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Abstract. In this work, we present a novel methodology for texture
image recognition using a partial differential equation modeling. More
specifically, we employ the pseudo-parabolic equation to provide a dy-
namics to the digital image representation and collect local descriptors
from those images evolving in time. For the local descriptors we employ
the magnitude and signal binary patterns and a simple histogram of
these features was capable of achieving promising results in a classifica-
tion task. We compare the accuracy over well established benchmark tex-
ture databases and the results demonstrate competitiveness, even with
the most modern deep learning approaches. The achieved results open
space for future investigation on this type of modeling for image ana-
lysis, especially when there is no large amount of data for training deep
learning models and therefore model-based approaches arise as suitable
alternatives.

Keywords: Pseudo-parabolic equation · Texture recognition · Image
classification · Computational Methods for PDEs.

1 Introduction

Texture images (also known as visual textures) can be informally defined as those
images in which the most relevant information is not encapsulated within one or
a limited set of well-defined objects, but rather all pixels share the same impor-
tance in their description. This type of image has found numerous application in
material sciences [19], medicine [11], facial recognition [15], remote sensing [33],
cybersecurity [27], and agriculture [24], to name but a few fields with increasing
research activity.

While deep learning approaches have achieved remarkable success in pro-
blems of object recognition and variations of convolutional neural networks have
prevailed in the state-of-the-art for this task, texture recognition on the other
hand still remains a challenging problem and the classical paradigm of local
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image encoders still is competitive with the most modern deep neural networks,
presenting some advantages over the last ones, like the fact that they can work
well even when there is little data available for training.

In this context, here we present a local texture descriptor based on the action
of an operator derived from the Buckley-Leverett partial differential equation
(PDE) (see [1, 2] and references cited therein). PDE models have been employed
in computer vision at least since the 1980’s, especially in image processing. The
scale-space theory developed by Witkin [31] and Koenderink [17] are remarkable
examples of such applications. The anisotropic diffusion equation of Perona and
Malik [23] also represented great advancement in that research front, as it solved
the problem of edge smoothing, common in classical diffusion models. Evolutions
of this model were later presented and a survey on this topic was developed in
[30].

Despite these applications of PDEs in image processing, substantially less re-
search has been devoted to recognition. As illustrated in [29, 4], pseudo-parabolic
PDEs are promising models for this purpose. An important characteristic of these
models is that jump discontinuities in the initial condition are replicated in the
solution [10]. This is an important feature in recognition as it allows some control
over the smoothing effect and would preserve relevant edges, which are known
to be very important in image description.

Based on this context, we propose the use of a pseudo-parabolic equation as
an operator acting as a nonlinear filter over the texture image. That image is
used as initial condition for the PDE problem and the solution obtained by a
numerical scheme developed in [1] is used to compose the image representation.
The solution at each time is encoded by a local descriptor. Extending the idea
presented in [29], here we propose two local features: the sign and the magni-
tude binary patterns [13]. The final texture descriptors are provided by simple
concatenation of histograms over each time.

The effectiveness of the proposed descriptors is validated on the classification
of well established benchmark texture datasets, more exactly, KTH-TIPS-2b [14]
and UIUC [18]. The accuracy is compared with the state-of-the-art in texture
recognition, including deep learning solutions, and the results demonstrate the
potential of our approach, being competitive with the most advanced solutions
recently published on this topic.

This paper is structured as follows. In Section 2, we present the pseudo-
parabolic partial differential equation we are considering to texture image recog-
nition, along with the key aspects of the discretization method being used.
In Section 3, we introduce the proposed methodology for the application of a
pseudo-parabolic modeling to texture datasets recognition. We also highlight the
effectiveness of the proposed descriptors and validate them on the classification
of well established benchmark and state-of-the-art databases in texture recogni-
tion. In Section 4, we present some numerical experiments to show the efficiency
and accuracy of the computed solutions verifying that the results demonstrate
the potential of our approach, being competitive with the most advanced solu-
tions recently available in the specialized literature on this subject matter. In
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Section 5, we concrete to present some results and discussion for the proposed
descriptors in the classification of KTH-TIPS-2b and UIUC. We discuss in par-
ticular the accuracy of the proposed descriptors compared with other texture
descriptors in the literature, confirming its potential as a texture image model.
Finally, in the last Section 6, we present our concluding remarks.

