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Abstract. We consider inverse parametric problems for elliptic varia-
tional PDEs. They are solved through the minimization of misfit func-
tionals. Main difficulties encountered consist in the misfit multimodality
and insensitivity as well as in the weak conditioning of the direct (for-
ward) problem, that therefore requires stabilization. A complex multi-
population memetic strategy hp-HMS combined with the Petrov-Galerkin
method stabilized by the Demkowicz operator is proposed to overcome
obstacles mentioned above. This paper delivers the theoretical motiva-
tion for the common inverse/forward error scaling, that can reduce signif-
icantly the computational cost of the whole strategy. A short illustrative
numerical example is attached at the end of the paper.

Keywords: Inverse problem · Memetic algorithm · Stabilized Petrov-
Galerkin method.

1 Ill-conditioned data inversion: state of the art

We will focus on Inverse Problems (IPs) which consist in finding a set of param-
eters S that minimize a misfit functional f over an admissible set of parameters
D ⊂ RN , i.e.:

D ⊃ S = argmin
ω∈D

f(d0, u(ω)), (1)

where u(ω) ∈ U is a solution of the forward (direct) problem

B(ω;u(ω)) = l (2)

corresponding to the parameter ω ∈ D, d0 ∈ O denotes the observed data and
f : O × U → R+. The forward problem operator B : D × U → V ′ forms a
mathematical model of the studied phenomenon, U is a Hilbert space of forward
solutions and l ∈ V ′ is a functional over a Hilbert space of "test functions" V .
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If (1) has more than one solution (card(S) > 1) then it becomes ill-conditio-
ned. If S is not connected, then IP is called multimodal. If S contains an open
set in RN , then we have insensitivity region (plateau) in the objective (misfit)
landscape (see [11] for details). Traditionally, one can handle IP’s ill condition-
ing by supplementing misfit with a regularization term to make it globally or
locally convex (see .e.g. [4]). Unfortunately, such methods can produce undesir-
able artifacts and lead to the loss of information regarding the modeled process.
In the worst cases this method can deliver outright false solutions, forced by the
regularization term.

A more sophisticated way of dealing with such IPs is to use stochastic global
optimization methods which are able to identify separate basins of attraction
to global minimizers (see e.g. [13]). Papers [3] and [2] show the application of a
hierarchic evolutionary strategy HGS combined with hp-FEM to the identifica-
tion of ambiguous Lamme coefficients in linear elasticity. The use of the same
combined strategy in the inversion of logging data obtained with DC and AC
probes is described in [9,16]. The paper [14] shows the method of misfit insensi-
tivity regions approximation applied to MT data inversion. A hierarchic memetic
strategy hp-HMS supplemented with an evolutionary algorithm using multiwin-
ner selection [8] separates such areas around multiple global minimizers of the
misfit.

The above-mentioned papers show an effective method of solving ill-conditio-
ned IPs when the solution space coincides with the test space of the forward
problems (i.e., U = V ) and the forward operator B is generally coercive1. In this
paper we show how to extend the method to the class of forward problems in
which U 6= V and B satisfies the inf-sup condition only. Such forward problems
are also difficult to solve, because of the huge difference between the norms
of particular components of their governing equations (e.g. diffusion-convection
flow problem). Special numerical methods with stabilization such as DPG [6]
have to be applied in such cases. There are few examples of inverse solutions in
which DPG was applied for solving forward problem. In this number Bramwell
in his dissertation [5] discusses the tomography problem of restoring the squared
material slowness coefficient, using the measured displacements resulted from
the point-wise harmonic stimulation on the domain surface.

2 hp-HMS as an effective inverse solver

2.1 Evolutionary core

hp-HMS is a complex strategy that consists of a multi-phase multi-population
evolutionary algorithm combined with local search, cluster detection and local
approximation methods. The multi-population evolutionary core is responsible
for the discovery of problem objective local minima, including more interesting
global minima and these, in the inverse problem case, are solutions for (1). This
global search is performed by a tree of concurrently running single-population
1 This is not the case of AC and MT problems, but there we also have U = V
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evolutionary algorithms, called demes in the sequel. The whole tree executes
subsequent global steps called metaepochs. Each metaepoch in turn consists of
running a fixed number of evolutionary steps in each active deme. The tree itself
evolves according to the following rules:

– it starts with a single root,
– it has a fixed maximal depth,
– after a metaepoch each deme that has spotted a promising solution and is

not at the deepest level can try to sprout a child deme with a population
located in the neighborhood of the spotted solution.

