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Abstract. Different from the visual captioning that describes an im-
age concretely, the visual storytelling aims at generating an imaginative
paragraph with a deep understanding of the given image stream. It is
more challenging for the requirements of inferring contextual relation-
ships among images. Intuitively, humans tend to tell the story around a
central idea that is constantly expressed with the continuation of the sto-
rytelling. Therefore, we propose the Human-Like StoryTeller (HLST), a
hierarchical neural network with a gated memory module, which imitates
the storytelling process of human beings. First, we utilize the hierarchi-
cal decoder to integrate the context information effectively. Second, we
introduce the memory module as the story’s central idea to enhance the
coherence of generated stories. And the multi-head attention mechanism
with a self adjust query is employed to initialize the memory module,
which distils the salient information of the visual semantic features. Fi-
nally, we equip the memory module with a gated mechanism to guide
the story generation dynamically. During the generation process, the ex-
pressed information contained in memory is erased with the control of the
read and write gate. The experimental results indicate that our approach
significantly outperforms all state-of-the-art (SOTA) methods.

Keywords: Visual Storytelling · Central Idea · Gated Memory.

1 Introduction

Recently, the tasks of combining vision and text have made a great stride, such
as the high-profile visual captioning [3], whose purpose is to generate literal de-
scriptions based on the images or the videos. To further investigate the model’s
capabilities in generating structured paragraphs under more complicated scenar-
ios, visual storytelling has been proposed by [9]. This task aims to generate a
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Generated story: #1: A discus got stuck up on the roof. #2: Why not try getting it 

down with a soccer ball? #3: Up the soccer ball goes. #4: It didn't work so we tried a 

volley ball. #5: Now the discus, soccer ball, and volleyball are all stuck on the roof.

A man tried to shoot the discus 

off the roof with other balls

Central idea

Fig. 1. An example of visual storytelling. “#i” indicates that this is the i-th sentence.

coherent and expressive story with a given temporal image stream, which not
only expects an intuitive understanding of image ground content but also re-
quires plentiful emotion as well as imagination. It is more challenging since the
model must have the capabilities of inferring contextual relationships that are
not explicitly depicted in the images.

Encouraged by the success of the Seq2Seq model in visual captioning, most
visual storytelling methods usually employ this typical framework that consists
of a visual encoder and a sentence decoder. The visual encoder transforms the
image stream to feature vectors and then the sentence decoder generates every
storyline. Based on the Seq2Seq framework, Kim et al. [11] and Jung et al. [10]
optimize the specific architecture with maximum likelihood estimation (MLE)
method; Wang et al. [22] and Hu et al. [7] employ reinforcement learning or
adversarial training strategies to improve performance; Yang et al. [23] and Li
and Li [12] focus on generating more expressive results by drawing into external
knowledge or performing additional processing on the dataset. Although pro-
gresses have been made, the generated story still lacks centrality and have lots
of semantic repetition, which significantly reduces the coherence and readability.

Intuitively, the contextual description of a story will revolve around a central
idea. As shown in Figure 1, all the contents of the five storylines are related
to the central idea - “A man tried to shoot the discus off the roof with other
balls”. If there is no guidance of it, the second sentence may be about “playing
football” instead of “getting it down with a soccer ball”. The former just depicts
the intuitive content of the image, resulting in the incoherence of the context.
Therefore, it is critical to model the central idea during the storytelling process.

Towards filling these gaps, we propose the Human-Like StoryTeller (HLST),
a hierarchical neural network with the gated memory module. First, consider-
ing the importance of the context in generating coherent stories, we introduce
a hierarchical decoder that includes the narration decoder and the sentence de-
coder. The narration decoder constructs a semantic concept for guiding the sen-
tence decoder to generate every storyline, which makes the generating process in
chronological order rather than parallel. Second, we utilize the multi-head atten-
tion mechanism with a self adjust query to obtain global memory as our central
idea. The self adjust query questions the model “What is the story about?” and
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the attention mechanism solves it by focusing on different pieces of salient infor-
mation within the visual semantic features. Then, the model grasps the central
idea to generate more coherent and relevant story. Finally, we equip the memory
module with a gated mechanism to guide the story generation dynamically. The
memory information is gradually erased under the control of the read and write
gate, which improves the story’s diversity and informativeness. We conduct the
experiments on the VIST dataset and the results show that HLST significantly
outperforms all baseline models in terms of automatic evaluations and human
judgments. Further qualitative analysis indicates that the generated stories by
HLST are highly coherent with human understanding.

