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Abstract. Socio-cognitive computing is a paradigm developed for the
last several years, it consists in introducing into metaheuristics mecha-
nisms inspired by inter-individual learning and cognition. It was success-
fully applied in hybridizing ACO and PSO metaheuristics. In this paper
we have followed our previous experiences in order to hybridize the ac-
claimed evolution strategies. The newly constructed hybrids were applied
to popular benchmarks and compared with their referential versions.
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1 Introduction

Tackling difficult optimization problems requires using metaheuristics [21], very
often it is needed to create new ones [34], e.g. hybridizing the existing algorithms
[30]. It is a well-known fact, that metaheuritics are very often inspired by nature,
therefore their hybridizations often put together different phenomena observed
in the real-world.

An interesting theory, which already has become a basis for efficient hybrid
algorithms, is Social Cognitive Theory introduced by Bandura [2]. This theory
is used in psychology, education, and communication and assumes that portions
of an individual’s acquisition of knowledge can be directly related to observing
others in the course of their social interactions, their experiences, and outside
media influences [3]. Thus, the individuals use this gathered information to guide
their behaviors, not solely learning them by themselves (e.g., during the course of
trials and errors). They can replicate others’ deeds (trial and error) and predict
the consequences based on observations, thus possibly reaching their goals sooner
(cf. Bandura’s Bobo Doll experiment [4]).
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Of course many social metaheuristics, processing a number of individuals,
especially in the case when the individuals can be perceived as somewhat au-
tonomous (e.g. EMAS [10, 23]) already use certain socio-cognitive inspirations,
however we already introduced dedicated mechanisms rooted in Social-Cognitive
Theory to selected metaheuristics (socio-cognitive ACO [11] and socio-cognitive
PSO [8]), obtaining good results comparing to the reference algorithms.

This paper is devoted to hybridization of the socio-cognitive ideas with clas-
sic evolution strategies by Rechenberg and Schwefel [29]. Up-to-now we have
researched hybridizing popular algorithms with strong social component (ACO
[13], PSO [17]). In this and subsequent papers, we would like to try hybridizing
well-known classic metaheuristics, such as genetic algorithm, evolution strate-
gies, clonal selection algorithm, differential evolution and many others [30]. Our
work is motivated (among others) by the famous “no free lunch” theorem by
Wolpert and Macready [34] – its main conclusion is that we have to tune our
metaheuristics, but it is to note that sometimes seeking new metaheuristics is also
necessary (especially when no theoretical work has shown that the constructed
metaheuristic actually is able to find anything (e.g. Michael Vose has proven that
Simple Genetic Algorithm is a feasible computing method [33], Gunter Rudolph
researched theoretically Evolution Strategies (see, e.g. [5]) and we have also ap-
plied methods similar to the ones used by Michael Vose to prove feasibility of
agent-based computing methods [9]).

The main contribution of this paper is a novel hybrid of Evolution Strategies
utilizing socio-cognitively inspired mechanism which makes possible to exchange
the information among the individuals. The efficiency and efficacy of the novel al-
gorithms are tested using well-known high dimensional, multi-modal benchmark
functions.

2 Classic and hybrid Evolution Strategies

Evolution strategies (ES) are the classic approach in biologically-inspired com-
puting discipline. Devised in the Technical University of Berlin by Rechenberg
and Schwefel [25, 28] has been developed and applied for more than fifty years.
Due to its universality in solving difficult problems, evolution strategy is con-
sidered as one of classic metaheuristics. The classic ES incorporate two nature-
inspired mechanisms: mutation and selection. Even though there are notions of
parents (µ) and offspring (λ), the offspring can be a result of crossover between
selected pair of parents but also just a mutation of a selected parent. After
the mutation, parents can be either excluded from the pool for next-generation
selection (referred ’,’/comma strategies) or can be saved to be part of a new
generation (’+’/plus strategies). The simplest version is 1+1 strategy, were two
individuals are compared and the one with better fitness becomes a parent for
the next generation. This is an instance of µ+λ, where both µ and λ = 1, but
they can equal any greater number on the condition that µ is equal or less than
λ. In the case of µ,λ ES, offspring population ought to be greater then parent
in order to have a sufficient number of individuals to select from.
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During its long history ES have been modified and hybridized in many ways
in order to improve performance in hard problem’s solutions. Based on Talbi’s
flat taxonomy for hybrid metaheuristics [31] we can differentiate between homo-
geneous and heterogeneous hybrids. The latter ones join two or more types of
metaheuristics and in such hybrids ES can serve either as major metaheuristic
that is enriched by other one or as a supplementary algorithm [6]. Very often
heterogeneous hybrid metaheuristics are designed to solve certain problem (e.g.,
[16, 18, 24], and thus are hard to be generalised.