A new deme can be sprouted only if the newfound solution is not too close to
other child demes. The main idea is that the search performed in a child deme
is more focused and more accurate than the one performed in the parent. The
structure of the tree is then determined by the parent-child relation among demes
with depth levels related to levels of search precision. The root searches the most
chaotically but over the widest domain and the final solutions result from the
most focused search in leaves. Any solution found in leaf demes that has a de-
cent objective value is memorized for the further investigation. The evolution
in any deme is controlled with a local stopping condition that deactivates stag-
nant searches. The whole strategy evolution is stopped when a global stopping
condition is satisfied.

2.2 Handling multimodality and insensitivity

The sprouting condition forbids the exploration of neighborhoods of already
found solutions. That forces the whole strategy to move to other areas of the
computational domain and makes it possible to spot multiple different solutions.
In some problems this can mean all solutions, of course when using an appro-
priate global stopping condition. This way, the HMS can handle multi-modal
problems of a simpler type having many isolated solutions. But in some prob-
lems the difficulty level is raised higher with solutions forming plateaus, i.e., sets
with nonempty interior. The evolutionary HMS core is not capable of coping
with such difficulties, but the whole strategy has additional modules for this
purpose. First, leaf node populations provide a hint of local minima attraction
basins: among them the above-mentioned plateaus. Second, these populations
are merged pairwise if they cover the same basin. Third, an evolutionary al-
gorithm with special-type multiwinner-voting-based selection operator is run on
those merged populations to enhance the coverage of the basins. Finally, on each
of the basins we build a local approximation of the objective and appropriate
level sets of these approximations serve as estimates of plateau boundaries.

2.3 Computation speedup with dynamic accuracy adjustment

It is well-known that inverse computations are very time-expensive. The main
weight of these is the cost of direct problem solution. HMS inverse computations
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cannot entirely avoid this problem but in some classes of IPs we can mitigate
it significantly: this is the case of solving the direct problem by means of an
adaptive solver. Here we provide the idea of taking the advantage of the direct
solver hp-adaptivity, which leads to a version of HMS called hp-HMS.

As it was said before, we assume that we compute the objective C(u(ω)) =
f(do, u(ω)) with an hp-FEM forward problem (2) solver. In some important cases
(see below) we have the following estimate∣∣∣C (uh

2 ,p+1(ω)
)
− C (u(ω∗)))

∣∣∣ ≤
A1errrel(ω)

α +A2‖uh,p(ω)− u(ω)‖βU +A3‖ω − ω∗‖γD. (3)

In formula (3) u(ω) is the solution of the direct (forward) problem (2), uh,p(ω) is
the hp-FEM approximate solution of (2) for mesh size h and polynomial degree
p, errrel(ω) is a measure of the difference between approximations obtained in
two subsequent hp-FEM steps

erel(ω) = uh
2 ,p+1(ω)− uh,p(ω), (4)

A1, A2, A3 > 0 are positive constants and α ≥ 1, β ≥ 1. In the simplest case
errrel(ω) = ‖erel(ω)‖V , but quite often errrel contains other components, e.g.,
coming from the approximation of the dual problem to (2).

Here we include a proof of (3) in a quite simple but at the same time also
quite general case.

Proposition 1. Assume that there exist Cu > 0, CC > 0, r ≥ 1, s ≥ 1 such
that

‖u(ω)− u(ω′)‖U ≤ Cu‖ω − ω′‖rD (5)

for every ω, ω′ ∈ D and that

|C(u)− C(u′)| ≤ CC‖u− u′‖s (6)

for all u and u′. Then there exist A1 > 0 and A3 > 0 such that∣∣∣C (uh
2 ,p+1(ω)

)
− C (u(ω∗)))

∣∣∣ ≤
A1‖uh

2 ,p+1(ω)− uh,p(ω)‖
s +A1‖uh,p(ω)− u(ω)‖s +A3‖ω − ω∗‖rs. (7)

Proof. Let us start with a simple equality

uh
2 ,p+1(ω)− u(ω

∗) = uh
2 ,p+1(ω)− uh,p(ω) + uh,p(ω)− u(ω) + u(ω)− u(ω∗).

Using the triangle inequality we obtain

‖uh
2 ,p+1(ω)−u(ω

∗)‖ ≤ ‖uh
2 ,p+1(ω)−uh,p(ω)‖+‖uh,p(ω)−u(ω)‖+‖u(ω)−u(ω

∗)‖.

