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Abstract In this paper, a second-order adaptive network model is presented for 

the effects of supernormal stimuli. The model describes via the underlying mech-

anisms in the brain how responses on stimuli occur in absence of a supernormal 

stimulus. Moreover, it describes how these normal responses are lost after a su-

pernormal stimulus occurs and due to that adaptive desensitization takes place. 

By simulated example scenarios, it was evaluated that the model describes the 

expected dynamics. By stationary point analysis correctness of the implemented 

model with respect to its design was verified. 

Keywords overstimulation, desensitization. Adaptive network model 

1 Introduction 

Supernormal stimuli are everywhere. They can be seen on billboards, you see them on 

TV, and you can even find them when you take a walk in the forest. Supernormal stim-

uli differ from normal stimuli. A stimulus is a change in the external or internal envi-

ronment to which an organism reacts. This reaction is also referred to as a response. A 

supernormal stimulus is an extreme version of a particular stimulus that people already 

have a tendency to respond to. This extreme version of an already existing stimulus 

creates a stronger response than the regular stimulus does. These supernormal stimuli 

are found both in the animal kingdom and in the human world. Cuckoo birds are a good 

example of this [1]. Cuckoo birds lay their eggs in other birds’ nests so that these other 

birds feed their offspring. But why do these other birds feed the cuckoo chicks and not 

their own? This is due to the supernormal stimuli of the cuckoo chicks, which have a 

larger and redder beak than the other chicks. These supernormal stimuli of the cuckoo 

chick produce a stronger response of the parent birds than the stimuli of their own 

chicks do. 

Such effects of supernormal stimuli are explored computationally in this paper. First, 

in Section 2 some related background knowledge is briefly discussed and the research 

question is formulated. Next, in Section 3 the modeling approach used is discussed. In 

Section 4 the introduced computational model is described in some detail. Section 5 

illustrates the model by simulation experiments performed. In Section 6 verification of 
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the implemented model with respect to its design description based on analysis of sta-

tionary points is discussed. Finally, Section 7 is a discussion. 

2 Background: Related Work and Research Question 

Superstimuli often exist in the human world and companies such as advertising agen-

cies make grateful use of this phenomenon. People are triggered and seduced by com-

mercials filled with astonishing landscapes, beautiful people and delicious-looking 

food, which are often an exaggeration of reality. Because these stimuli are often over-

exaggerated, turning into supernormal stimuli, people react more strongly to this, but 

they will never be completely satisfied with the purchased product, and they will look 

for new products to satisfy their buying drive [5]. This phenomenon is known as desen-

sitization. 

As a general principle, after prolonged or multiple exposure to a particular stimulus 

or stimuli, the brain will adapt and the brain becomes less sensitive to this stimulus; for 

example, homestatic excitability regulation [7, 11] refers to this principle. This princi-

ple is also reflected in the brain's dopamine release. Dopamine is a substance that is 

part of the brain's reward system, as a neurotransmitter. These are chemicals in the brain 

that support transfer of information from one nerve cell to another. Dopamine makes 

one feel satisfied and rewarded. Dopamine is not constantly produced, but is released 

during certain actions or situations such as eating, exercising, sex, or drugs. Dopamine 

is also released when people make purchases. In line with the principle described here, 

when the brain is exposed to a particular stimulus in a prolonged way, or when the brain 

is multiple times exposed to a particular stimulus, less dopamine is released for experi-

encing the same amount of stimuli. In other words, the brain desensitizes due to over-

stimulation. To experience the same effect, people will have to be exposed to these 

stimuli for longer, or they have to be exposed more often to these stimuli. Our research 

question derives from this:  

 

Can mechanisms in the brain indeed explain desensitization 

as a result of exposure to supernormal stimuli? 

3 The Network-Oriented Modeling Approach Used 

In this part of the paper the modeling approach used is explained. Traditionally, mod-

elling the world’s processes often is based on isolation and separation assumptions. 

These generally serve as a means to reduce the complexity of the problems. For exam-

ple, in physics concerning gravity, usually the force from a planet on an object is taken 

into account, but not all other forces in the universe acting upon this object. Sometimes 

these assumptions do not hold. For example, Aristotle considered that some internal 

processes are separated from the body [3]. Later Kim [6] and others from philosophy 

of mind disputed that the mind and the body could be separated. 

However, the problem with modeling such processes is not a particular type of iso-

lation or separation assumption, but with the notion of separation itself. Interaction 
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between states in a model often need cyclic dependencies which make separation as-

sumptions difficult to apply. In philosophy of the mind, the idea is that mental states 

are caused by input states and other mental states, and some mental states influence 

outgoing states [6]. This takes place according to a cyclic causal network of mental 

states within which each mental state has a causal, or functional role; e.g., see:  

 
‘Mental events are conceived as nodes in a complex causal network that engages 

in causal transactions with the outside world by receiving sensory inputs and emit-

ting behavioral outputs. (…) to explain what a given mental state is, we need to 

refer to other mental states, and explaining these can only be expected to require 

reference to further mental states, on so on – a process that can go on in an unend-

ing regress, or loop back in a circle.’ [6], pp. 104-105. 

