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Abstract. The supermodel synchronizes several imperfect instances of
a baseline model - e.g., variously parametrized models of a complex sys-
tem - into a single simulation engine with superior prediction accuracy.
In this paper, we present convincing pieces of evidence in support of
the hypothesis that supermodeling can be also used as a meta-procedure
for fast data assimilation (DA). Thanks ago, the computational time of
parameters’ estimation in multi-parameter models can be radically short-
ened. To this end, we compare various supermodeling approaches which
employ: (1) three various training schemes, i.e., nudging, weighting and
assimilation, (2) three classical data assimilation algorithms, i.e., ABC-
SMC, 3DVAR, simplex method, and (3) various coupling schemes be-
tween dynamical variables of the ensembled models. We have performed
extensive tests on a model of diversified cancer dynamics in the case
of tumor growth, recurrence, and remission. We demonstrated that in
all the configurations the supermodels are radically more efficient than
single models trained by using classical DA schemes. We showed that
the tightly coupled supermodel, trained by using the nudging scheme
synchronizes the best, producing the efficient and the most accurate
prognoses about cancer dynamics. Similarly, in the context of the ap-
plication of supermodeling as the meta-algorithm for data assimilation,
the classical 3DVAR algorithm appeared to be the most efficient base-
line DA scheme for both the supermodel training and pre-training of the
sub-models.
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1 Introduction – the concept of supermodeling

The assimilation of the computer model with a real phenomenon through a set
of observations is a complex task and its time complexity increases exponentially
with the number of parameters. This makes data assimilation (DA) procedures
useless when applied for multiscale models such as models of weather dynamics
[26,28] or biological processes like tumor growth [2]. Usually, such the multiscale
models are highly parametrized.

It is well known from the literature that a multi-model ensemble produces
more accurate prognoses than a single-model forecast [25]. Consequently, si-
multaneous estimation of the model parameters for the ensemble Kalman filter
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(EnKF) is more efficient and accurate than for single data assimilation (DA)
algorithm [3]. On the other hand, averaging trajectories from multiple models
without synchronization may lead to undesired smoothing and variance reduc-
tion [7]. The alternative approach for taking advantage from the many trajecto-
ries followed by distinctive models and discovering many ”basins of attraction”
but without (premature) loss of the trajectories variety is combining models dy-
namically. The naive approach of this kind was proposed in [10]. The more ma-
ture solution was presented in [28] and consists in dynamic combination of sub-
models by introducing connection terms into the model equations that ”nudge”
the state of one model to the state of every other model in the ensemble, effectively
forming a new dynamical system with the values of the connection coefficients
as additional parameters. In our previous paper [19] we posed a hypothesis

Fig. 1: The supermodeling coupling for 3 sub-models and ground truth.

that by combining a few imperfect, previously pre-trained, dynamical models
and synchronizing them through the most sensitive dynamical variables one can
overcome the problem of exponential inflation of the parameter space with their
number [20]. Instead of estimating multiple parameters, one can train only a
few coupling factors (hidden layer of data assimilation) of the model ensemble -
the supermodel. In [19] we demonstrated that this meta-procedure can be more
efficient than a single ABC-SMC classical data assimilation algorithm. However,
in [19], we presented a case study, which uses only: (1) one supermodeling cou-
pling scheme and (2) one classical DA algorithm. To make our hypothesis more
credible we present here more extensive experiments.

The main contribution of this paper is the comparison of many versions
of supermodels employing various training schemes and various classical DA
algorithms as the baseline (i.e., for pre-training of the sub-models and training
their coupling factors). Additionally, compared to our previous study, we employ
a supermodeling scheme for a different and more realistic dynamical model, i.e.,
the model of tumor dynamics. The results of experiments allow for strengthening
considerably the hypothesis about the benefits of using supermodeling as a meta-
procedure for data assimilation for improving prediction accuracy.