From (6) and (8) we have that∣∣∣C (uh
2 ,p+1(ω)

)
− C (u(ω∗)))

∣∣∣ ≤
CC

(
‖uh

2 ,p+1(ω)− uh,p(ω)‖+ ‖uh,p(ω)− u(ω)‖+ ‖u(ω)− u(ω
∗)‖

)s
. (8)
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Then, using Jensen’s inequality we obtain∣∣∣C (uh
2 ,p+1(ω)

)
− C (u(ω∗)))

∣∣∣ ≤
3s−1CC

(
‖uh

2 ,p+1(ω)− uh,p(ω)‖
s + ‖uh,p(ω)− u(ω)‖s + ‖u(ω)− u(ω∗)‖s

)
.

Now, the application of (5) completes the proof with

A1 = 3s−1CC , A3 = 3s−1CCCu.

ut

Constants Cu and r are related to properties of forward equation (2). Here,
we show their derivation in an important special case.

Proposition 2. Assume that in the forward problem (2) U = V and that the
forward operator B has the following properties.

1. For every ω ∈ D B(ω;u) is linear and continuous with respect to u.
2. B(ω;u) is uniformly coercive with respect to u, i.e. there exists Cb > 0

independent on ω such that

|〈B(ω;u), u〉| ≥ Cb‖u‖2U .

3. B(ω;u) is uniformly Lipschitz-continuous with respect to ω, i.e. there exist
CB > 0 independent on u such that

‖B(ω;u)−B(ω′;u)‖U ′ ≤ CB‖u‖U‖ω − ω′‖D.

Then (5) holds with r = 1 and

Cu =
CB
C2
b

‖l‖U ′ .

Proof. In the sequel we shall use the following notation

B(ω) : U 3 u 7−→ B(ω;u) ∈ U ′.

Then, we can state that
u(ω) = B(ω)−1(l). (9)

We have the following sequence of equalities.

u(ω)− u(ω′) = B(ω)−1(l)−B(ω′)−1(l)

=
[
B(ω)−1 ◦ (B(ω′)−B(ω)) ◦B(ω′)−1

]
(l).

Therefore, using operator-norm definition we obtain

‖u(ω)− u(ω′)‖ ≤ ‖B(ω)−1‖ · ‖B(ω′)−B(ω)‖ · ‖B(ω′)−1‖ · ‖l‖. (10)
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Thanks to Assumption 2 we have

Cb‖u‖2 ≤ |〈B(ω;u), u〉| ≤ ‖B(ω;u)‖‖u‖.

Therefore, again from the definition of the operator norm, it follows that

‖B(ω;u(ω))‖ ≥ Cb‖u(ω)‖.

Using (9) we can rewrite the above in the following way

‖B(ω)−1(L)‖ ≤ 1

Cb
‖l‖.

Hence, for every ω ∈ D we have

‖B(ω)−1‖ ≤ 1

Cb
.

Assumption 3 can be rewritten in the following way

‖B(ω)−B(ω′)‖ ≤ CB‖ω − ω′‖.

Hence, using the above inequalities along with (10) we obtain

‖u(ω)− u(ω′)‖ ≤ 1

Cb
· CB · ‖ω − ω′‖ ·

1

Cb
‖l‖,

which concludes the proof. ut

The first right-hand-side component of (3) contains a power of the error loss
errrel(ω) in a single hp-FEM step. The last component is a power of the error
of the inverse problem solution, that is related to the assumed search range on
a given level of the HMS tree. When using an hp-adaptive direct solver we can
trade the precision of the computations for the savings in time and reversely we
can spend more time to obtain more accurate solution. The main idea of the
hp-HMS is then to dynamically adjust the accuracy of the misfit evaluation to
both a particular value of ω and the (inevitable) inverse problem solution error
characterizing a given HMS tree level. The adjustment is realized by keeping the
balance between the first and the last right-hand term in (3): the middle term
can be neglected due to the high rate of the hp-FEM convergence. Therefore,
if δj is an assumed precision of the inverse problem solution (i.e., an assumed
level of the inverse error) at level j we perform the hp-adaptation of the FEM
solution of the forward problem until errrel(ω) drops below Ratio(j)δj

1
α , where

Ratio(j) is a parameter of the strategy related to the constant (A3(A1)
−1)

1
α .