Our main contributions are summarized as follows:

– To our knowledge, we are the first one to introduce the concept of central
idea to benefit the task of visual storytelling.

– We propose the memory module as the central idea to enhance the coherence
of stories. It guides the generation process of the hierarchical decoder that
integrates the contextual information effectively.

– We equip the memory module with a gated mechanism to dynamically ex-
press the central idea. The gated mechanism is conducive to generate more
informative stories by removing redundant information.

– Our approach achieves state-of-the-art (SOTA) results, in terms of auto-
matic metrics and human judgments. By introducing the central idea, the
generated stories are more coherent and diverse.

2 Related work

In early visual to language tasks, visual captioning task achieves impressive
results [20]. Generally, most visual captioning models utilize the CNN to extract
the features of the image or video and send them to a decoder for generating
a sentence caption. Take one step further, the visual storytelling is expected to
generate an expressive and coherent paragraph with a temporal image stream
instead of a single image. Notably, this task is more difficult because it not only
focuses on the objective descriptions of the visual objects but also requires to
consider the contextual coherence with a deeper understanding of the inputs.

Park and Kim [16] has made pioneering research to explore the visual sto-
rytelling task, which retrieves a sequence of natural sentences for an image
stream. For the better development of this field, Huang et al. [9] releases a more
compatible and sophisticated dataset, named VIST. The VIST is composed of
visual-story pairs, in which each item contains five images and the correspond-
ing sentences. In addition, they first employ the Seq2Seq framework to generate
stories, which naturally extends the single-image captioning technique of [3] to
multiple images. Hence, the subsequent endeavors are concentrating on improv-
ing the specific architectures. Kim et al. [11] and Gonzalez-Rico [4] aim at in-
corporating the contextual information. To alleviate the repetitiveness, Hsu [6]
proposes the inter-sentence diverse beam search algorithm. Furthermore, some
researchers [2,7,21] strive to incorporate reinforcement learning with rewards or
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Fig. 2. Model overview. The detailed HLST includes three important modules: a visual
semantic encoder, a gated memory module and a hierarchical decoder.

adversarial training strategies for generating more relevant stories. And other
studies [8,12,23] are based on drawing into external knowledge or preprocessing
data to improve performance. More specifically, Wang et al. [22] first implements
a baseline model (XE-ss) as a policy model, which employs a Seq2Seq framework
to generate storylines in parallel. They further propose the adversarial reward
learning (AREL) to learn an implicit reward for optimizing the policy model.

Intuitively, people usually grasp global information as a central idea and tell
the story around it. Hence, we propose HLST, which consists of a gated memory
module and a hierarchical decoder. We utilize the multi-head attention [18] with
a self adjust query to initialize the memory as the central idea. Inspired by
[15, 17], we update the memory unit with the gated mechanism to dynamically
express the central idea as human beings.

3 Our Approach

In this section, we introduce our Human-Like StoryTeller (HLST) model detailly.
As shown in Figure 2, HLST is composed of three modules: a visual semantic
encoder, a gated memory module and a hierarchical decoder. Given five images
V = (v1, · · · , v5) in order, the visual semantic encoder obtains the semantic vec-
tors H