 

The network-oriented modeling approach described in [9] follows this dynamic per-

spective on causality and has been applied to obtain the network model introduced here. 

Within this approach, at each given time t each node (also called state) Y of such a 

network has a state value Y(t), a real number usually in the interval [0,1]. The approach 

uses the following network characteristics to describe network models (called tem-

poral-causal networks): 

  
• Connectivity characteristics 

Each connection from a state X to another state Y has a connection weight 

X,Y which represents the strength of the connection 

• Aggregation characteristics 

Each state Y has a combination function cY(…) which is used to combine 

the single casual impacts X,Y X(t) from different states X on state Y; for 

selection of combination functions from the available library, weights i,Y 

are used and the combination functions usually have parameters that can 

be indicated in general by i,j,Y 

• Timing characteristics 

Each state Y has a speed factor Y for the speed of change of Y defining 

how fast the state changes upon its causal impact. 
 

The choice of combination functions cY(…) can be problem-dependent. Within the 

available dedicated software environment, they can be chosen from a library for them, 

but can also be easily added. The combination function library, which has over 40 com-

bination functions, also includes a facility to compose new combination functions from 

the available ones by (mathematical) function composition. The combination functions 

that have been used in this paper are basic; they are shown in Table 1. 

Using these network characteristics, a network model can be simulated in a manner 

described in [9] as follows: 

 

• For each time point t the  aggregated  impact  is  calculated  using  the  

combination  function cY(…)  by 

𝐚𝐠𝐠𝐢𝐦𝐩𝐚𝐜𝐭𝑌(𝑡) =  𝐜𝑌(𝑋1,𝑌𝑋1(𝑡), … ,𝑋𝑘,𝑌𝑋𝑘(𝑡))              (1) 

 

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_19

https://dx.doi.org/10.1007/978-3-030-77964-1_19


4 

• Then for the time step from t to t+t for each state Y the value is adjusted 

using the aggregated impact and the speed factor 

 𝑌(𝑡 + 𝑡)  =  𝑌(𝑡)  + 
𝑌

[𝐚𝐠𝐠𝐢𝐦𝐩𝐚𝐜𝐭
𝑌

(𝑡) −  𝑌(𝑡)] 𝑡             (2) 

 

• Hence the following differential equation is obtained: 

 𝑌(𝑡) = 
𝑌

[𝐚𝐠𝐠𝐢𝐦𝐩𝐚𝐜𝐭
𝑌

(𝑡) −  𝑌(𝑡)] 

Table 1  Basic combination functions from the library used in the presented model  

 Notation  Formula Parameters 

Advanced  

logistic sum 
alogistic,(V1, …,Vk) [

1

1+e−𝛔(𝑉1+⋯+𝑉𝑘−𝛕)   −   
1

1+e𝛔𝛕)](1+e-στ) 
Steepness >0 

Excitability threshold 

 

Hebbian 

learning 
hebb(V1, V2, W) 𝑉1𝑉2(1 − 𝑊) + 𝑊 

Persistence  

factor >0 

Stepmod stepmod,(V1, …,Vk) 0 if t mod  < , else 1  
Repetition  

Duration of 0  

 

To model adaptive networks, the notion of self-modeling network (also called reified 

network) is applied, where the adaptive network characteristics are represented within 

the network by additional network states, called self-model states; see [10]. Shortly, 

adding a self-model for a temporal-causal network is done in the way that for some of 

the states Y of the base network and some of its related network structure characteristics 

for connectivity, aggregation and timing (in particular, some from X,Y, i,Y, i,j,Y, Y), 

additional network states WX,Y, Ci,Y, Pi,j,Y, HY (self-model states) are introduced: 

 

(a) Connectivity self-model 

• Self-model states WXi,Y are added representing connectivity characteris-

tics, in particular connection weights Xi,Y 

(b) Aggregation self-model 

• Self-model states Cj,Y are added representing aggregation characteristics, 

in particular combination function weights i,Y 

• Self-model states Pi,j,Y are added representing aggregation characteristics, 

in particular combination function parameters i,j,Y 

(c) Timing self-model 

• Self-model states HY are added representing timing characteristics, in 

particular speed factors Y 

 

Here W refers to , C refers to , P refers to , and H refers to , respectively. For the 

processing, these self-model states define the dynamics of state Y in a canonical manner 

according to equations (2) whereby X,Y, i,Y, i,j,Y, Y are replaced by the state values 

of WX,Y, Ci,Y, Pi,j,Y, HY at time t, respectively. These special effects are defined by out-

going connections of these self-model states, which give them their specific roles. 