Remark 1. Such a dynamical accuracy adjustment can result in a notable reduc-
tion of the computational cost of hp-HMS: we refer the reader to papers [15,2]
for details.
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3 Stabilizing forward Petrov-Galerkin based solver by
using Demkowicz operator

3.1 Sample exact forward problem

Let us study the following variational forward problem:{
Find u ∈ U ;

b(u, v) = l(v) ∀v ∈ V

}
⇔

{
Bu = l, B : U → V ′;

〈Bu, v〉V ′×V = b(u, v) ∀v ∈ V

}
(11)

where U, V are two real Hilbert spaces, b : U × V → R is a bilinear (sesquilin-
ear), continuous form, l : V → R continous linear functional so |b(u, v)| ≤
M‖u‖U‖v‖V , |l(v)| ≤ ‖l‖V ′‖u‖U where M stands for the norm of the form b.

If b satisfies the following inf-sup condition equivalent to the condition, that
B is bounded below:

∃γ > 0; ∀u ∈ U sup
06=v∈V

{
|b(u, v)|
‖v‖V

≥ γ‖u‖U
}

(12)

and l satisfies the compatibility condition

l(v) = 0 ∀v ∈ V0 = ker(B′) = {v ∈ V ; b(u, v) = 0 ∀u ∈ U}, (13)

or the stronger one ker(B′) = {v ∈ V ; b(u, v) = 0 ∀u ∈ U} = {0} , then (11)
has a unique solution that satisfies the stability estimate ‖u‖U ≤ 1

γ ‖l‖V ′ , where
B′ : (V ′)′ = V 3 v → 〈 · , B′v〉V ′×V = b( · , v) ∈ U ′, because V is reflexive
as a Hilbert space. Moreover B is the isomorphism (see e.g. Babuška [1] and
references inside).

3.2 Petrov-Galerkin method

By choosing Uh ⊂ U, Vh ⊂ V ; dim(Uh) = dim(Vh) < +∞ the problem approxi-
mate to (11) can be obtained:

Find uh ∈ Uh; b(uh, v) = l(v) ∀v ∈ Vh (14)

If (14) satisfies the discrete inf-sup condition:

∀u ∈ Uh sup
06=v∈Vh

{
|b(u, v)|
‖v‖V

}
≥ γh‖u‖U , (15)

then it has the unique solution uh which satisfies the discrete stability condition
‖uh‖U ≤ 1

γh
‖l‖V ′ , moreover if u is the solution to (11) then

‖u− uh‖U ≤
M

γh
inf

wh∈Uh
{‖u− wh‖U}. (16)
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If the stability constants γh have a positive lover bound infh{γh} = γ0 > 0,
then the Petrov-Galerkin method error converges with the same rate as the best
approximation error, because:

‖u− uh‖U ≤
M

γ0
inf

wh∈Uh
{‖u− wh‖U}. (17)

Unfortunately, the continuous inf-sup condition does not imply uniform dis-
crete inf-sup condition, so (17) does not hold in general for the arbitrary spaces
Uh ⊂ U, Vh ⊂ V (see Babuška [1]).

3.3 Demkowicz operator

The way to overcome this obstacle was introduced by Demkowicz and his col-
laborators [6], [7].

Let H be the set of all finite dimensional subspaces of U and B the set of all
finite dimensional subspaces of V . We are looking for any mapping = : H → B
so that (14) is symmetric and uniformly stable ((15) is satisfied with a uniform
constant) for each pair (Uh, Vh = =(Uh)), Uh ∈ H.

Let RV : V → V ′ be the Riesz isometry, then ∀u ∈ U ‖Bu‖V ′ = ‖R−1V Bu‖V .
We define now the linear Demkowicz operator

T = R−1V B : U → V. (18)

T is an isomorphism as a composition of isomorphisms, moreover

∀u ∈ U ‖Bu‖V ′ = ‖R−1V Bu‖V = ‖Tu‖V . (19)

It can be proved, that =(Uh) ≡ TUh satisfies our needs.
First, setting Vh = TUh we obtain dim(Vh) = dim(Uh) = n, because T is the

isomorphism and next:

∀ 0 6= u ∈ U ‖Bu‖V ′ = sup
06=v∈V

{
|b(u, v)|
‖v‖V

}
=
|b(u, Tu)|
‖Tu‖V

(20)