2 Supermodel training schemes

Let us first define the supermodel assumptions [26]. Assuming, that we have
µ = 1 . . .M sub-models, each described by the d = 1 . . . D set of dynamical
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variables, i.e., ẋdµ = fdµ(xµ) (1)

the supermodel set of equations looks as follows: [28]:

ẋdµ = fdµ(xµ) +

υ 6=µ∑
Cdµυ(xdυ − xdµ)︸ ︷︷ ︸

Synchronization
between sub-models

+ Kd
µ(xdGT − xdµ)︸ ︷︷ ︸

Synchronization
sub-model and the ground truth

(2)

where Cij are the coupling (synchronization) factors between sub-models and
Kd are the nudging coefficients attracting the models to the ground truth (GT)
data (see Figure 1). We have assumed that Kd = K. The supermodel behavior
is calculated as the average of the sub-models:

xds(C, t) ≡
1

M

∑
µ

xdµ(C, t). (3)

Additionally, we define the synchronization quality as follows:

ed(t) =
1

lp

∑
(µ,v)

1

N

N−1∑
n=0

[xdµ(n∆t)− xdv(∆t)]2, (4)

where N is the number of samples that discretize the trajectory, lp is the number
of couplings between the sub-models, and ∆t is the discretization interval. As
shown in [27], the C tensor coefficients can be trained by using ground truth
vector xGT by minimizing the weighted squared error E(C) in N following time-
steps ∆t; i.e.,

E(C) =
1

N∆t

N∑
n=1

∫ tn+∆t

tn

|xs(C, t)− xGT (t)|2γtdt. (5)

Error function E(C) measures an accumulated numerical error, which includes
the imperfections in the definition of the initial conditions. Discount value γ
is from the (0,1) interval [27]. This decreases the contributing factors of the
increases in the internal errors.

To develop a fully functional supermodel we have to (1) devise training algo-
rithms for meta-parameters (Cdij , K

d
i ), (2) select a proper set of the sub-models,

(3) decide about the connections between them. In this section, we start with
the training algorithms.

There exist a few different training algorithms for developing efficient and
accurate supermodels. In the forthcoming sections we briefly discuss nudged,
assimilated and weighted training schemes described in the previously published
papers [28], [26], [19]. Many interesting novel concepts of the supermodels train-
ing, in the context of climate/weather forecast, are collected in [17].

2.1 Nudging supermodel

In this training scheme, during the first stage, the values of Cdij factors are
updated alongside the sub-models according to the following formula [28]:

Ċdµυ = α(xdµ − xdυ)(xdGT − xdµ), (6)
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where α is a training constant. The second stage consists in running the coupled
sub-models once again but this time Cij are fixed to the values resulting from the
first stage while the supermodel trajectory is nudged to GT data by correcting
the values of Kd

i . The details of this procedure can be found in [27]. As the
output of the nudging supermodel, we take the average of outputs of the M
coupled sub-models obtained during the second stage of training.

2.2 Assimilated supermodel

This alternative approach, (which is referred to as assimilated supermodel)
consists in pre-training of the sub-models and estimating coupling factors using
well known data assimilation algorithms such as: Kalman filters [3], 3DVAR [23],
Blue or EnsembleBlue [1], ABC-SMC [24] or optimization algorithms such as:
Evolutionary Algorithms, Differential Evolution [15], Tabu Search [5, 6] or clas-
sical derivative free optimization techniques [13,14] such as Simplex method [9].
Proposed idea consists in the following steps ( [19]): (1) Apply a classical data-
assimilation algorithm for a short pre-training of a few instances of the baseline
model. (2) Create a supermodel from these imperfect sub-models coupled by
only the most sensitive dynamical variables. Thus the number of coupling fac-
tors k will be small compared to the number of model parameters (e.g., for three
sub-models coupled by only one variable k = 3). (3) Train these coupling fac-
tors using ground truth data by applying classical DA algorithm. The nudging
coefficients are not required then. So now, the supermodel is described by the
following equation:

ẋiµ = f iµ(xµ)︸ ︷︷ ︸
Pretrained
submodels

+

υ 6=µ∑
Ciµυ(xiµ − xiυ)︸ ︷︷ ︸

Submodel coupling

+
�������
Ki(xGT − xiµ)︸ ︷︷ ︸

Synchronization submodels
and ground-truth

(7)

What is important, in this procedure the most complex and time-consuming
part, i.e., matching all the parameters of the baseline models, is significantly re-
duced due to a short pre-training only. Moreover, the instances (sub-models) can
be created during only one pre-training, selecting the parameters corresponding
to the best and the most diverse local minimums of the cost function. The sub-
models can be also pre-trained parallelly reducing the computational time. In
our experiments, shown in the Results section we have assumed that they are
calculated in parallel.

The main part of the method is focused then on estimating (only a few)
coupling factors. Since now, nudging to the ground truth is performed by the
baseline data assimilation algorithm, so the part of equation 2, responsible for
nudging the model towards the ground truth data, has been eliminated (see
formula 7).