Moreover, as for any other state in the network, the incoming connections and other 

network characteristics relating to the self-model states (including their combination 

functions) give them their dynamics.  
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As the outcome of the addition of a self-model is also a temporal-causal network 

model itself, as has been shown in detail in [10], Ch 10, this construction can easily be 

applied iteratively to obtain multiple levels or orders of self-models.  

4 The Adaptive Network Model for Desensitization Due to 

Overstimulation 

The proposed network model is based on a couple of assumptions. Firstly, dopamine is 

used for the reward system for humans, but when exposed too much the human brain 

becomes less receptive to the stimuli [5]. The second assumption which was used is 

that advertisements often do try to trigger emotions such that people tend to get a pos-

itive emotion associated to the stimulus [5]. Within the introduced network model, three 

adaptation principles are applied to the network, two first-order adaptation principles 

(Hebbian learning and Excitability modulation) and one second-order adaptation prin-

ciple (Exposure accelerates adaptation). They are as follows. 
 

• Hebbian learning 

When a cell is repetitive and persistent in activating another cell, there will 

be a metabolic process making that this cell’s influence on the other cell 

increases [4]. For example, this can increase the preparation for an action 

when the stimulus representation affects the preparation of an action. 
 

• Excitability modulation 

Depending on activation, excitability thresholds are adapted as a form of 

regulation of neuronal excitability, which to some extent is similar to the 

adaptation of neurons’ internal properties according to ‘homeostatic regula-

tion’ to guarantee a prefered level of activation; e.g., [7, 11]. 
 

• Exposure accelerates adaptation 

When the exposure to a stimulus becomes stronger, the adaptation speed will 

increase. When applied to Hebbian learning, this will make the connection 

change faster when exposed for some time [8]. 
 

As another principle, ownership of an action makes that the action activation will be 

performed more frequently [2]. Using these principles as building blocks, the network 

model has been designed with connectivity as visualized in Fig. 1; see also the expla-

nations of the states in Table 2. The exact dynamics of the model have been defined in 

the role matrices specifications shown in Figs. 2-3. 
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Fig. 1. The connectivity of the introduced adaptive network model 

Table 2  Nomenclature: explanation of the states 

State Explanation 

X1 srsnormal Sensory representation state for normal stimulus 

X2 dopaminea1 Dopamine level related to action a1 

X3 mota1 Motivation level related to action a1 

X4 prepa1 Preparation state for action a1 

X5 exea1 Execution state for action a1 

X6 expa1 Expectation (expected effect) for action a1 

X7 owna1 Ownership state for action a1 
X8 srssupernormal Sensory representation state for supernormal stimulus 
X9 dopaminea2 Dopamine level related to action a2 
X10 imitation Imitation for supernormal stimulus 
X11 emotion Emotion for supernormal stimulus 
X12 mota2 Motivation level related to action a2 

X13 prepa2 Preparation state for action a2 

X14 exea2 Execution state for action a2 

X15 expa2 Expectation (expected effect) for action a2 

X16 owna2 Ownership state for action a2 

X17 Tdopetolerance First-order self-model state for tolerance for dopamine 

X18 Wsrssupernormal,prepa2  
First-order self-model state for the weight of the connec-

tion from srssupernormal to prepa2 

X19 Wsrsnormal,prepa1  
First-order self-model state for the weight of the connec-

tion from srsnormal to prepa1 

X20 HWsrssupernormal,prepa2 
Second-order self-model state for the adaptation speed of 

the weight of the connection from srssupernormal to prepa2 

X21 HWsrsnormal,prepa1 
Second-order self-model state for the adaptation speed of 

the weight of the connection from srsnormal to prepa1 
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mb                    base  
              connectivity 

1 2 3 4 

X1 srsnormal X1    

X2 dopaminea1 X1    

X3 mota1 X2    

X4 prepa1 X1 X3 X6  

X5 exea1 X4 X7   

X6 expa1 X4    

X7 owna1 X1 X3 X4  

X8 srssupernormal X8    

X9 dopaminea2 X8    

X10 imitation X8    

X11 emotion X10    

X12 mota2 X9 X11   

X13 prepa2 X8 X12 X15  

X14 exea2 X13 X16   

X15 expa2 X13    

X16 owna2 X8 X11 X12 X13 

X17 Tdopetolerance X2 X9 X17  

X18 Wsrssupernormal,prepa2  X8 X13 X18  

X19 Wsrsnormal,prepa1  X1 X4 X19  

X20 HWsrssupernormal,prepa2 X8 X13 X18 X20 

X21 HWsrsnormal,prepa1 X1 X4 X19 X21 

 