On the other hand, homogeneous hybrids use only one type of metaheuristic
and emerge from combining parts of algorithm with different parameters. In the
case of evolution strategies, such control parameters as mutation strength or
population size (step-size) can be manipulated. One of such versions is CMA-
ES[15], but many other can be found in the literature, e.g., [1, 7, 32]).

The existing hybrids Evolution Strategies are often focused on particular
application, e.g. vehicle routing problem [26] or optimization of engineering and
construction problems [19, 27]. At the same time, general-purpose hybrids of Evo-
lution Strategy exists, e.g. CMA-ES hybridization is proposed in [35], a hybrid
ES for solving mixed (continuous and discrete) problems was proposed in [22].
Apparently the number of hybrid metaheuristics based on Evolution Strategies
is not high, thus it seems that exploring the possibilities of creative hybridization
of those algorithms might be interesting and advantageous. Therefore, based on
our previous experiences in hybridizing ACO [11] and PSO [8], we propose to
introduce socio-cognitive mechanisms into Evolution Strategies.

3 Socio-cognitive hybridization of the Evolution
Strategies

Striving towards better exploration of socio-cognitive inspired hybridization of
metaheuristics, we would like to present a first step towards verification of such
possibilities, focusing on evolution strategies.

The classic self-adaptive version algorithm for evolution strategies can be
described as follows.

1. Initialize parent population Pµ = {i1, . . . , iµ}. Each of the individuals can be
described as follows: I 3 ik = {gk,1, . . . , gk,d, sk1 , . . . , sk,d}, k, d ∈ N stands
for an individual containing a genotype (gk,l is l−th gene of k−th genotype).
The dimensionality of the considered problem is d. The sk1 , . . . , sk,d are
mutation strategy parameters that will be adapted in order to guide the
search.

2. Generate λ offspring individuals forming the offspring population Pλ =
{i1, . . . , iλ} in the following procedure:

– Randomly select % parents from Pµ (if % = µ take all of them of course).
– Recombine the % selected parents (traditionally a pair) to form a recombi-

nant individual ir, using any possible recombination means (traditionally
averaging crossover operator was used).
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– Mutate the strategy parameter set sr,1, . . . , sr,d of the recombinant ir
(adapting e.g. the mutation diversities for the next mutation). Tradition-
ally mutation is realized by applying a distortion based on e.g. uniform
or Gaussian random distribution, adding or substracting a certain value
to (from) a selected gene.

– Mutate the objective parameter set gr1 , . . . , grd of the recombinant ir
using the mutated strategy parameter set to control the statistical prop-
erties of the object parameter mutation.

3. Select new parent population (using deterministic truncation selection) from
either the offspring population Pλ (this is referred to as comma-selection,
usually denoted as “(µ, λ)-selection”), or the offspring Pλ and parent Pµ
population (this is referred to as plus-selection, usually denoted as P (µ+λ).

4. Goto 2. until termination criterion fulfilled.

We have decided to introduce the socio-cognitive mechanisms to all basic versions
of evolution strategies, namely: (1 + 1), (µ, λ), (µ+ λ).

In the novel, socio-cognitive version of Evolution Strategy, we try to increase
the exchange of the knowledge among the individuals, so they can get informa-
tion not only during the mutation and adaptation of their mutation parameters,
but also observe others. So inside the second step of the algorithm depicted
above, we introduce the following changes:

1. The algorithm stores historically αbest and αworst individuals.
2. During the mutation, one of the following three different mutations are re-

alized:
– Classic mutation realized with γ probability.
– Modification of the individual towards the historically αbest best in-

dividuals with probability γgood. This mutation sets the current gene
copying the gene from one of the historically best individuals: Assume,
ib = {gb,1, . . . , gb,d, sb1 , . . . , sb,d} is a randomly picked individual from
the historically best ones. The individual about to be mutated is im =
{gm,1, . . . , gm,d, sm1 , . . . , sm,d}. Let us randomly pick one of the genes
of im. Assume 1 ≤ p ≤ d is this random value, so the picked gene is
gm,p. Now we will simply assign the value of this gene to the value of a
correspondent gene in ib, that is gm,p ← gb,p.