2.3 Weighted supermodel

The weighted sum of sub-models is the next and the most popular model en-
sembling approach. This time, the procedure is as follows: (1) Apply a classical
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data assimilation algorithm for short pre-training of a few instances of the over-
parametrized baseline models. (2) Ensemble the supermodel as the weighted sum
of tentatively pre-trained imperfect sub-models with the weights wµ matched to
GT data by some DA algorithm. Thus the supermodel value xds of the dth dy-
namic variable is calculated now as:

xds =

M∑
µ=1

wµx
d
µ (8)

The sum of weights wµ is normalized to 1. As shown in [28] and [26] the weighted
average scheme is equivalent to the nudging training scheme for large coupling
factors.

3 Model of tumor dynamics

For the test case studies we use the model of the tumor (glioma brain cancer)
dynamics: its growth and post anti-cancer treatment phases: remission and re-
currence [16]. Unlike the Handy model considered in [19], the cancer model is
more realistic and supported by real data. As shown by Ribba et. al [16] the
model can be used in predictive oncology.

Proliferative cancer cells (P) represent fully functional cells that have the
ability to multiply. It is also assumed that those cancer cells that are in un-
favorable conditions (such as hypoxia or high mechanical pressure) transform
into the quiescent cells (Q). Additionally, all of the proliferative and most of
the quiescent cells die due to the anti-cancer drug activity (C). The surviving Q
cells transform into mutated quiescent cancer cells (QP), which in turn convert
to the proliferative (P) cancer cells (in reality even more aggressive ones). This
model, though highly simplified, is a good metaphor for the principal processes
influencing cancer dynamics during and after treatment. The model is described
by the following set of ODEs [16]:

dC

dt
= −KDE × C

dP

dt
= λP × P (1− P ∗

K
) + kQpP ×QP − kPQ × P − γP × C ×KDE × P

dQ

dt
= kPQ × P − γQ × C ×KDE ×Q

dQP
dt

= γQ × C ×KDE ×Q− kQPP ×QP − δQP ×QP

P ∗ = P +Q+QP .

(9)

At a given moment of time t, the model state vector is V (t) = [P (t), Q(t), Qp(t), C(t)],
where P (t), Q(t), Qp(t) are the numbers of proliferating, quiescent and mutated
quiescent cancer cells respectively. Assuming that the cancer cells have similar
size, based on known average tumor density one can assume that the number
of cells is proportional to the volume they occupy. Though, this will be rather a
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rough estimation knowing the high variability of tumor density from the necrotic
center to the tumor surface. The C(t) dynamical variable represents anti-cancer
drug concentration during chemotherapy or radiation dose in the case of radio-
therapy. The approximate size of the tumor - calculated in the linear scale as
MTD (the mean tumor diameter) - can be estimated from the total number of
cancer cells P ∗ = P +Q+QP , and vice versa.

In [16], seven parameters were defined: λP – cell multiplication P ; kPQ –
transition of P cells to into Q cells; γP – dying cells P ; γQ – dying cells Q;
KDE – therapy intensity; kQPP – transition of cells QP into P ; and δQP –
dying cells QP . For the initialization of the model, the initial values: P0, Q0, and
QP0 are given in [16].

a) b)

Fig. 2: Data augmentation via approximation of tumor dynamics for a patient
with ID = 2 (see [16]) (a), and the comparison of the tumor dynamics measured
by MTD and scaled tumor volume (b).

3.1 Ground truth data

For the experiments presented and discussed in this paper, the observations of
the tumor dynamics for a patient, described in [16] as the patient with ID=2,
have been adopted as the ground truth (GT) data. Our choice of the patient was
completely random from almost 60 cases described in [16]. As shown in Figure2a,
data represent the Mean Tumor Diameter (MTD) measurements in time. The
Y-axis is scaled in millimeters (MTD) while X-axis (time) in months. The 0
value on X-axis means the start of anticancer therapy. Because glioma tumor
has rather a regular shape, MTD can be relatively easy to measure and it reflects
well the size of the tumor. In the case of irregular tumors, the cancer volume
should be estimated instead. Because, the set of equations 9 describes the tumor
time evolution in terms of the number of tumor cells, and assuming that this
number is proportional to the volume V , one can easily estimate these volumes
from MTD measurements. Therefore, MTD values taken from the Figure2a were
converted into the volume of the tumor. Assuming that the tumor is a sphere
(glioma is rather a cancer of regular spheroidal shape), the conversion has been
made according to the equation: 10.