2 Partial differential equation and numerical modeling

We consider an advanced simulation approach for the pseudo-parabolic PDE

∂u

∂t
= ∇ ·w, where w = g(x, y, t)∇

(
u+ τ

∂u

∂t

)
, (1)

and let Ω ⊂ R2 denote a rectangular domain and u( · , · , t) : Ω → R be a se-
quence of images that satisfies the pseudo-parabolic equation (1), in which the
original image at t = 0 corresponds to the initial condition, along with zero flux
condition across the domain boundary ∂Ω, w ·n = 0, (x , y) ∈ ∂Ω. We consider
the discretization modeling of the PDE (1) in a uniform partition of Ω into rec-
tangular subdomains Ωi,j , for i = 1 , . . . , m and j = 1 , . . . , l, with dimensions
∆x×∆y. The center of each subdomain Ωi,j is denoted by (xi , yj). Given a final
time of simulation T , consider a uniform partition of the interval [0 , T ] into N
subintervals, where the time step ∆t = T/N is subject to a stability condition
(see [29, 28] for details). We denote the texture configuration frames in the time
levels tn = n∆t, for n = 0 , . . . , N . Let Un

i,j and Wn+1
i,j be a finite difference

approximations for u(xi , yj , tn) and w, respectively, and both related to the
pseudo-parabolic PDE modeling of (1). In the following, we employ a stable
cell-centered finite difference discretization in space after applying the backward
Euler method in time to (1), yielding

Un+1
i,j − Un

i,j

∆t
=
Wn+1

i+ 1
2 ,j
−Wn+1

i− 1
2 ,j

∆x
+
Wn+1

i,j+ 1
2

−Wn+1
i,j− 1

2

∆y
. (2)

Depending on the application as well as the calibration data and texture pa-
rameters upon model (1), we will have linear or nonlinear diffusion models for
image processing (see, e.g., [23, 6, 30]). As a result of this process the discrete
problem (2) would be linear-like An Un+1 = bn or nonlinear-like F(Un+1) = 0
and several interesting methods can be used (see, e.g., [2, 29, 28, 23, 6, 30]). We
would like to point out at this moment that our contribution relies on the PDE
modeling of (1) as well as on the calibration data and texture parameters associ-
ated to the pseudo-parabolic modeling in conjunction with a fine tunning of the
local descriptors for texture image recognition for the pertinent application un-
der consideration. In summary, we have a family of parameter choice strategies
that combines pseudo-parabolic modeling with texture image recognition.

Here, we consider the diffusive flux as g(x , y , t) ≡ 1, which results (1) to
be a linear pseudo-parabolic model. For a texture image classification based on
a pseudo-parabolic diffusion model to be processed, we just consider that each
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subdomain Ωi,j corresponds to a pixel with ∆x = ∆y = 1. As we perform an
implicit robust discretization in time (backward Euler), we simply choose the
time step ∆t = ∆x and the damping coefficient τ = 5. More details can be
found in [29]; see also [28, 1].

Therefore, this description summarizes the basic key ideas of our compu-
tational PDE modeling approach for texture image classification based on a
pseudo-parabolic diffusion model (1).

3 Proposed methodology

Inspired by ideas presented in [29] and significantly extending comprehension
on that study, here we propose the development of a family of images {uk}Kk=1.
These images are obtained by introducing the original image u0 as initial con-
dition for the 2D pseudo-parabolic numerical scheme presented in Section 2. uk
is the numerical solution at each time t = tk. Here, K = 50 showed to be a
reasonable balance between computational performance and description quality.

Following that, we collected two types of local binary descriptors [13] from
each uk. More exactly, we used sign LBP Sriu2

P,R and magnitude LBP Mriu2
P,R

descriptors. In short, the local binary sign pattern LBP Sriu2
P,R for each image

pixel with gray level gc and whose neighbor pixels at distance R have intensities
gp (p = 1, · · · , P ) is given by

LBP Sriu2
P,R =

{∑P−1
p=0 H(gp − gc)2p if U(LBPP,R) ≥ 2

P + 1 otherwise,
(3)

where H corresponds to the Heaviside step function (H(x) = 1 if x ≥ 0 and
H(x) = 0 if x < 0) and U is the uniformity function, defined by

U(LBPP,R) = |H(gP−1−gc)−H(g0−gc)|+
P−1∑
p=1

|H(gp−gc)−H(gp−1−gc)|. (4)

Similarly, the magnitude local descriptor is defined by

LBP Mriu2
P,R =

{∑P−1
p=0 t(|gp − gc|, C)2p if U(LBPP,R) ≥ 2

P + 1 otherwise,
(5)

where C is the mean value of |gp− gc| over the whole image and t is a threshold
function, such that t(x, c) = 1 if x ≥ c and t(x, c) = 0, otherwise.