Let us introduce the energy norm ‖ · ‖E on the space U so that

‖u‖E = ‖Tu‖V = ‖R−1V Bu‖V = ‖Bu‖V ′ = sup
06=v∈V

{
|b(u, v)|
‖v‖V

}
. (21)

Both norms ‖ · ‖E and ‖ · ‖U are equivalent, because

γ‖u‖U ≤ sup
06=v∈V

{
|b(u, v)|
‖v‖V

}
= ‖u‖E = ‖Bu‖V ′ ≤M‖u‖U , (22)

and it is easy to prove:

Lemma 1. If Vh = TUh, then the inf-sup constant in (15) equals γh = 1 with
respect to the norm ‖ · ‖E independently on the selection of the space Uh ⊂ U .
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3.4 The abstract stabilized forward problem

Now we are ready to introduce the following form of the stabilized Petrov-
Galerkin forward problem:

Find uh ∈ Uh; d(uh, w) = r(w) ∀w ∈ Uh, (23)

where d : U × U 3 u,w → d(u,w) = b(u, Tw) ∈ R and r : U 3 w → r(w) =
l(Tw) ∈ R.

Remark 2. The problems (14) and (23) are equivalent, if Vh = TUh.

Theorem 1.
1. d is symmetric on U × U
2. d(u, u) = ‖u‖2E ∀u ∈ U
3. |d(u,w)| ≤ ‖u‖E ‖w‖E ∀u,w ∈ U
4. |r(w)| ≤ ‖l‖V ′ ‖w‖E ∀w ∈ U

Theorem 2. The problem (23) has the unique solution uh ∈ Uh so that ‖uh‖E ≤
‖l‖V ′ . Moreover ‖u− uh‖E = infw∈Uh{‖u− w‖E}, where u ∈ U is the solution
to (11).

Proof of Theorem 1: d(u,w) = b(u, Tw) = 〈Bu, Tw〉V ′×V = (R−1V Bu, Tw)V =
(Tu, Tw)V , so d satisfies 1. Next d(u, u) = (Tu, Tu)V = ‖Tu‖2V = ‖u‖2E proves
2. and |d(u,w)| = |(Tu, Tw)V | ≤ ‖Tu‖V ‖Tw‖V = ‖u‖E‖w‖E proves 3. Finally,
|r(w)| ≤ ‖l‖V ′‖Tw‖V = ‖l‖V ′‖w‖E proves 4. ut

Proof of Theorem 2: The form d is a scalar product on U inducing the energy
norm ‖ · ‖E . Moreover d and r preserve their conditions while restricting to the
subspace Uh, so the first thesis follows from Riesz theorem for this subspace. The
second thesis immediately follows from the Céa lemma which implies ‖u−uh‖E ≤
infw∈Uh{‖u−w‖E}, but ‖u−uh‖E must be less or equal to infw∈Uh{‖u−w‖E}
because both uh, w ∈ Uh. ut

Remark 3. All results of Theorems 1 and 2 do not depend on the selection of
the approximation subspace Uh ⊂ U .

Remark 4. Both, the energy norm ‖ · ‖E and Demkowicz isomorphism T depend
on the variational problem to be solved. Moreover, the conditions of each problem
(23) determined by Theorems 1, 2 can be expressed using the norm ‖ · ‖U and
constants M,γ characterizing the exact problem (11). In particular

‖u− uh‖U ≤
M

γ
inf

wh∈Uh
{‖u− wh‖U}, (24)

moreover:
d(u, u) ≥ γ2‖u‖2U , |d(u,w)| ≤M2‖u‖U‖w‖U ,

|r(w)| ≤ ‖l‖V ′M‖w‖U ∀u,w ∈ U.
(25)
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4 Including Demkowicz operator in the hp-HMS
structure

Let us assume, that the HMS objective C(u(ω)) fits the misfit of the inverse
problem (1) and satisfies the inequality:

C(u(ω)) = f(do, u(ω)) ∀ω ∈ D,

|C(u)− C(u′)| ≤ CC‖u− u′‖sU ∀u, u′ ∈ U,
(26)

where s, CC are some positive constants and u(ω) ∈ U is the solution to the
following forward problem:{

Find u(ω) ∈ U ;
b(ω;u(ω), v) = l(v) ∀v ∈ V

}
m{

B(ω;u(ω)) = l, B(ω; ·) : U → V ′;
〈B(ω;u, v〉V ′×V = b(ω;u, v) ∀u ∈ U, ∀v ∈ V

} (27)

where U, V are two real Hilbert spaces, b(ω; ·, ·) : U × V → R is a bilin-
ear (sesquilinear), continuous form, l : V → R continous linear functional so
|b(ω;u, v)| ≤ Mω‖u‖U‖v‖V , |l(v)| ≤ ‖l‖V ′‖u‖U where Mω stands for the norm
of the form b(ω; ·, ·).