′
= (h

′

1, · · · , h
′

5) by integrating the individual and contextual features.
Then, we utilize a hierarchical decoder to strengthen the contextual relevance
between sentences. It is composed of a narration decoder and a sentence decoder.
Moreover, the narration decoder constructs the high-level sentence representa-
tions for S = (s1, · · · , s5). And the sentence decoder generates a word sequence
W = (wt,1, wt,2, · · · , wt,n), wt,j ∈ V in chronological order based on the cor-
responding sentence representation st. Here, V is the vocabulary of all output
tokens. Moreover, we first introduce the memory module M in this field, which
acts as the central idea to enhance coherence in story generation. Specifically,
we employ the multi-head attention with a self adjust query to distil the salient
information within H

′
. To further dynamically express the central idea, we equip
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the memory module with the gated mechanism that consists of a read gate and
a write gate. With the continuation of the generation process, the information
contained in M is eliminated gradually. In the following, we will describe these
three parts detailly. For simplicity, we omit all bias in formulations.

3.1 Visual Semantic Encoder

The visual semantic encoder consists of a pre-trained CNN layer, a semantic
transformation layer and a Bidirectional Gated Recurrent Units (BiGRU) layer.
Given an image stream V = (v1, · · · , v5), vi ∈ Rdv , the CNN layer is responsible
for extracting the visual features. Then, we map the visual representations into
the semantic space to obtain semantic features fi ∈ Rdf , i ∈ [1, 5] with a linear
transformation layer. Here, dv and df is the dimension of the visual and semantic
features, respectively. The BiGRU layer further encodes the semantic features

as the context vectors hi = [
←−
hi ;
−→
hi ], hi ∈ Rdh , which integrates the results

of the forward and backward calculations. Here, dh is the number of hidden
units. Furthermore, since each sentence in the generated stories corresponds
to the specific image, we strengthen the influence of the corresponding image
features through a skip connection. The final semantic features h

′

i at time-step
i is computed as follows:

fi = W1 · CNN(vi)

hi = BiGRU(hi−1, fi)

h
′

i = W3(hi ⊕W2fi)

(1)

where ⊕ represents the vector concatenation and · denotes the matrix multipli-
cation. W1 ∈ Rdf×dv , W2 ∈ Rdh×df and W3 ∈ Rdh×2dh are the learnable linear
transformation matrices.

3.2 Hierarchical Decoder

Different from many existing works that only use a sentence decoder, we em-
ploy the hierarchical decoder to integrate the contextual information effectively.
It is composed of a narration decoder and a sentence decoder. The narration
decoder is an unidirectional GRU that constructs the sentence representations
st ∈ Rds , t ∈ [1, 5]. Here, ds is the number of hidden state units. At each time-
step t, the corresponding encoder output h

′

t and previous sentence representation
st−1 are fed into the narration decoder for calculating st. Notably, st integrates
the information of the generated sentences effectively for taking st−1 as input.
Meanwhile, the sentence decoder predicts the next word wt,j based on the st
and the previous generated word wt,j−1 ∈ Rde , where de is the dimension of the
word embedding. The whole generation process can be described as follows:

st = GRUn(st−1, h
′

i)

s′t,j = GRUs(s
′
t,j−1,W4(st ⊕ wt,j−1))

(2)
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where W4 ∈ Rds×(ds+de) is a learnable projection matrix. Note that GRUn

and GRUs represent the narration decoder and sentence decoder, respectively.
Besides, the sequential structure GRUn makes the whole generation process
in chronological order. And the s′t,j ∈ Rds represents the jth hidden state of

the sentence decoder at tth sentence, which is utilized to compute the word
probability distribution over the whole vocabulary:

pθ(wt,j |wt,j−1, st,v) = Softmax(MLP(s′t,j)) (3)

where MLP(·) represents the multi-layer perception that projects the s′t,j to the
vocabulary size.