– Modification of the individual trying to avoid the historically αbad worst
individuals with probability γbad. This mutation computes the difference
between the current gene and one gene of the historically worst individ-
uals, computes a fraction of this value, multiplying it by β, and adds
it to the current gene. The procedure of randomly choosing one of the
historically worst individual is similar as it was described above. Let us
go to the final step, we have the individual to be mutated im, randomly
chosen individual belonging to the historically worst iw. 1 ≤ p ≤ d stands
for the random index of the gene. The following assignment is realized:
im,p ← β · (im,p − iw,p).

3. When better or worse (historically) individuals are generated, the lists of
αbest and αworst individuals are updated.
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Three basic versions of Evolution Strategies were modified using this mechanism.
Thus the mutation is realized not only in a fully stochastic way, but also reuses
the knowledge about the previous generations. Of course such mechanism is
not complex, but as it will be shown in the next section, it already produced
interesting results.

4 Study design

The main aim of the experiments was verification of efficacy of global optimiza-
tion (minimization) of the novel algorithms for the selected benchmark functions
(Ackley, De Jong, Rastrigin, and Griewank [12] visualized in Fig. 1) in d = 10,
50, 100, 500 and 1000 dimensions. Both the value obtained in the last iteration,
and the trajectory of the fitness functions improvements were considered – in
certain situations it is desirable to have a relatively fast convergence earlier, in
other situations the focus is put on the final result. The equations used are as
follows:

– Ackley: f(x) = −ae−b
√

1/n
∑n

i=1(x
2
i ) − e1/n

∑n
i=1 cos(cxi) + a + e; a = 20; b =

0.2; c = 2π; i ∈ [1 : n];−32.768 ≤ x(i) ≤ 32.768. f(xopt) = 0, xopti = 0.
– De Jong: f(x) =

∑n
i=1 x

2
i , i ∈ [1, n];−5.12 ≤ xi ≤ 5.12. f(xopt) = 0, xopti =

0.
– Rastrigin: f(x) = 10n +

∑n
i=1(x2i − 10cos(2πxi)), i ∈ [1, n];−5.12 ≤ xi ≤

5.12. f(xopt) = 0, xopti = 0.
– Griewank: f(x) =

∑n
x=1 x

2
i /4000−

∏
cos(xi/

√
i) + 1, i ∈ [1, n];−600 ≤ xi ≤

600, f(xopt) = 0, xopti = 0.

Fig. 1. 3-dimensional visualization of the benchmarks used in the study.

The following algorithms were benchmarked:

– original Evolution Strategy (1 + 1), (µ, λ) or (µ+ λ),
– hybrid Evolution Strategy – with the mechanism of getting closer to the

historically best results,
– hybrid Evolution Strategy – with the mechanism of going farther from the

historically worst results,
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– hybrid Evolution Strategy – with both the above-mentioned mechanism.

The stopping criteria was reaching maximum number of evaluations of fitness
function (set as 25,000 for all the experiments). Number of the individuals in
the population was µ (1 in the case of (1+1) Evolution Strategy, 20 in the case
of other Strategies).

The following settings were used for the algorithms:

– µ = 1, λ = 1 in the case of (1 + 1) Evolution Strategy.
– µ = 20, λ = 140 in other cases.
– γgood = 0.4, γbad = 0.04, β = 0.01.
– γ = 1/(number of dimensions),
– number of the historically best or worst individuals: 5.
– polynomial mutation [20].

Each experiment was replicated 20 times and the mean value of fitness func-
tion was taken for the reference. In order to check whether the observed sample
had normal distribution we have applied Shapiro-Wilk test with significance
threshold of 0.05. Kruskal-Wallis test was used in order to check whether their
cumulative distribution functions differed, and finally Dunn’s test in order to
check which ones were significantly different.

