

u(x, 0) = −1, x < 0 and u(x, 0) = 1, x > 0, (11)

smooth initial condition
u(x, 0) = 0.5 + sin(x), (12)

and the two-phase Buckley-Leverett

ut +

(
u2

u2 + a(1− u)2

)
x

= 0, x ∈ [−8, 8], t ∈ [0, 8],

u(x, 0) = 1, x < 0 and u(x, 0) = 0, x > 0.

(13)

In this problem we take a = 1.
For the optimization of the neural network we should define f as the left

hand side of each PDE, i.e.,

f := ut +N (u), (14)

such that

N (u) =

(
u2

2

)
x

(15)

in the inviscid Burgers and

N (u) =

(
u2

u2 + a(1− u)2

)
x

(16)

in the Buckley-Leverett. Here we also have an important novelty which is the
introduction of a derivative (w.r.t. x) in N (u), which was not present in [18].

The function f is responsible for capturing the physical structure (i.e, selec-
ting the qualitatively correct entropy solution) of the problem and inputting that
structure as a primary element of the machine learning problem. Nevertheless,
here to ensure the correct entropy solution, we add a small diffusion term to f
(0.01uxx) for better stabilization, but in view on the modeling problems (1) and
(2). It is crucial to mention at this point that numerical approximation of entropy
solutions (with respect to the neural network) to hyperbolic-transport problems
also require the notion of entropy-satisfying weak solution. The neural network
computes the expected solution u(x, t) and its output and the derivatives present
in the evaluation of f are obtained by automatic differentiation.

Two quadratic loss functions are defined over f , u and the initial condition:

Lf (u) =
1

Nf

Nf∑
i=1

|f(xif , t
i
f , )|2,

Lu(u) =
1

Nu

Nu∑
i=1

|u(xiu, t
i
u)− ui|2,

(17)
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where {xif , tif}
Nf

i=1 correspond to collocation points over f , whereas {xiu, tiu, ui}
Nu
i=1

correspond to the initial values at pre-defined points.

Finally, the solution u(x, t) is approximated by minimizing the sum of both
objective functions at the same time, i.e.,

u(x, t) ≈ arg min
u

[Lf (u) + Lu(u)]. (18)

Inspired by the great results in [18], here the minimization is performed by the L-
BFGS-B optimizer and the algorithm stops when a loss of 10−6 is reached. Figure
1 illustrates the evolution of the total loss function (in log10 scale to facilitate
visualization) for the inviscid Burgers equation with shock initial condition.

20 40 60 80 100 120 140 160

Epoch

-6

-5

-4

-3

-2

-1

0

Fig. 1. Loss function evolution (in log10 scale) for the inviscid Burgers equation with
shock initial condition.

4 Results and Discussion

In the following we present results for the solutions of the investigated problems
obtained by the neural network model. We compare these solutions with two nu-
merical schemes: Lagrangian-Eulerian and Lax-Friedrichs. These are very robust
numerical methods with a solid mathematical basis. Here we use one scheme to
validate the other. In fact, the solutions obtained by each scheme are very similar.
For that reason, we opted for graphically showing curves only for the Lagrangian-
Eulerian solution. However, we exhibit the errors of the proposed methodology
both in comparison with Lagrangian-Eulerian (EEL) and Lax-Friedrichs (ELF).
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Here such error corresponds to the average quadratic error, i.e.,

ELF (t) =

∑Nu

i=1(uNN (xi, t)− uLF (xi, t))2

Nu
,

EEL(t) =

∑Nu

i=1(uNN (xi, t)− uLE(xi, t))2

Nu
,

(19)

where uNN , uLF , and uLE correspond to the neural network, Lax-Friedrichs,
and Lagrangian-Eulerian solutions, respectively. In our tests, we used Nf = 104

unless otherwise stated, and Nu = 100. These parameters of the neural network
are empirically determined and are not explicitly related to the collocation points
used in the numerical scheme. In fact, theoretical studies on optimal values for
these parameters is an open research problem that we also intend to investigate
in future works. For the numerical reference schemes we adopted CFL condition
0.4 for Lax-Friedrichs and 0.2 for Lagrangian-Eulerian. We also used ∆x = 0.01.