If b(ω; ·, ·) satisfies the following inf-sup condition:

∃γω > 0; ∀u ∈ U sup
06=v∈V

{
|b(ω;u, v)|
‖v‖V

≥ γω‖u‖U
}

(28)

and l satisfies the compatibility condition

l(v) = 0 ∀v ∈ V0 = ker(B′(ω, ·)) = {v ∈ V ; b(ω;u, v) = 0 ∀u ∈ U}, (29)

or the stronger one ker(B′(ω; ·)) = {v ∈ V ; b(ω;u, v) = 0 ∀u ∈ U} = {0},
then (27) has a unique solution that satisfies the stability estimate ‖u(ω)‖U ≤
1
γω
‖l‖V ′ , where B′(ω; ·) : (V ′)′ = V 3 v → 〈 · , B′(ω; ·)v〉V ′×V = b(ω; · , v) ∈ U ′,

because V is reflexive as a Hilbert space. Moreover B(ω; ·) is the isomorphism
(see e.g. Babuška [1] and references inside). Next we assume that

∃ γ,M ; +∞ > M = sup
ω∈D
{Mω}, 0 < γ = inf

ω∈D
{γω} (30)

Moreover, we assume that D is bounded and that

∃CF > 0; ‖B(ω;u)−B(ω′;u)‖V ′ ≤ CF ‖u‖U‖ω − ω′‖D ∀u ∈ U, ∀ω, ω′ ∈ D.
(31)

In the sequel we shall use the following notation

T (ω; ·) = R−1V B(ω; ·) : U → V,

d(ω;u, v) = b(ω;u, T (ω; v)), D(ω;u) : U → U ′;

〈D(ω;u), v〉U ′×U = d(ω;u, v) = b(ω;u, T (ω; v)) ∀u, v ∈ U.

(32)
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Proposition 3. The family of operators {D(ω; ·)}. ω ∈ D satisfies the assump-
tions of Proposition 2.

Proof. Because 〈D(ω;u), v〉U ′×U = b(ω;u, T (ω; v)) than D(ω; ·) is linear and
continuous for every ω ∈ D, which satisfies the assumption 1.

Following Remark 4 and the assumption (30) we have

〈D(ω;u), u〉U ′×U = d(ω;u, u) ≥ γ2ω‖u‖2 ≥ γ2‖u‖2

which proves the uniform coercivity of D(ω; ·) postulated in assumption 2.
Let us evaluate for arbitrary ω, ω′ ∈ D, u, v ∈ U and using (30), (31)

|d(ω;u, v)− d(ω′;u, v)| = |b(ω;u, T (ω, v))− b(ω′;u, T (ω′; v))|
≤ |b(ω;u, T (ω, v))− b(ω′;u, T (ω; v))|+ |b(ω′;u, T (ω; v))− b(ω′;u, T (ω′; v))|
≤ ‖B(ω;u)−B(ω′;u)‖V ′‖T (ω; v)‖U + |b(ω′;u, T (ω; v)− T (ω′; v))|
≤ CF ‖ω − ω′‖D‖u‖U‖T (ω; v)‖U + ‖B(ω′)‖‖u‖U‖T (ω; v)− T (ω′; v)‖V
≤ CF ‖u‖U‖ω − ω′‖D‖B(ω; v)‖V ′ + ‖B(ω′)‖‖u‖U‖B(ω; v)−B(ω′; v)‖V ′
≤ CF ‖u‖U‖ω − ω′‖D‖B(ω)‖‖v‖V + ‖B(ω′)‖‖u‖U‖ · CF ‖ω − ω′‖D‖v‖V
≤ CF (‖B(ω)‖+ ‖B(ω′)‖) ‖ω − ω′‖D‖u‖U‖v‖V

(31) can be rewritten as

‖B(ω)−B(ω′)‖ ≤ CF ‖ω − ω′‖D,

therefore, since D is bounded, we have that

MB = sup
ω∈D
‖B(ω)‖ < +∞.