3.3 Multi-head attention with self adjust query

The multi-head attention mechanism distils the central idea by attending to the
visual semantic features H

′
= {h′

1, . . . , h
′

n}. However, different from the tra-
ditional method, we introduce a self adjust query that is a learnable variable
trained with the model. As illustrated in Figure 2, the self adjust query is equiv-
alent to put a question to the model - “What is the story about?”. Through
the interaction between the self adjust question and visual semantic features,
we get the question-aware memory Minit ∈ Rdh as the central idea, which con-
tains several pieces of salient semantic information. The process is formulated
as follows:

Minit = MHA(QA,H
′
,H

′
)

MHA(QA,H
′
,H

′
) = Concat(head1, . . . , headN )WO

headj = Softmax(
QAWQ

j (H
′
WK
j )T

√
dk

)H
′
WV
j

(4)

where WQ
j ,W

K
j ∈ Rdh×dk ,WV

j ∈ Rdh×dv and WO ∈ RNdv×dh are learnable
linear transformation matrices. N is the head number and dk = dv = dh/N in
this paper. And QA ∈ Rdh is the self adjust query vector, which is initialized
randomly. Obviously, the attention mechanism grasps the global semantic in-
formation, which is utilized to guide the generation process and improves the
coherent of generated stories.

3.4 Gated memory mechanism

To dynamically control the expression of the story’s central idea, we further equip
the memory module with gated mechanism that includes a read and a write
gate. At different decoding steps, each sentence requires various information to
be expressed. Therefore, the read gate is responsible for reading the currently
needed content from the memory unit and feeds it to the narration decoder.
Then, to avoid elaborating the duplicated information, we employ the write
gate to update the memory unit with the current hidden state of the narration
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decoder, which leads to a decline of the information stored in memory as the
decoding processes. We further conduct the ablation experiments to verify the
effectiveness of each gate.

At the high-level decoding time t, the read gate grt ∈ Rdh is computed with
the previous state st−1 of the narration decoder, while the write gate gwt ∈ Rdh is
calculated with the current state st. The two gates can be formulated as follows:

grt = σ(Wrst−1), gwt = σ(Wwst) (5)

where Wr ∈ Rdh×ds and Ww ∈ Rdh×ds are learnable parameters. The σ(·) is the
sigmoid nonlinear activation function and the output value ranges from 0 to 1.
Next, the read and write gates are used to update the memory unit as follows:

Mr
t = grt �Mw

t−1, Mw
t = gwt �Mw

t−1 (6)

Here, � denotes the element-wise multiplication and all M ∈ Rdh . Besides, Mw
t−1

is the memory contents written back at the previous time-step, which is updated
to Mw

t by the write gate gwt . And Mr
t is read from Mw

t−1 with the read gate grt
and then is fed into the narration decoder with the encoder output h′t to compute
the current hidden state st. Finally, we modify the Equation (2) as follows:

st = GRU(st−1,Wm(h′t ⊕Mr
t )) (7)

where Wm ∈ Rdh×2dh is a linear transformation matrix. It is worth noting that
the Equation (6) is executed several times, which is equivalent to continuously
multiplying a matrix between [0, 1]. Therefore, the expressed information con-
tained in memory vectors M is gradually decreasing in the decoding process,
which is similar to the central idea expressed completely as human beings.

4 Experiments

4.1 Dataset

We conduct experiments on the VIST dataset, which is the most popular dataset
for the visual storytelling task [9]. In detail, the dataset includes 10,117 Flickr
albums with 210,819 unique images. Each story consists of five images and their
corresponding descriptions. For the fair comparison, we follow the same experi-
mental settings as described in [10,22]. Finally, we obtain 40,098 training, 4,988
validation and 5,050 testing samples after filtering the broken images.

4.2 Evaluation Metrics

To evaluate our model comprehensively, we adopt both automatic evaluations
and human judgments. Four different automatic metrics are utilized to measure
our results, including BLEU [14], ROUGE [13], METEOR [1] and CIDEr [19].
For a fair comparison, we employ the open-source evaluation code3 as [22, 24].

3 https://github.com/lichengunc/vist_eval
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Since automatic evaluation metrics may not be completely consistent with hu-
man judgments, we also invite 6 annotators with the corresponding linguistic
background to conduct human evaluations as in [23]. We randomly sample
200 stories from the test dataset, of which each example consists of the im-
age stream and the generated story of different models. We also evaluate the
human-generated stories for comparison. Then, all annotators score the results
from 1 to 5 in the four aspects: fluency, coherence, relevance and informativeness.
In detail, fluency mainly evaluates whether the output is grammatically fluent,
while coherence measures the semantic similarity between sentences. Rele-
vance represents the correlation between the generated story and the images.
Informativeness measures the diversity and richness of outputs.