Finally, we compute the histogram h of LBP Sriu2
P,R (uk) and LBP Mriu2

P,R (uk)
for the following pairs of (P,R) values: {(1, 8), (2, 16), (3, 24), (4, 24)}. The pro-
posed descriptors can be summarized by

D(u0) =
⋃

type={S,M}

⋃
(P,R)={(8,1),
(16,2),(24,3),

(24,4)}

K⋃
k=0

h(LBP typeriu2P,R (uk)). (6)
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Final descriptors correspond to the concatenated histograms in (6). Figure 1
shows the concatenated histograms for one time (t = 1) of the PDE operator.
To reduce the dimensionality of the final descriptors, we also apply Karhunen-
Loève transform [22] before their use as input to the classifier algorithm. The
diagram depicted in Figure 2 illustrates the main steps involved in the proposed
algorithm.
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Fig. 1. Histograms used to compose the final descriptors obtained from the PDE op-
erator at t = 1. (a) Original texture. (b) Normalized histograms.

Fig. 2. Main steps of the proposed method.

4 Experiments

The performance of the proposed descriptors is assessed on the classification of
two well-established benchmark datasets of texture images, namely, KTH-TIPS-
2b [14] and UIUC [18].
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KTH-TIPS-2b is a challenging database focused on the real material depicted
in each image rather than on the texture instance as most classical databases. In
this way, images collected under different configurations (illumination, scale and
pose) should be part of the same class. The database comprises a total of 4752
color textures with resolution 200×200 (here they are converted to gray scales),
equally divided into 11 classes. Each class is further divided into 4 samples (each
sample corresponds to a specific configuration). We adopt the most usual (and
most challenging) protocol of using one sample for training and the remaining
three samples for testing.

UIUC is a gray-scale texture dataset composed by 1000 images with resolu-
tion 256×256 evenly divided into 25 classes. The images are photographed under
uncontrolled natural conditions and contain variation in illumination, scale, pers-
pective and albedo. For the training/testing split we also follow the most usual
protocol, which consists in half of the images (20 per class) randomly selected
for training and the remaining half for testing. This procedure is repeated 10
times to allow the computation of an average accuracy.

For the final step of the process, which is the machine learning classifier, we
use Linear Discriminant Analysis [12], given its easy interpretation, absence of
hyper-parameters to be tuned and known success in this type of application [29].

5 Results and Discussion

Figures 3 and 4 show the average confusion matrices and accuracies (percentage
of images correctly classified) for the proposed descriptors in the classification
of KTH-TIPS-2b and UIUC, respectively. The average is computed over all trai-
ning/testing rounds, corresponding, respectively, to 4 rounds in KTH-TIPS-2b
and 10 rounds in UIUC. This is an interesting and intuitive graphical represen-
tation of the most complicated classes and the most confusable pairs of classes.
While in UIUC there is no pair of classes deserving particular attention (the
maximum confusion is of one image), KTH-TIPS-2b exhibits a much more chal-
lenging scenario. The confusion among classes 3, 5, 8, and 11 is the most cri-
tical scenario for the proposed classification framework. It turns out that these
classes correspond, respectively, to the materials “corduroy”, “cotton”, “linen”,
and “wool”. Despite being different materials, they inevitably share similarities
as at the end they are all types of fabrics. Furthermore, looking at the sample
from these classes, we can also observe that the attribute “color”, that is not
considered here, would be a useful class discriminant in that case. In general, the
performance of our proposal in this dataset is quite promising and the confusion
matrix and raw accuracy confirm our theoretical expectations.

Table 1 presents the accuracy compared with other methods in the literature,
including several approaches that can be considered as part of the state-of-the-art
in texture recognition. First of all, the advantage over the original Completed Lo-
cal Binary Patterns (CLBP), whose part of the descriptors are used here as local
encoder, is remarkable, being more than 10% in KTH-TIPS-2b. Other advanced
encoders based on Scale Invariant Feature Transform (SIFT) are also outper-
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Accuracy: 67.4%
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Fig. 3. Average confusion matrix and accuracy for KTH-TIPS-2b.
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Fig. 4. Average confusion matrix and accuracy for UIUC.
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formed in both datasets (by a large margin in the most challenging textures
of KTH-TIPS-2b). SIFT descriptors are complex object descriptors and were
considered the state-of-the-art in image recognition for several years. Compared
with the most recent CNN-based approaches presented in [9], the results are also
competitive. In UIUC, the proposed approach outperforms CNN methods like
Deep Convolutional Activation Features (DeCAF) and FC-CNN AlexNet. Here
it is worth to observe that FC-CNN AlexNet is not the classical “off-the-shelf”
architecture, but an improved version of that algorithm especially adapted for
texture images in [9]. These correspond to complex architectures with a high
number of layers and large requirements of computational resources and whose
results are pretty hard to be interpreted.

Table 1. Accuracy of the proposed descriptors compared with other texture descriptors
in the literature. A superscript 1 in KTHTIPS-2b means training on three samples and
testing on the remainder (no published results for the setup used here).

