
A Modified Deep Q-Network Algorithm Applied
to the Evacuation Problem

Marcin Skulimowski[0000−0002−7087−6281]

Faculty of Physics and Applied Informatics, University of Lodz
Pomorska 149/153, 90-236 Lodz, Poland

marcin.skulimowski@uni.lodz.pl

Abstract. In this paper, we consider reinforcement learning applied
to the evacuation problem. Namely, we propose a modification of the
deep Q-network (DQN) algorithm, enabling more than one action to be
taken before each update of the Q function. To test the algorithm, we
have created a simple environment that enables evacuation modelling.
We present and discuss the results of preliminary tests. In particular,
we compare the performance of the modified DQN algorithm with its
regular version.

Keywords: Reinforcement Learning · Deep Q-Networks · Evacuation

1 Introduction

Reinforcement Learning (RL) is a subdomain of machine learning that allows the
agent to gain experience and achieve goals only by interacting with its environ-
ment (without any ”teacher”). There has been considerable interest in RL and
its applications in many domains in recent years, e.g. games, robotics, finance
and optimization (see [1, 2]). In this paper, we consider RL applied to the evac-
uation problem, i.e. to model humans in evacuation scenarios. The problem has
been widely studied, mainly using cellular automata (CA) [3, 4]. Developments
in RL have led to approaches based on various RL algorithms [5–7, 9] also in
conjunction with CA [8]. In the most common RL approach to the evacuation
problem, computationally expensive multi-agent methods are applied (see, e.g.
[5, 9]). It means that each person is considered as a single agent. The approach
discussed in this paper is different. Namely, we consider one agent that must
evacuate all people from the room as quickly as possible through any available
exit. The approach is similar to the one proposed by Sharma et al. [6]. The
difference is that we consider evacuation from one room and Sharma et al. con-
sider evacuation from many rooms modelled as a graph. Moreover, they use a
deep Q-network algorithm and their agent acts by moving one person at a time
step. This paper presents some modification of the deep Q-network (DQN) algo-
rithm, enabling more than one action to be taken before each Q function update.
Namely, our agent takes as many actions as is the number of persons in the room.
Only then the Q function is updated. To test the proposed algorithm, we have

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_20

https://dx.doi.org/10.1007/978-3-030-77964-1_20


2 Marcin Skulimowski

created a grid-based evacuation environment that enables modelling evacuation
from rooms with many exits and additional interior walls. The paper is orga-
nized as follows. Main RL concepts and deep Q-networks are shortly presented
in the next section. Section 3 describes, in short, the created evacuation environ-
ment. The proposed modification of the deep Q-network algorithm is presented
in Section 4. Some conclusions are drawn in the final section.

2 Q-Learning and Deep Q-Networks

In RL the sequential decision problem is modelled as a Markov decision process
(MDP). Under this framework, an agent interacts with its environment, and at
each time step t, it receives information about the environment’s state St ∈ S.
Using this state, the agent selects an action At ∈ A and then receives a reward
Rt+1 ∈ R. The action changes the environment’s state to St+1 ∈ S. The agent
behaves according to a policy π(a|s), which is a probability distribution over the
set S×A. The goal of the agent is to learn the optimal policy that maximizes the
expected total discounted reward. The value of taking action a in state s under a
policy π is defined by:

Qπ(s, a) ≡ E[R1 + γR2 + . . . |So = s,Ao = a, π]

where γ ∈ [0, 1] is a discount factor. We callQπ(s, a) the action-value function for
policy π. The optimal value is defined as Q∗(s, a) = maxπQπ(s, a). An optimal
policy is derived by selecting the highest valued action in each state. Q-learning
algorithm allows obtaining estimates for the optimal action values [10]. In cases
where the number of state-action pairs is so large that it is not feasible to learn
Q(s, a) for each pair (s, a) separately, the agent can learn a parameterized value
function Q(s, a;θt). After taking action At in state St, obtaining the reward
Rt+1 and observing the next state St+1 parameters are updated as follows [11]:

θt+1 = θt + α(Y Q
t −Q((St, At;θt))∇θt

Q(St, At;θt)) (1)

where α is a learning rate and the target value Y Q
t is defined as:

Y Q
t ≡ Rt+1 + γmax

a
Q(St+1, a;θt) (2)

During the learning, the agent selects actions according to the so-called ε-greedy
policy: with probability 1 − ε, it selects the highest valued action, and with
probability ε, it selects a random action. Learning takes place in the following
loop (we omit subscript t for simplicity):

Initialize the value function Q;
foreach episode do

Initialize S;
while S is not the terminal state do

Select action A according to an ε-greedy policy derived from Q;
Take action A, observe R and the next state S′;

Update the value function Q(S,A;θ) towards the target value Y Q;
S → S′

end

end

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_20

https://dx.doi.org/10.1007/978-3-030-77964-1_20


A Modified Deep Q-Network Algorithm Applied to the Evacuation Problem 3

A deep Q network (DQN) is a multi-layered neural network that for a given
input state s returns Q(s; ·;θ), where θ are network parameters [11]. Using the
neural network as an approximator can cause learning instability. To prevent this
Mnih et al. [2], proposed using the so-called target network (with parameters θ−),
which is the same as the online network (with parameters θ). Parameters θ− are
copied periodically (each τ time steps) from the online network, thus reducing
undesirable correlations with the target:

Y DQN
t ≡ Rt+1 + γmax

a
(St+1, a;θ

−
t ) (3)

The second modification to improve the learning stability is the so-called memory
replay [2], in which the agent’s experiences (st, at, rt+1, st+1) at each time-step
are stored. A mini-batch of experiences is sampled uniformly from the memory to
update the online network during the learning. Finally, one more improvement
of DQN called Double DQN (DDQN), which eliminates overestimation of Q
values (see [11]). The solution is to use two different function approximators
(networks): one (with parameters θ) for selecting the best action and the other
(with parameters θ−) for estimating the value of this action. Thus the target in
Double DQN has the following form:

Y DoubleDQN
t ≡ Rt+1 + γQ(St+1, argmax

a
Q(St+1, a;θ); θ

−
t ) (4)

3 The Room Evacuation Environment

In order to test RL algorithms we have created the following evacuation envi-
ronment.

A state refers to a room with walls (W), exits (E) and people (P) (see Figure
1). A room of size x× y can be represented as a 3× x× y tensor consisting of 3
matrices x× y. Each matrix is an x× y grid of 1s and 0s, where digit 1 indicates
the position of W, E or P (see Fig. 1). The terminal state is an empty room.

Fig. 1. A tensor representation of a room with 3 persons and 2 exits.

An agent takes action by selecting one field from x × y fields for a given
situation in a room. Thus, the number of possible actions at a time step is equal
to x× y. It is worth noting that selecting a field is not equivalent to moving to
that field because the move is not always possible. If there is one person near

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_20

https://dx.doi.org/10.1007/978-3-030-77964-1_20


4 Marcin Skulimowski

the field selected by the agent then this person moves to this field. If there are
two or more persons near the selected field, the move is made by a person who
comes closer to the exit after the move or by random person.

After each action, the agent receives a reward. The reward depends on
whether the move on a selected field is possible or not. There are three cases
possible:

1. The move to a selected field is possible because the field is empty, and there
is a person on an adjacent field who can move. The agent receives R = +1 when
the selected field is an exit (Fig. 2A) and R = −1 in other cases (Fig. 2B).

Fig. 2. Possible moves (left side) and impossible moves (right side).

2. The move to a selected field cannot be made because on an adjacent field
there is no person that can move (Fig. 2C) - the agent receives R = −1.
3. The move to a selected field is not possible because it is occupied by another
person or a wall (Fig. 2D-E) - the agent receives R = −1.