4.3 Baseline Models

We mainly compare our model with the following representative and competitive
frameworks.

Seq2Seq [9] introduces the first dataset for the visual storytelling task and
proposes a simple Seq2Seq model. HARAS [24] first selects the most represen-
tative photos and then composes a story for the album. GLAC Net [11] aims
to combine global-local (glocal) attention and context cascading mechanisms.
SRT [21] utilizes reinforcement learning and adversarial training to train the
model better. XE-ss [22] is a typical encoder-decoder framework that generates
story sentences parallel. GAN [22] incorporates generative adversarial training
based on the XE-ss model. AREL [22] learns an implicit reward function and
then optimizes policy search with the learned reward function. XE-TG [12] ex-
ploits textual evidence from similar images to generate coherent and meaningful
stories. HSRL [8] employs the hierarchical framework trained with the reinforce-
ment learning. Knowledge [23] extracts a set of candidate knowledge graphs
from the knowledge base and integrates in the attention model. ReCo-RL [7]
introduces three assessment criteria as the reward function. INet [10] proposes a
hide-and-tell model that can learn non-local relations across the photo streams.

4.4 Training Details

We extract the image features with a pre-trained ResNet-152 Network proposed
by [5], which is widely used in visual storytelling. The feature vector of each
image is obtained from the fully-connected (fc) layer that has 2,048 dimensions.
Besides, the vocabulary contains the words that occur more than three times
in the training set, of which the final size is 9,837. The head number of multi-
head attention is set to 4. During training, we set the batch size to 64, and the
dimensions of hidden units are all set to 512. We use the Adam optimizer with
initial learning rate 10−4 to optimize the model. At test time, our stories are
produced using the beam search algorithm with the beam size 4. We implement
and run all models on a Tesla P4 GPU card with PyTorch 4.

4 https://pytorch.org/
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5 Results and Discussion

5.1 Automatic Evaluation

Table 1. Automatic evaluation results on the VIST dataset. B: BLEU

Models B1 B2 B3 B4 ROUGE METEOR CIDEr

Seq2Seq (Huang et al. 2016)† 52.2 28.4 14.5 8.1 28.5 31.1 6.4
HARAS (Yu et al. 2017)† 56.3 31.2 16.4 9.7 29.1 34.2 7.7
GLAC Net (Kim et al. 2018)† 52.3 28.4 14.8 8.1 28.4 32.4 8.4
SRT (Wang et al. 2018)† 60.5 36.7 20.8 12.5 28.9 33.1 8.5
XE-ss (Wang et al. 2018) 62.3 38.2 22.5 13.7 29.7 34.8 8.7
GAN (Wang et al. 2018) 62.8 38.8 23.0 14.0 29.5 35.0 9.0
AREL(Wang et al. 2018) 63.8 39.1 23.2 14.1 29.5 35.0 9.4
XE-TG (Li and Li 2019) - - - - 30.0 35.5 8.7
HSRL (Huang et al. 2019) - - - 12.3 30.8 35.2 10.7
Knowledge (Yang et al. 2019) 66.4 39.2 23.1 12.8 29.9 35.2 12.1
ReCo-RL (Hu et al.2020) - - - 14.4 30.1 35.2 6.7
INet (Jung et al. 2020) 64.4 40.1 23.9 14.7 29.7 35.6 10.0