For the rarefaction case, we observed that using Nf = 104 collocation points
was sufficient to provide good results. In this scenario, we also verified the num-
ber of neurons, testing 40 and 60 neurons. Figure 2 shows the obtained solution
compared with reference and the respective errors. Interestingly, the error de-
creases when time increases, which is a consequence of the solution behavior,
which becomes smoother (smaller slope) for larger times, showing good accu-
racy and evidence that we are computing the correct solution in our numerical
simulation.
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Fig. 2. Burgers: Rarefaction.

Figure 3 illustrates the performance of the neural network model for the
inviscid Burgers equation with shock initial condition. Here we had to add a
small viscous term (0.01uxx) to obtain the entropy solution. Such underlying
viscous mechanism did not bring significant reduction in error, but the general
structure of the obtained solution is better, attenuating spurious fluctuations
around the discontinuities. It was also interesting to see that the addition of
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more neurons did not reduce the error for this initial condition. This is a typical
example of overfitting caused by over-parameterization. An explanation for that
is the relative simplicity of the initial condition, assuming only two possible
values.
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Fig. 3. Burgers: Shock.

Figure 4 depicts the solutions for the smooth initial condition in the invis-
cid Burgers equation. Here, unlike the previous case, increasing the number of
neurons actually reduced the error. Indeed, it turned out better than expected
considering that now both initial condition and solution are more complex. Ne-
vertheless, we identified that tuning only the number of neurons was not enough
to achieve satisfactory solutions in this situation. Therefore we also tuned the
parameter Nf . In particular, we discovered that combining the same small vis-
cous term used for the shock case with Nf = 106 provided excellent results, with
quite promising precision in comparison with our reference solutions.

Another case characterized by solutions with more complex behavior is Buck-
ley-Leverett with shock initial condition (Figure 5). In this example, similarly to
what happened in the smooth case, again, the combination of Nf = 106 with the
small viscous term was more effective than any increase in the number of neurons.
While the introduction of the small viscous term attenuated fluctuations in the
solution when using 40 neurons, at the same time when using Nf = 104, we
observe that increasing the number of neurons causes an increase in the delay
between the solution provided by the network and the reference.

Generally speaking, the neural networks studied here were capable of achie-
ving promising results in challenging situations involving different types of dis-
continuities and nonlinearities. Moreover, our numerical findings might also sug-
gest some good evidence on the robustness of a feedforward neural network as
numerical approximation procedure for solving nonlinear hyperbolic-transport
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Fig. 4. Burgers: Smooth.
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Fig. 5. Buckley-Leverett: Rarefaction + Shock.
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problems. Mathematical theoretical foundation of this model is to be pursued in
a further work. In particular, the neural networks obtained results pretty close
to those provided by entropic numerical schemes like Lagrangian-Eulerian and
Lax-Friedrichs. Going beyond the analysis in terms of raw precision, these results
give us evidences that our neural network model possess some type of entropic
property, which from the viewpoint of a numerical method is a fundamental and
desirable characteristic.

5 Conclusions

This work presented an application of a feed-forward neural network to solve
challenging hyperbolic problems in transport models. More specifically, we solve
the inviscid Burgers equation with shock, smooth and rarefaction initial condi-
tions, as well as the Buckley-Leverett equation with classical Riemann datum,
which lead to the well-known solution that comprises a rarefaction and a shock
wave. Our network was tuned according to each problem and interesting fin-
dings were observed. At first, our neural network model was capable of provid-
ing solutions pretty similar to those obtained by two numerical schemes used as
references: Lagrangian-Eulerian and Lax-Friedrichs. Besides, the general struc-
ture of the obtained solutions also behaved as expected, which is a remarkable
achievement considering the intrinsic challenge of these problems. In fact, the
investigated neural networks showed evidences of an entropic property to the
scalar hyperbolic-tranport model studies, which is an important attribute of any
numerical scheme when dealing with weak solution of scalar conservation laws.

Our approach is substantially distinct from the current trend of merely data-
driven discovery type methods for recovery governing equations by using machine
learning and artificial intelligence algorithms in a straightforward manner. We
glimpse the use of novel methods, fine tuning machine learning algorithms and
very fine mathematical and numerical analysis to improve comprehension of
regression methods aiming to identify the potential and reliable prediction for
advanced simulation for hyperbolic problems in transport models as well as the
estimation of financial returns and economic benefits.

In summary, the obtained results share both practical and theoretical im-
plications. In practical terms, the results confirm the potential of a relatively
simple deep learning model in the solution of an intricate numerical problem. In
theoretical terms, this also opens an avenue for formal as well as rigorous studies
on these networks as mathematically valid and effective numerical methods.
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