5 Experimental results

The algorithms were implemented using jMetalPy1 computing framework. The
source code is available on request. The computations were conduced on a Mi-
crosoft Windows 10 machine with AMD Ryzen 9 5900X (3.7GHz) CPU, NVIDIA
GeForce RTX 3080 GPU, and 2x8GB RAM. We have analyzed the speed of im-
provement of the fitnesses depending on the number of evaluations and compared
statistical differences between the algorithms after 25,000 iterations.

5.1 (1 + 1) Evolution Strategy and its socio-cognitive hybrids

The (1 + 1) Evolution Strategy was compared with its hybrids for Rastrigin
benchmark in 1000 dimensions (see Fig. 2). A metaheuristic algorithm operat-
ing only on one individual (so-called trajectory method) as expected is not too
versatile, especially in the case of high-dimensional benchmarks. So, even the
original algorithm does not reach the vicinity of the global optimum, stopping
around 4000. Its hybrid version with the mechanism of getting closer to the best
results is very similar to the original one. The two remaining algorithms perform
significantly worse, apparently getting stuck in a local sub-optimum. It seems
that in the case of (1+1) Evolution Strategy, adding the mechanism of avoiding
worse individuals does not help or requires significant improvements.

The more detailed observation of the results presented in Table 1 confirms
the findings. The original implementation of Evolution Strategy produces similar
results to its hybrid, while the two remaining hybrids are significantly worse.

1 https://github.com/jMetal/jMetalPy
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Fig. 2. Trajectory of changes of mean fitness function value (standard deviation
whiskers are also shown) for 1000-dimensional Rastrigin problem and (1 + 1) Evo-
lutionary Strategy, depending on the number of fitness function evaluation.

Table 1. Mean and standard deviation of fitness value after 25,000 evaluations of (1, 1)
Evolution Strategy and its hybrids for 10, 50, 100, 500 and 1000 dim. problems.

Dimension 10 50 100 500 1000

Fit. Std. Fit. Std. Fit. Std. Fit. Std. Fit. Std.

Ackley

Default 0,27 0,12 2,19 0,28 3,43 0,20 9,89 0,31 14,25 0,21

Closer to best 0,42 0,18 2,63 0,34 4,00 0,24 10,90 0,29 15,15 0,24

Farther from worst 0,21 0,11 2,88 0,25 5,01 0,33 17,72 1,04 20,67 0,12

Both 0,24 0,09 2,90 0,31 5,23 0,36 19,02 0,92 20,62 0,09

De Jong

Default 0,00 0,00 0,07 0,02 0,58 0,12 69,97 7,37 490,89 36,76

Closer to best 0,00 0,00 0,11 0,04 0,94 0,18 95,67 6,23 627,27 43,34

Farther from worst 0,00 0,00 0,13 0,04 1,41 0,16 157,25 11,94 1108,31 69,49

Both 0,00 0,00 0,06 0,02 0,89 0,10 151,14 12,08 1039,64 42,48

Griewank

Default 0,01 0,01 0,04 0,09 0,08 0,13 0,36 0,15 0,87 0,10

Closer to best 0,01 0,01 0,02 0,04 0,03 0,04 0,35 0,07 0,97 0,05

Farther from worst 0,01 0,01 0,03 0,05 0,08 0,10 0,53 0,08 1,24 0,03

Both 0,01 0,01 0,03 0,06 0,04 0,11 0,48 0,04 1,21 0,02

Rastrigin

Default 0,10 0,05 10,96 2,29 50,78 4,66 1178,87 69,39 4027,59 132,27

Closer to best 0,16 0,09 15,02 2,37 64,07 6,08 1394,98 53,55 4661,99 114,84

Farther from worst 0,08 0,05 23,31 2,51 132,28 11,58 3797,29 136,07 10912,88 193,63

Both 0,09 0,05 16,29 3,03 106,35 10,34 3401,20 127,62 10459,14 309,85
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5.2 (µ, λ) Evolution Strategy and its socio-cognitive hybrids