We used the above values of rewards in our tests, but they can be easily changed.
The environment can be static or dynamic. In the static case, the initial number
and positions of persons in the room are the same in each learning episode. The
dynamic case is more challenging than static - the initial persons’ positions in
the room are random. During our tests, the dynamic version of the environment
was used. The agent aims to evacuate all the people from the room quickly.
What is important, the agent has no initial knowledge about the positions of
exits and walls in the room.

4 Modified Deep Q-Network and its Tests

In standard DQN algorithm, the agent, at each time step, selects one action using
an ε-greedy policy derived from Q. Next, the agent takes this action, observes a
reward and the next state. After that, the update of Q is performed. However, in
the evacuation scenario, people in the room can move simultaneously. It means
that more than one action can be taken at each time step. The crucial point
is that x × y-dimensional vector Q(S, ·;θ) contains values of all x × y (possible
and impossible) actions in the room. Consequently, instead of one action, we can
select p actions A1, A2, ..., Ap from Q(S, ·;θ) for a given state S, where p is the
number of persons in the room. Namely, we can apply an ε-p-greedy policy during

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_20

https://dx.doi.org/10.1007/978-3-030-77964-1_20


A Modified Deep Q-Network Algorithm Applied to the Evacuation Problem 5

the learning, i.e. with probability 1−ε we select p highest valued actions, and with
probability ε we select p random actions. Note that actions A1, A2, ..., Ap are in
some sense mutually independent because they correspond to different fields of
room. After taking all actions A1, A2, ..., Ap the state S changes to S′. Then, we
can update Q. The while loop in the proposed algorithm has the following form:

while S is not the terminal state do
Select actions A1, A2, ..., Ap according to an ε-n-greedy policy derived
from Q;

Take actions A1, A2, ..., Ap, where p is the number of people in the room,
observe rewards R1, R2, ..., Rp and the next state S′;

Find the targets:
Yi = Ri + γmax

a
Q(S′, a;θ)

where i = 1, 2, ..., p;
Perform a gradient descent step on (Yi −Q(S,Ai,θ))2;

end

Note that the number of people in the room decreases over time and, conse-
quently, the agent’s actions. For p = 1 the above algorithm is simply Q-learning.

To test the proposed algorithm, we consider a room of size 8 × 8 with two
exits and an additional wall inside containing 18 people placed randomly at each
episode’s start (see Fig. 4). We implemented a convolutional neural network with
the following configuration:

Conv2d(3,280,kernel_size=(5,5),stride=(1,1),padding=(2,2))

Conv2d(280,144,kernel_size=(3,3),stride=(1,1),padding=(1,1))

Conv2d(144,64,kernel_size=(3,3),stride=(1,1),padding=(1,1))

Conv2d(64,64,kernel_size=(3,3),stride=(1,1),padding=(1,1))

Conv2d(64,32,kernel_size=(3,3),stride=(1,1),padding=(1,1))

Flatten(start_dim=1,end_dim=-1)

Linear(in_features=2048,out_features=64)

The ReLU function is used for all layers, except the output layer, where a lin-
ear activation is used. The Adagrad optimizer with default parameters and a
learning rate equal to 0.01 is used for training. We tested two agents. The first
agent (DQN agent) uses the double DQN algorithm with the target network
and memory replay. The second agent (MDQN agent) uses the modified double
DQN algorithm with the target network. Both agents have the same values of
the parameters: ε = 0.1, γ = 0.9, τ = 40 (target network update frequency).
Moreover, we set memory replay = 500 and batch size = 100 for the DQN agent.
Both agents were trained for 1300 episodes. Figure 3 (left side) shows changes in
total reward per episode. We can see that the DQN agent learns faster than the
MDQN agent. The reason for this seems rather obvious. The DQN agent learns
to take only one action at each time step. The MDQN agent has to learn to
take more actions; consequently, it learns slower. On the right side of Figure 3,
we can see that the number of time steps required to evacuate all persons from
the room is much smaller in the case of MDQN. Figure 4 indicates a significant
difference between both agents. The DQN agent evacuates persons one by one.
It takes one person and moves it from its initial position to the exit. Then the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_20

https://dx.doi.org/10.1007/978-3-030-77964-1_20


6 Marcin Skulimowski

Fig. 3. The evacuation of 18 persons through 2 exits: total reward (left side), time
steps (right side) - averages over 5 tests.