V =
π(MTD)3

6
(10)
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The values of V obtained from 10 were scaled by dividing them by 1500 (arbi-
trary value) so that the volume and corresponding MTD values be of the same
order of magnitude. The comparison of the tumor dynamics for the patient with
the ID=2, measured in MTD, and corresponding tumor volumes are shown in
Figure 2b. It is worth mentioning here that the authors of [16] made a mistake
assimilating the equations directly to the linear MTD scale. That is why the
final results from the paper [16] cannot be credible.

As shown in Figure 2a, for the purposes of this paper we made a simple
data augmentation through the approximation of the measured data (60 points
in green in Figure 2a). In the clinical case of predictive oncology, based on
scarce data, one should perform more sophisticated regression such as Kriging
regression [8] to predict various scenarios and probabilities of cancer dynamics
after treatment.

3.2 Model calibration

Before further experiments, it is necessary to calibrate the model to GT data and
to estimate: initial values of dynamical variables, (C0, P0, Q0, QP0), and initial
values of all the model parameters, which would give the best approximation
of the ground truth data. These values will be later used as the first guess for
creating the sub-models. Calibration has been performed by using the classical

Parameter name Parameter value

λP 0.6801
K 160.14

KQPP 0.0000001
KPQ 0.41737
γP 5.74025
γQ 1.343
δQP 0.6782
KDE 0.09513
C0 0
P0 4.7279
Q0 48.5147
QP0 0

Fig. 3: The cancer model parameters after its calibration to ground truth data
(left hand side) and the fitting of the calibrated model to ground truth for the
first 60 time steps (right hand side).

(µ + λ) genetic algorithm (GA) for single-objective optimization. The fitness
function has been defined as the root mean square error (RMSE) calculated
for the ground truth data and tumor dynamics predicted for a given individual.
GA has been executed in two phases. In the first one, the genotype of every
individual consists of four double-float values representing the initial solutions
C0, P0, Q0, QP0 whereas in the second stage the genotype of every individual
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consists of eight double-float values representing the parameters of the tumor
growth model (i.e., λp,K,KQPP ,KPQ, γP , γQ, δQP ,KDE). In the experiments,
the implementation of GA provided by the pyMOO1 library has been applied.
The calculated values of model parameters alongside the visualization of the
tumor growth modeled by the calibrated model during the first 60 time steps
are presented in Figure 3.

4 Experiments

The model of tumor dynamics used as the test case (see equation 9) has been
selected because: (1) the computational time required for its simulation is rea-
sonably short allowing for numerous repetitions needed in data assimilation and
parameters matching procedure; (2) though the model is simple it is non-trivial
in terms of the number of parameters; (3) the dynamics of the model can be dis-
turbed anytime by administrating a new treatment what makes its dynamics un-
predictable; (4) the model is realistic and can be considerably extended [11,12,21]
making it computationally more demanding, what justifies using the supermod-
eling for its implementation and the use in clinical practice. The experimental

Fig. 4: Tumor dynamics in three drug administration cycles used as the ground
truth data.

verification is focused on the analysis of prediction quality depending on the com-
bination of: (1) the supermodel ensembling technique (nudging, assimilation,
weighted), (2) the data assimilation and optimization algorithm (ABC-SMC [24],
3DVAR [23], classical derivative free algorithm, i.e., simplex method [9]) and (3)
sub-model coupling scheme (i.e., dense or sparse sub-models coupling). For the
purposes of this paper, i.e, demonstration of the usefulness and superiority of
the supermodeling as a meta-procedure for data assimilation, we have selected a
bit unrealistic tumor dynamics case shown in Figure 4. An oncologist who uses
the predictive tool for planning the anti-cancer therapy would like to check all

1 https://pymoo.org/algorithms/index.html
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therapy scenarios depending on the tumor behavior. Usually, based on data from
the beginning of the therapy, such as in Figure 2, they simulate further stages
of tumor development planning the moments the following drug dose should be
administrated to obtain the optimal therapeutic result. For sure, the oncolo-
gist would never allow for such an extensive tumor regrowth like that shown
in Figure 4, moreover, he would use all the data from the beginning of ther-
apy administration (not just a fragment which is shown in Figure 4) for further
prediction. However, in our tests, we would like to study what accuracy can
we expect for not only the ”forward” but also the ”backward” predictions. The
latter allows for the insight into tumor past what could be very valuable for anti-
cancer therapy and for inference of the reasons of the tumor evolution. Taking
for our test GT data from the middle of the anti-cancer therapy, and having
more complicated ”backward” dynamics, we can better estimate the accuracy
of the prediction methods we examined. The parameter values presented in