Moving to population-based methods, let us start with (µ, λ) Evolution Strategy.
Fig. 3 shows the curves of fitness functions for 1000-dimensional Ackley problem.
Both the hybrids utilizing the mechanisms of getting toward the best results
turned out to be significantly better than the original algorithm and its hybrid
going towards the worst results. Again, it seems that the mechanism of avoiding
the worst results might be further improved. It is to note, that the hybrid version
with the mechanism going to the best results got close to the global optimum
(around 18.0) still having the potential of improving the result, while all the other
versions of the algorithms got stuck in local sub-optima. One should remember
about specific features of Ackley function – in 3 dimensions it has a steep peak
around the global optimum, while it is quite flat in other areas. Probably some of
these features scale up to higher dimensions. So it is important to search broadly
in this case, and when good results are found, it is necessary to explore them
intensively.

Good efficacy of this algorithm is confirmed for Ackley benchmark in all
tested dimensions (see Table 2). The hybrids are also significantly better in
several other cases of De Jong, Griewank and Rastrigin functions.

5.3 (µ+ λ) Evolution Strategy and its socio-cognitive hybrids

Finally, (µ+ λ) Evolution Strategy is examined along with its hybrids, applied
to optimization of 1000-dimensional Griewank problem. In Fig. 4 we can see
that both hybrids utilizing the mechanism of getting closer to the best results
prevailed. They come very close to the optimum and apparently do not loose the
diversity. Other two algorithms also do not seem to be stuck, however they are
significantly slower than the winning hybrids. However, this part of the experi-
ment show, that (µ+ λ) Evolution Strategy was the best starting point for the
hybridization.

This observation is further confirmed when looking at Table 3. The final re-
sults produced by the hybrids getting closer to the best results actually prevailed
for almost all of the tested instances of the problems.

In order to make sure that we have really different average results, we have
used the Dunn’s test (see Table 4) for excluding the null hypotheses that cu-
mulative distribution function of the sampled final values (the fitness obtained
when the stopping condition is met). As it can be seen, a significant majority of
the tests were finished with excluding the null-hypothesis.
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Fig. 3. Trajectory of changes of mean fitness function value (standard deviation
whiskers are also shown) for 1000-dimensional Ackley problem and (µ, λ) Evolutionary
Strategy, depending on the number of fitness function evaluation.

Table 2. Mean and standard deviation of fitness value after 25,000 evaluations of (µ, λ)
Evolution Strategy and its hybrids for 10, 50, 100, 500 and 1000 dim. problems.

Dimension 10 50 100 500 1000

Fit. Std. Fit. Std. Fit. Std. Fit. Std. Fit. Std.

Ackley

Default 0,54 0,19 6,86 0,47 12,52 0,56 20,10 0,07 20,72 0,03

Closer to best 0,30 0,11 2,84 0,27 5,00 0,23 15,01 0,29 17,89 0,19

Farther from worst 0,29 0,13 7,28 0,63 14,40 0,97 20,85 0,05 21,04 0,02

Both 0,13 0,05 2,87 0,25 5,64 0,41 16,87 0,40 19,48 0,21

De Jong

Default 0,00 0,00 2,77 0,64 33,59 5,17 1937,85 65,87 5797,31 119,30

Closer to best 0,00 0,00 0,15 0,05 1,90 0,33 315,97 26,29 1646,45 88,98

Farther from worst 0,00 0,00 2,78 0,58 37,02 4,56 2227,48 86,29 6538,94 118,44

Both 0,00 0,00 0,01 0,01 1,05 0,25 354,54 14,56 1787,58 109,50

Griewank

Default 0,01 0,01 0,09 0,08 0,42 0,05 1,49 0,02 2,44 0,02

Closer to best 0,01 0,01 0,01 0,01 0,03 0,01 0,79 0,06 1,39 0,02

Farther from worst 0,01 0,01 0,10 0,05 0,46 0,08 1,55 0,02 2,63 0,02

Both 0,01 0,01 0,00 0,01 0,02 0,01 0,84 0,05 1,45 0,02

Rastrigin

Default 0,34 0,17 62,43 7,90 314,27 19,86 5689,33 113,58 14276,61 141,83

Closer to best 0,15 0,11 16,26 3,02 80,71 6,91 2188,21 74,69 7190,55 146,55

Farther from worst 0,11 0,23 64,49 6,24 356,50 30,52 6292,99 131,96 15158,68 161,31

Both 0,03 0,02 12,22 2,80 66,64 7,91 2197,37 93,43 7521,77 170,56
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Fig. 4. Trajectory of changes of mean fitness function value (standard deviation
whiskers are also shown) for 1000-dimensional Griewank problem and (µ + λ) Evo-
lutionary Strategy, depending on the number of fitness function evaluation.