next person is evacuated. We can see in Figure 4A that three persons marked
with frames stay in place, waiting for their turns. In the MDQN agent’s case
(Figure 4B), more than one person is moved to exits each time step. Figure 4B
also shows that the MDQN agent evacuates persons via the nearest exit even if
there are two exits located on the opposite walls.

Fig. 4. The evacuation of 18 persons through 2 exits: (A) DQN, (B) Modified DQN.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_20

https://dx.doi.org/10.1007/978-3-030-77964-1_20


A Modified Deep Q-Network Algorithm Applied to the Evacuation Problem 7

5 Conclusions

Our preliminary results show that the proposed modified DQN algorithm works
quite well in the evacuation scenario. Further work needs to be done to evalu-
ate the algorithm in more complicated cases, e.g. for larger rooms, more people,
obstacles and fire spreading. An interesting issue to resolve for future research
is also finding out to what other problems than evacuation the proposed modifi-
cation of DQN can be applied to. We can see a similarity between the proposed
algorithm results and the result of multi-agent systems (see Fig.4B). Considering
that the multi-agent RL methods are computationally expensive, the question
arises whether the proposed algorithm can be an alternative to the multi-agent
approach in some cases.

References

1. Barto, A., P. S. Thomas and R. Sutton.: Some Recent Applications of Reinforcement
Learning (2017).

2. Mnih, V., Kavukcuoglu, K., Silver, et al.: Human-level control through deep rein-
forcement learning. Nature, 518 (7540), 529–533 (2015).

3. Gwizda l la, T. M.: Some properties of the floor field cellular automata evacuation
model. Physica A: Statistical Mechanics and its Applications, Vol. 419, 718-728
(2015).

4. Jun, H., Xiaoling, G., Juan, W., Yangyong, G., Mei, L., Jierui, W.: The cellular
automata evacuation model based on Er/M/1 distribution. Physica Scripta. 95,
(2019).

5. A. Wharton, Simulation and Investigation of Multi-Agent Reinforcement Learning
for Building Evacuation Scenarios, 2009. https://www.robots.ox.ac.uk/ ash/4YP

6. Sharma, J., Andersen, P., Granmo, O. and Goodwin, M.: Deep Q-Learning With
Q-Matrix Transfer Learning for Novel Fire Evacuation Environment. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems (2020).

7. Zhenzhen, Y., Guijuan Z., Dianjie L., Hong L.: Data-driven crowd evacuation: A
reinforcement learning method. Neurocomputing. Vol. 366, 314-327, (2019).

8. Ruiz S., Hernández B.: A Hybrid Reinforcement Learning and Cellular Automata
Model for Crowd Simulation on the GPU. In: Meneses E., Castro H., Barrios
Hernández C., Ramos-Pollan R. (eds) High Performance Computing. CARLA 2018.
Communications in Computer and Information Science, Vol. 979. Springer, Cham
(2019).

9. Martinez-Gil, F., Lozano, M., Fernandez, F.: Marl-ped: A multi-agent reinforcement
learning based framework to simulate pedestrian groups. Simulation Modelling Prac-
tice and Theory 47 (Complete), 259-275 (2014).

10. Watkins, C.J.C.H., Dayan, P. Q-learning. Mach Learn 8, 279–292 (1992).
11. van Hasselt, H., Guez, A., and Silver, D.: Deep reinforcement learning with double

Q-learning. arXiv:1509.06461 (2015).

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_20

https://dx.doi.org/10.1007/978-3-030-77964-1_20