KTH-TIPS-2b UIUC

Method Acc. (%)

VZ-MR8 [25] 46.3
LBP [21] 50.5

VZ-Joint [26] 53.3
BSIF [16] 54.3

LBP-FH [3] 54.6
CLBP [13] 57.3

SIFT+LLC [9] 57.6
ELBP [20] 58.1

SIFT + KCB [8] 58.3
SIFT + BoVW [8] 58.4
LBPriu2/VAR [21] 58.51

PCANet (NNC) [7] 59.41

RandNet (NNC) [7] 60.71

SIFT + VLAD [8] 63.1
ScatNet (NNC) [5] 63.71

FC-CNN AlexNet [9] 71.5

Proposed 67.4

Method Acc. (%)

RandNet (NNC) [7] 56.6
PCANet (NNC) [7] 57.7

BSIF [16] 73.4
VZ-Joint [26] 78.4

LBPriu2/VAR [21] 84.4
LBP [21] 88.4

ScatNet (NNC) [5] 88.6
MRS4 [26] 90.3

SIFT + KCB [8] 91.4
MFS [32] 92.7

VZ-MR8 [25] 92.8
DeCAF [8] 94.2

FC-CNN AlexNet [9] 91.1
CLBP [13] 95.7

SIFT+BoVW [8] 96.1
SIFT+LLC [9] 96.3

Proposed 98.0

Table 2 lists the average computational time of our algorithm compared with
some of the methods in Table 1 whose source codes were made available by the
authors. This test was carried out over UIUC images (size 640 × 480 pixels).
The computational setup corresponds to a potable computer with a CPU Intel
Core i7-7700HQ (2.8GHz), 16GB of RAM, GPU NVIDIA Geforce GTX 1050Ti,
Matlab R2017a 64 bits, Windows 10 Education 64 bits. In general, our method
is among the fastest ones in terms of raw computational processing.

Generally speaking, the proposed method provided results in texture clas-
sification that confirm its potential as a texture image model. Indeed that was
theoretically expected from its ability of smoothing spurious noise at the same
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Table 2. Average computational time for an UIUC texture image (640× 480).

Method time (s)

CLBP 1.269
LBP 0.713
LBPriu2/VAR 1.216
SIFT + BoVW 1.974
SIFT + VLAD 1.406
SIFT+LLC 2.939
SIFT + KCB 5.384
FC-CNN AlexNet 0.579

Proposed 0.406

time that preserves relevant discontinuities on the original image. The com-
bination with a powerful yet simple local encoder like CLBP yielded interes-
ting and promising performance neither requiring large amount of data for trai-
ning nor advanced computational resources. Another remarkable point was its
ability to be competitive with learning-based approaches that rely on trans-
fer learning over huge datasets. Even though this is an interesting approach
when we have limited data for training, it may become an infeasible strategy,
for example, when the problem involves significant domain shift with respect
to general purpose databases like ImageNet. Here our method achieved good
generalization on heterogeneous textures without any external pre-training. In
general, such great performance combined with the straightforwardness of the
model, that allows some interpretation of the texture representation based on
local homo/heterogeneous patterns, make the proposed descriptors a candidate
for practical applications in texture analysis, especially when we have small to
medium datasets and excessively complicated algorithms should be avoided.

6 Conclusions

In this study, we investigated the performance of a nonlinear PDE model (pseudo-
parabolic) as an operator for the description of texture images. The operator was
applied for a number of iterations (time evolution) and a local encoder was col-
lected from each transformed image. The use of a basic histogram to pooling the
local encoders was sufficient to provide competitive results.

The proposed descriptors were evaluated over a practical task of texture
classification on benchmark datasets and the accuracy was compared with other
approaches from the state-of-the-art. Our method outperformed several other
local descriptors that follow similar paradigm and even some learning-based
algorithms employing complex versions of convolutional neural networks.

The obtained results confirmed our expectations of a robust texture descrip-
tor, explained by its ability of nonlinearly smoothing out spurious noise and
unnecessary details, but preserving relevant information, especially those con-
veyed by sharp discontinuities. In general, the results and the confirmation of
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the theoretical formulation suggest the suitability of applying such model in
practice, in tasks of texture recognition that require simple models, easy to be
interpreted and that do not require much data for training. This is a common
situation in areas like medicine and several others.

Finally, such promising results also open space for future works. Particularly,
the PDE operator described here can be interpreted as a preconditioner for
image analysis algorithms. In this context, it can also be explored, for instance,
in combination with the modern deep learning approaches, especially in the
typical scenario where deep learning excels, i.e., when there is sufficient amount
of data for training and computational power and when model interpretation is
not priority. Application to other types of images beyond textures would also be
possible in this scenario.
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