Table 3. Mean and standard deviation of fitness value after 25,000 evaluations of
(µ+λ) Evolution Strategy and its hybrids for 10, 50, 100, 500 and 1000 dim. problems.

Dimension 10 50 100 500 1000

Fit. Std. Fit. Std. Fit. Std. Fit. Std. Fit. Std.

Ackley

Default 0,56 0,17 6,47 0,60 11,92 0,57 20,10 0,07 20,72 0,02

Closer to best 0,40 0,16 2,87 0,19 4,83 0,26 15,02 0,27 18,03 0,16

Farther from worst 0,27 0,24 6,95 0,71 13,81 0,78 20,63 0,04 20,87 0,02

Both 0,14 0,04 3,08 0,39 5,94 0,37 17,21 0,52 19,58 0,17

De Jong

Default 0,00 0,00 2,16 0,45 32,26 3,86 1945,75 63,55 5788,75 120,45

Closer to best 0,00 0,00 0,17 0,05 1,94 0,36 326,75 24,01 1647,68 80,94

Farther from worst 0,00 0,00 2,24 0,48 34,10 4,56 2143,40 64,08 6469,60 116,27

Both 0,00 0,00 0,01 0,02 1,12 0,39 363,40 23,09 1846,96 95,48

Griewank

Default 0,02 0,01 0,09 0,10 0,41 0,05 1,48 0,02 2,44 0,02

Closer to best 0,01 0,01 0,03 0,08 0,04 0,04 0,80 0,05 1,41 0,04

Farther from worst 0,01 0,01 0,08 0,08 0,41 0,08 1,54 0,01 2,62 0,03

Both 0,01 0,01 0,01 0,04 0,04 0,08 0,83 0,05 1,46 0,02

Rastrigin

Default 0,19 0,10 54,27 7,80 305,64 17,42 5677,59 93,41 14323,20 148,70

Closer to best 0,12 0,06 17,92 3,42 82,88 7,69 2235,61 93,00 7261,88 216,26

Farther from worst 0,07 0,04 49,53 6,56 318,51 22,35 6123,40 118,54 15003,41 221,74

Both 0,03 0,03 10,80 3,05 67,64 9,09 2268,98 108,03 7613,46 234,01
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Table 4. P-values generated by Dunn’s test for excluding the null hypotheses that
cumulative distribution function of the sampled final values (the fitness obtained when
the stopping condition is met). The cases when the p-value is lower than 0.05 were
enhanced with bold font.