Table 1: Top-level experimentation parameter values

name
Parameter

model
Single

super model
Assimilated

super model
Weighted

super model
Nudged

Evaluation budget (30,50,70) (30,50,70) (30,50,70) (30,50,70)
Pretraining ratio N/A 40% 40% 40%

(Pre)training window range [80 : 86] [80 : 86] [80 : 86] [80 : 86]
Initial parameter perturbation 40% 40% 40% 40%

Number of submodels N/A 4 4 4

Table 1 have been taken arbitrarily based on the preliminary experiments. The
evaluation budget means the number of evaluations of tumor volume P ∗ (see
equation 9) in the subsequent timesteps. In the experiments, the budgets are 30,
50 and 70, respectively. The pre-training ratio is the ratio of computational time
needed for pretraining of the sub-models (in parallel) to the total training time,
i.e., the evaluation budget considered (with training the supermodel coupling
coefficients). We have assumed that pre-training is independent and thus can be
run in parallel. In the following experiments, this value is set to 40% of the total
evaluation budget. Initial perturbation means the deviation of the tumor growth
model (i.e. λp, K, Kqpp, Kpq, γp, γq, δqp and KDE) from their reference val-
ues, where the reference values are collected in Figure 3. The parameters of the
assimilation algorithms have been taken as provided by default in the pyABC2

and ADAO3 libraries.

4.1 Results

In Tables 2, 3, 4, 5 and 6 the average tumor dynamics percentage prediction
errors are presented. The results in individual tables differ with tumor model
dynamic variable the sub-models have been coupled by. The best tumor dy-

2 https://pyabc.readthedocs.io/en/latest/
3 https://docs.salome-platform.org/latest/gui/ADAO/en/index.html#
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Table 2: Average tumor dynamics prediction errors. Coupling variable: P . (Re-
sults are in percentages.)

Simplex 3DVAR ABC-SMC
30 50 70 30 50 70 30 50 70

Single model 83,64 67,29 58,28 35,40 30,01 22,92 67,29 58,28 46,44
Assimilated supermo. 55,72 45,11 42,71 22,40 15,64 13,01 45,11 42,71 34,53
Weighted supermodel 49,51 42,12 39,31 22,23 16,61 16,54 42,12 39,31 29,78
nudged supermodel 30,28 29,66 27,08 22,15 16,96 15,43 30,28 27,08 21,10

Table 3: Average tumor dynamics prediction errors. Coupling variable Q. (Re-
sults are in percentages.)

Simplex 3DVAR ABC-SMC
30 50 70 30 50 70 30 50 70

Single model 78,46 49,57 39,07 40,88 33,22 24,84 57,50 57,09 47,47
Assimilated supermo. 50,04 40,81 34,30 24,94 23,72 19,12 42,19 38,45 26,32
Weighted supermodel 34,93 34,33 29,93 22,75 22,10 17,32 51,12 35,91 28,09
nudged supermodel 41,87 24,12 23,84 18,35 17,63 12,75 39,96 31,70 24,58

Table 4: Average tumor dynamics prediction errors. Coupling variable:
QP .(Results are in percentages.)

Simplex 3DVAR ABC-SMC
30 50 70 30 50 70 30 50 70

Single model 56,38 42,96 38,44 43,84 24,10 21,97 72,41 62,04 49,51
Assimilated supermo. 37,70 30,51 25,27 21,92 19,54 16,01 44,95 40,47 34,35
Weighted supermodel 34,81 28,81 25,07 21,84 18,72 15,93 43,01 41,94 32,70
nudged supermodel 37,74 30,54 25,32 21,94 19,56 16,03 44,95 40,46 34,35

Table 5: Average tumor dynamics prediction errors. Coupling factor: C. (Results
are in percentages.)

Simplex 3DVAR ABC-SMC
30 50 70 30 50 70 30 50 70

Single model 58,65 51,11 41,59 30,42 23,06 19,34 57,74 51,28 42,03
Assimilated supermo. 40,57 33,60 23,03 26,04 20,41 16,01 42,63 36,45 29,01
Weighted supermodel 48,73 32,01 24,24 27,59 22,75 15,71 42,91 37,60 26,38
nudged supermodel NaN NaN NaN NaN NaN NaN NaN NaN NaN

Table 6: Average tumor dynamics prediction errors. Coupling variables: P , Q,
QP , C. (Results are in percentages.)