Hence, we obtain

|d(ω;u, v)− d(ω′;u, v)| ≤ 2CFMB‖ω − ω′‖D‖u‖U‖v‖V . (33)

In other words

‖D(ω;u)−D(ω′;u)‖V ′ ≤ 2CFMB‖ω − ω′‖D‖u‖U , (34)

which is exactly assumption 3. ut
Finally, taking into account the assumed inequality (26), all assumptions of

the Proposition 1 hold, so the evaluation of the misfit relative error (7) is valid
with the following constants A1 = 3s−1CC , A3 = A1Cu =

3s−1CCC
2
B

C2
b

‖l‖U ′ .

Proposition 4. All the above considerations authorize the conclusion that the
common misfit error scaling described in Section 2.3 might be applied in twin
adaptive solution of the inverse problem (1) where the forward problems (27) are
stabilized by Demkowicz operator, using the recommended value of Ratio(j), i.e.
(A3(A1)

−1)
1
α .

Remark 5. The above Proposition allows us to apply the dynamical accuracy
adjustment technique to problems demanding stabilization as well. An important
consequence is that also in this case we can expect computational cost savings
similar to those mentioned in Remark 1.
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5 Numerical example

In this section we shall describe a simple illustrative computational example. Our
intention is to show a hint for a broader class of problems that can be attacked
using stabilized FEM coupled with the accuracy-adjusting HMS. However, the
problem itself is forward-only, hence it does not use any inverse solver.

Let us consider a simple advection-dominated diffusion-advection equation
on a one-dimensional domain Ω = (0, 1):

− εu′′ + u′ = 1, ε� 1 (35)

with zero Dirichlet boundary conditions. The exact solution

u(x) = x− ex/ε − 1

e1/ε − 1

exhibits a sharp boundary layer near x = 1, which necessitates stabilization. As
a starting point we use the standard weak formulation with U = V = H1

0 (Ω):
Find u ∈ H1

0 (Ω) such that

ε(u′, v′) + (u′, v) = (1, v) ∀v ∈ H1
0 (Ω)

To discretize the above continuous formulation, we employ the „practical” DPG
method described in [10, Definition 31]. Having chosen the discrete trial space Uh
and a discrete test space V s satisfying dimUh < dimV s, we proceed to solve
the following equivalent discrete mixed problem [10, Theorem 39]: Find uh ∈ Uh
and ψ ∈ V s such that

(ψ′, v′) + ε(u′, v′) + (u′, v) = (1, v) ∀v ∈ V s

ε(w′, ψ′) + (w′, ψ) = 0 ∀w ∈ Uh
(36)

In our numerical example we use uniform mesh with 20 elements. As the
trial space Uh we use quadratic B-splines space with C1 global continuity, and
as the discrete test space V s – cubic B-splines with C0 global continuity. Figure 1
presents the exact solution (5) for ε = 1/125, and approximate solutions using
the described stabilization technique and the standard Galerkin method with
trial and test spaces equal to Uh. In the vicinity of the boundary layer the
Galerkin solution oscillates heavily, while the stabilized solution remains close
to the exact solution.

6 Conclusions

The paper refers to the effective stochastic strategy hp–HMS of solving ill con-
ditioned parametric inverse problems. The core of this strategy is a dynamic,
common inverse/forward error scaling based on the formula (3). Our earlier pa-
pers [2,3,8,9,14,16] verifies this formula and the hp–HMS parameters setting for
strongly motivated engineering problems: identification of Lamé coefficients in
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Fig. 1: Exact and approximate solutions of problem (35)

linear elasticity, inversion of logging data obtained with DC and AC probes and
MT data inversion by underground resources investigations. For such cases the
associated forward problem (2) have uniformly coercive and Lipschitz continu-
ous operators and can be solved by the Galerkin method with the same test and
trial spaces.

Considerations included in Sections 2–4 allow to extend the above results to
more difficult forward problems solved by means of the Petrov-Galerkin method,
that needs to be stabilized by the Demkowicz operator. In particular, Proposi-
tion 4 specifies new constant values in (3) for the stabilized case and makes it
possible to apply the same algorithmic solutions as in non-stabilized cases. The
stabilization of the forward problem using the Demkowicz operator can be com-
bined with the standard hp-adaptivity [12], making it appropriate for the use
in double-adaptive inverse solvers. Most of the other observations concerning
hp-HMS behavior also remain valid.

Our future work shall involve the application of the presented methods in
the solution of real-world inverse problems.
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