(1+1) Evolution Strategy
Ackley Def. Cl. b. Far. w. Both
Def. 3.90e-02 1.40e-12 2.03e-09
Cl. b. 2.46e-05 2.24e-03
Far. w. 1.00e+00
De Jong Def. Cl. b. Far. w. Both
Def. 4.59e-02 8.92e-14 2.69e-08
Cl. b. 3.08e-06 8.30e-03
Far. w. 4.09e-01
Griewank Def. Cl. b. Far. w. Both
Def. 4.48e-01 8.46e-12 1.39e-07
Cl. b. 6.93e-07 8.56e-04
Far. w. 8.06e-01
Rastrigin Def. Cl. b. Far. w. Both
Def. 3.90e-02 1.68e-14 6.83e-08
Cl. b. 1.35e-06 1.69e-02
Far. w. 1.71e-01
(mu, lambda) Evolution Strategy
Ackley Def. Cl. b. Far. w. Both
Def. 3.14e-07 3.90e-02 3.90e-02
Cl. b. 1.93e-15 3.90e-02
Far. w. 3.14e-07
De Jong Def. Cl. b. Far. w. Both
Def. 3.08e-06 3.90e-02 1.00e-02
Cl. b. 5.82e-14 3.62e-01
Far. w. 2.69e-08
Griewank Def. Cl. b. Far. w. Both
Def. 6.20e-07 3.90e-02 2.67e-02
Cl. b. 5.28e-15 7.96e-02
Far. w. 1.57e-07
Rastrigin Def. Cl. b. Far. w. Both
Def. 9.33e-07 3.90e-02 2.11e-02
Cl. b. 9.70e-15 1.20e-01
Far. w. 1.02e-07
(mu+lambda) Evolution Strategy
Ackley Def. Cl. b. Far. w. Both
Def. 3.14e-07 3.90e-02 3.90e-02
Cl. b. 1.93e-15 3.90e-02
Far. w. 3.14e-07
De Jong Def. Cl. b. Far. w. Both
Def. 7.20e-07 3.90e-02 2.45e-02
Cl. b. 6.59e-15 9.25e-02
Far. w. 1.34e-07
Griewank Def. Cl. b. Far. w. Both
Def. 1.67e-06 3.90e-02 1.48e-02
Cl. b. 2.33e-14 2.10e-01
Far. w. 5.37e-08
Rastrigin Def. Cl. b. Far. w. Both
Def. 1.93e-06 4.59e-02 1.12e-02
Cl. b. 4.45e-14 2.73e-01
Far. w. 4.57e-08
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12 A. Urbańczyk, B. Nowak et al.

6 Conclusions

In this paper we have presented a novel hybrid algorithms based on classic
Evolution Strategies by Schwefel and Rechenberg. The method was tested on
a set of well known multi-modal benchmark problems. Three different evolution
strategies were analyzed: (1 + 1), (µ, λ) and (µ + λ) and efficacy of the new
socio-cognitive hybrids was compared to the baseline model.

The proposed herein socio-cognitive hybrids increase the possibility to ex-
change information between the individuals by introducing a set of historically
best and historically worst solutions, affecting the way in which the individuals
are mutated. In the case of the hybrid utilizing the historically worst solutions,
an attempt has been made to avoid them during mutation. Conversely, when
considering the historically best solutions, during the mutation some of their
information was copied.

The (1 + 1) Evolution Strategy turned out not to be an effective solution for
hybridization purposes, as the baseline algorithm outperformed hybrids in most
of the examined cases. In the case of (µ, λ) Evolution Strategy, the best results
were obtained for Ackley benchmark where ’Closer to best’ strategy converged
much faster and to better solutions. As for (µ + λ) Evolution Strategy was
actually better in the case of mechanism going closer to the best up-to-date
solutions, for all the considered problem instances.

We conclude, that using information from the best performing individuals
may increase the convergence speed of the evolutionary strategies and signifi-
cantly improve over the baseline model. Both hybrids, that used this feature,
namely ’Closer to best’ and ’Both’, performed usually better than the baseline
model. This is actually an expected outcome, as those strategies focus on fur-
ther local optimizations, thus are more likely to fine-tune better solutions. It is
also in line with other research in evolutionary computation (e.g. [14]). Avoiding
worst individuals implemented in ’Further from worst’ turned out to be some-
what helpful, but only for low dimensional spaces (up to 100 dimensions). When
the dimensionality of the problem increased, this hybrid was slowing down con-
vergence and eventually led to less effective solutions.

In future, besides the necessary enhancement, we would like to further explore
the social component in the Evolution Strategies hybrids, by testing certain
parameters (e.g. the length of the history), but also by introducing new and
updated social mechanisms (e.g. different species and relations among them).
Other population-based metaheuristics will be also considered.
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26. Repoussis, P., Tarantilis, C., Bräysy, O., Ioannou, G.: A hybrid evolution strategy
for the open vehicle routing problem. Computers & Operations Research 37(3),
443–455 (2010), hybrid Metaheuristics

27. dos Santos Coelho, L., Alotto, P.: Electromagnetic device optimization by hybrid
evolution strategy approaches. International journal for computation and mathe-
matics in electrical and electronic engineering 26(2), 269–279 (2007)

28. Schwefel, H.P.: Numerische Optimierung von Computer-Modellen mittels der Evo-
lutionsstrategie: mit einer vergleichenden Einführung in die Hill-Climbing-und Zu-
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