Simplex 3DVAR ABC-SMC
30 50 70 30 50 70 30 50 70

Single model 58,83 51,91 46,21 31,81 26,03 19,34 65,14 56,14 33,95
Assimilated supermo. 35,54 31,73 24,45 25,72 21,16 19,12 49,5 34,19 25,96
Weighted supermodel 30,64 28,24 22,06 19,66 17,12 14,68 41,87 29,67 23,98
nudged supermodel 10,95 9,41 8,69 8,82 8,78 6,22 14,12 9,52 9,35
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namics predictions produced by supermodeling approaches are as follows:

– when coupled by P – the nudged supermodel with 3DVAR (13,01%),
– when coupled by Q – the nudged supermodel with 3DVAR (12,75%),
– when coupled by QP – the weighted supermodel with 3DVAR (15,93%),
– when coupled by C – the weighted supermodel with 3DVAR (15,71%),
– when coupled by all the dynamic variables – the nudged supermodel with

3DVAR (6,22%).

For comparison, the best single-model predictions have been obtained with
3DVAR as a data assimilation algorithm and the average prediction error was:
21, 68%. In Figure 5 we present the predictions and the accuracy of all compared

a) b)

Fig. 5: Tumor dynamics prediction obtained by the single and the supermodels
Left, and Right: the errors comparison

Fig. 6: Tumor dynamics prediction obtained by a pretrained sub-model (green
line), the fully trained single-model (purple line) and one of the sub-models
from the supermodel (orange line). The supermodel response is the average of
the responses of all its member sub-models.

supermodeling schemes and the fully trained single-model. As one can see, the
obtained prediction inaccuracies clearly demonstrates the advantage of the su-
permodeling approach. Thus, in the case of the single-model (the purple line in
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Figure 6) if the DA process of parameters matching is not able to assimilate the
model to reality with adequate accuracy, there is no mechanism that would be
able to improve the prediction. While for supermodeling the situation is differ-
ent. Even if the pre-training process assimilates the sub-model parameters very
poorly (see the green line in Figure 6), what gives much worse predictions than
the well-trained single-model does, then during the coupling of a sub-model with
the other ones, it can be ’corrected’ and synchronized with the others. Conse-
quently, the supermodel ensemble, as the average of all the sub-models, is able
to produce much better predictions (see the orange line in Figure 6) than the
fully trained single-model.

5 Conclusions and future work

In the paper, the dependency of the supermodeling prediction quality on the
supermodel ensembling method, the baseline data assimilation algorithm, and
the (pre)training budget is analyzed. The combinations of three different super-
modeling approaches, i.e., nudged, assimilated and weighted supermodels with
three different data assimilation techniques (ABC-SMC, 3DVAR and SIMPLEX
methods) have been analyzed. The tumor dynamics model has been used as
the test case and its prediction accuracy has been compared to the generated
ground truth evolution. The conclusions coming from the presented research are
as follows: (1) All the supermodels clearly outperform the single-model accuracy
in all the time budgets taken into consideration. The 3DVAR data assimilation
algorithm, used as a baseline DA method, gives the highest accuracy. (2) For a
single-coupling between the sub-models (only one dynamic variable is used for
sub-models coupling) the accuracy of all the supermodel training methods is very
similar and does not depend significantly on which specific dynamic variable is
used to couple the sub-models. However, for dense connection (the sub-models
are interconnected by all the dynamic variables) the average prediction error
can be reduced by half and the nudging training scheme yields clearly the low-
est prediction error. (3) The difference between the best supermodel and single
model predictions is high. One should be aware that the more complex model
the greater can be the difference. What is important, in many cases even a 1%
difference in the prediction error (e.g. in climatology), may result in catastrophic
consequences. The same one can expect in exploiting complex 3D tumor models
in planning anti-cancer therapy. The perspective of the future works includes: (1)
verification of the experimental results applying more complex and realistic tu-
mor models than the test case used here, such as [11,12,21]; (2) applying another
baseline data assimilation algorithms as 4DVAR, Kalman filters, etc.; (30 veri-
fication another supermodel ensembling schemes such as the ”cross-pollination
and pruning” technique proposed by Schevenhoven and Selten in [17,18].
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