Our Model (HLST) 67.7 42.6 25.3 15.2 30.8 36.4 11.3

Table 1 gives the automatic evaluation results on the VIST dataset. The re-
sults of all baselines are taken from the corresponding papers and the token “†”
means that the results are achieved by [23]. The best performance is highlighted
in bold and the results show that our approach significantly outperforms other
methods. As shown in Table 1, HLST achieves the best performance on almost all
automatic metrics. In detail, all BLEU scores have been improved significantly.
Moreover, BLEU2 and BLEU3 exceed the highest score of baseline models by 2.5
and 1.4, respectively. The BLEU metric calculates the n-gram matching degree
similarity of the reference and the candidate text and the higher-order BLEU
can measure the sentence similarity to some extent. Therefore, the improvements
in BLEU scores suggest that HLST is able to generate more coherent and in-
formative stories as human beings. Besides, ROUGE-L and METEOR metrics
both achieve state-of-the-art results. The ROUGE-L prefers to measure the re-
call rate between the ground truth and generated stories. And Huang et al. [9]
turn out that the METEOR metric correlates best with human judgments on
this task. Hence, the improvements indicate that our HLST can generate high-
quality stories. In addition, HLST performs slightly worse than [23] on CIDEr
since they equip their model with external knowledge base. And Wang et al. [22]
empirically find that the references to the same image sequence are photostream
different from each other while CIDEr measures the similarity of a sentence to
the majority of the references. Hence, CIDEr may not be suitable for this task.
In a word, without any external strategies, such as data preprocessing, knowl-
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edge graphs and reinforcement learning, our HLST achieves the best results just
by integrating the hierarchical decoder and the gated memory module.

5.2 Human Evaluation

Table 2. The human evaluation results.

Models Fluency Relevance Coherence Informativeness

XE-ss 4.19 3.72 2.88 2.94
AREL 4.23 4.19 3.25 3.18
HLST 4.46 4.58 4.17 4.24

Human 4.65 4.72 4.41 4.59

The human evaluation results are shown in Table 2, which are calculated
by averaging all scores from 6 annotators. Obviously, our model significantly
exceeds all baselines, especially in coherence and informativeness. For example,
compared to the AREL, the coherence score increases from 3.25 to 4.17, and
the informativeness score increases from 3.18 to 4.24. The coherence measures
whether the output is semantically coherent, while the informativeness evaluates
the diversity of the generated stories. Therefore, the high scores of coherence and
informativeness suggest that the memory module promotes contextual coherence
and the gated mechanism enhances the diversity by reducing semantic duplica-
tion. Furthermore, the results are very close to the human’s, which suggests that
HLST can generate more informative and coherent stories as humans.

5.3 Ablation Study

Table 3. The automatic evaluation results of the ablation study. B: BLEU

Models B1 B2 B3 B4 ROUGE METEOR CIDEr

Basic model 62.1 38.2 22.5 13.7 29.9 35.3 8.1

+ hierarchical decoder 63.4 39.3 23.3 14.2 30.1 35.5 8.7
+ memory 66.3 41.1 24.2 14.5 30 36 9.8
+ read gate 67.0 41.7 24.5 14.4 29.9 35.7 10
+ write gate (HLST) 67.7 42.6 25.3 15.2 30.8 36.4 11.3

To investigate the correctness and effectiveness of different modules, we con-
duct the ablation study and the results are listed in Table 3. The token “+”
indicates that we add the corresponding module to the model. Note that our
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basic model is XE-ss, on which we add the hierarchical decoder, the memory
module and the gated mechanism sequentially. We first verify the correctness of
the hierarchical decoder. As shown in Table 3, the model with the hierarchical
decoder achieves better results. Taking the BLEU1 for an example, the score
exceeds the basic model by 1.3 points. Therefore, the model is able to gener-
ate more fluent and relevant stories by introducing the hierarchical decoder. We
further analyze the effectiveness of the memory module by employing the multi-
head attention with self adjust query. And the model with the memory module
outperforms the former significantly. The score of BLEU1 is improved to 66.3,
which is 2.9 points higher than the model only with a hierarchical decoder. And
the results of METEOR and CIDEr are both greatly improved. It suggests that
the memory module is important to generate fluent, relevant and coherent stories
for integrating the central idea. Furthermore, we conduct experiments to explore
the influence of the gated mechanism by sequentially adding the read gate and
write gate. The read gate enables the model to read the currently needed infor-
mation by removing the expressed message. And the improvement of automatic
evaluations verifies its effectiveness. Finally, we equip the memory module with
both the read and write gate to further filter out the expressed information.
Compared with the Basic model, all BLEU scores have increased by about 10%,
and CIDEr has increased by 39.5%. This further demonstrates that the central
idea is crucial for visual storytelling, which can do a great favour to generating
coherent and diverse stories.

5.4 Qualitative Analysis

AREL
It was a beautiful day 

for the wedding.
It was a beautiful day.

The bride and groom 

cut the cake.

The bride and groom 

were very happy to be 

married.

The bride and groom 

were so happy to be 

married.

HLST
It was a beautiful day 

for the bride and 

groom.

The bride and groom 

walked down the aisle 

to the wedding.

The bride and groom 

cut the cake, the 

wedding cake.

They were very happy 

to be married.

After the ceremony, 

everyone got together 

for a picture.

Human
[male] and [female] 's 

wedding.

All the bridal maids 

gather for a picture.

After they tie the knot, 

it 's time to cut some 

cake.

The lovely couple 

togther.

The dance party starts, 

what a great event.

Fig. 3. An example of qualitative comparison. We mainly compare our model with the
competitive baseline AREL and the human annotations.

We take out an image stream from the test dataset and compare the story’s
qualities from AREL, HLST and the ground truth for qualitative analysis. As
shown in Figure 3, the image stream depicts a story about the wedding. Clearly,
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Fig. 4. Memory visualization. Fig. 5. Attention visualization.

the story of HLST is more diverse and expressive than the AREL. In this ex-
ample, the story of AREL contains a lot of duplicate phrases and sentences,
e.g., “It was a beautiful day” and “The bride and groom were very/so happy to
be married”. The semantic repetition significantly reduces the readability and
informativeness of the whole story. However, by introducing the multi-head at-
tention with self adjust query, our model grasps the central idea “wedding” and
generates the story that contains corresponding keywords, i.e., “wedding cake”
and “ceremony”. And the semantic repetition is also improved for equipping the
memory module with the gated mechanism. Furthermore, HLST has the capa-
bility of capturing the chronological relationship with the hierarchical decoder,
such as the phrase “After the ceremony”.

To verify whether the performance improvements are owing to the central
idea, we further conduct data analysis, including memory-aware words distribu-
tion and attention visualization. Specifically, we compute the cosine similarity
between the memory and the generated word embeddings. As shown in Figure 4,
the red dot represents the memory, and the blue dots are generated words in the
story. For simplicity, we remove the common words, such as “a”, “the” and “for”
etc. The distance between the blue dot and red dot measures the correlation be-
tween the corresponding words and the central idea. Hence, the words “bride”,
“groom” and “wedding” are more relevant than the words “aisle”. It indicates
that the memory module grasps the central idea and improves the informative
of the generated story. We also visualize the attention of this example in Figure
5. The x-coordinate indicates the number of head and the y-coordinate indicates
the input image stream. The lighter the color is, the more important the image
is. We can see that the HLST pays more attention to the salient images, i.e.
image2, image3 and image4, which is coherent with human understanding. The
image3 and image4 explicitly demonstrate that “wedding” is the central idea of
the story. Besides, although the scenes in the first two pictures are similar, the
bride in image2 is more prominent than the groom in image1. Therefore, the
image2 is more relevant with the central idea “wedding” than image1. That is
why HLST generates the coherent and diverse stories as human beings.
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6 Conclusion

In this paper, we propose a hierarchical neural network with the gated memory
module to imitate the process of human storytelling. We utilize a hierarchical
decoder to integrate the contextual information, including a narration decoder
and a sentence decoder. Besides, the multi-head attention with self adjust query
is employed to capture the salient information to initialize the memory unit
as the central idea. Furthermore, we equip the memory module with the gated
mechanism that includes a read gate and a write gate. The automatic evaluation
results and human judgments show that our HLST outperforms all state-of-the-
art methods significantly.
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