 

mcw          connection   

                        weights 
1 2 3 4 

X1 srsnormal 1    

X2 dopaminea1 1    

X3 mota1 1    

X4 prepa1 X18 0.5 0.5  

X5 exea1 0.5 0.5   

X6 expa1 1    

X7 owna1 0.33 0.33 0.33  

X8 srssupernormal 1    

X9 dopaminea2 1    

X10 imitation 1    

X11 emotion 1    

X12 mota2 1 1   

X13 prepa2 X19 1 1  

X14 exea2 1 1   

X15 expa2 1    

X16 owna2 1 1 1 1 

X17 Tdopetolerance 1 1 1  

X18 Wsrssupernormal,prepa2  1 1 1  

X19 Wsrsnormal,prepa1  1 1 1  

X20 HWsrssupernormal,prepa2 1 1 1 1 

X21 HWsrsnormal,prepa1 1 1 1 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Role matrices mb and mcw specifying the connectivity characteristics of the network 

model 

In role matrix mb, each state has its own row in which the other states that have 

effect on it are listed. In role matrix mcw, in the corresponding row the connections 

weights for these connections are specified. Note that for an adaptive connection 

weight, this is indicated by the name of the self-model state representing this connection 

weight (here X18 and X19 in the rows for the preparation states prepa1 and prepa2). 

In this model two actions occur, one of which is triggered by a supernormal stimulus 

and one by a normal stimulus. For both actions dopamine release increases the motiva-

tion of the participant to perform the action. It also increases the preparation for the 

respective action. The supernormal stimuli also create emotional imitation, since super-

normal stimuli often play to the emotion by mimicking feeling. The emotion and the 

dopamine determine the motivation for performing the action relating to the supernor-

mal stimulus. For the normal stimulus, the motivation is solely dependent on the dopa-

mine released. At the moment the total amount of dopamine released from all actions 

is higher then the threshold for dopamine, the motivation will start to have a higher 

tolerance for dopamine. Each ownership state will be determined by the stimulus, the 

motivation, the preparation, and for the supernormal stimulus action it is also dependent 

on the emotion of the respective action. Moreover, the expectation (expected effect) of 

an action also influences the preparation of an action and the other way around. 
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mcfw     combination  1 2 3 

          function weights                                    
alo-

gistic 
hebb 

step-

mod 

X1 srsnormal 1   
X2 dopaminea1 1   
X3 mota1 1   
X4 prepa1 1   
X5 exea1 1   
X6 expa1 1   
X7 owna1 1   
X8 srssupernormal   1 
X9 dopaminea2 1   
X10 imitation 1   
X11 emotion 1   
X12 mota2 1   
X13 prepa2 1   
X14 exea2 1   
X15 expa2 1   
X16 owna2 1   

X17 Tdopetolerance 1   

X18 Wsrssupernormal,prepa2   1  

X19 Wsrsnormal,prepa1   1  

X20 HWsrssupernormal,prepa2 1   

X21 HWsrsnormal,prepa1 1   
   

combination function 
mcfp 

 
parameter 

1 2 3 
alogistic hebb stepmod 

1 2 1 2 1 2 

      

X1 srsnormal 5 0.2     
X2 dopaminea1 5 0.2     
X3 mota1 5 0.2     
X4 prepa1 5 X17     
X5 exea1 5 0.2     
X6 expa1 5 0.2     
X7 owna1 5 0.2     
X8 srssupernormal     100 40 
X9 dopaminea2 5 0.2     
X10 imitation 5 0.2     
X11 emotion 5 0.2     
X12 mota2 5 0.2     
X13 prepa2 5 X17     
X14 exea2 5 0.2     
X15 expa2 5 0.2     
X16 owna2 5 0.2     

X17 Tdopetolerance 5 0.6     

X18 Wsrssupernormal,prepa2    0.95    

X19 Wsrsnormal,prepa1    0.95    

X20 HWsrssupernormal,prepa2 5 0.8     

X21 HWsrsnormal,prepa1 5 0.8     

 

 

ms  speed factors 1 

X1 srsnormal 0 
X2 dopaminea1 0.2 
X3 mota1 0.2 
X4 prepa1 0.2 
X5 exea1 0.2 
X6 expa1 0.2 
X7 owna1 0.2 
X8 srssupernormal 2 
X9 dopaminea2 0.2 
X10 imitation 0.2 
X11 emotion 0.2 
X12 mota2 0.2 
X13 prepa2 0.2 
X14 exea2 0.2 
X15 expa2 0.2 

X16 owna2 0.2 

X17 Tdopetolerance 0.2 

X18 Wsrssupernormal,prepa2  X20 

X19 Wsrsnormal,prepa1  X21 

X20 HWsrssupernormal,prepa2 0.1 

X21 HWsrsnormal,prepa1 0.1 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 3 Role matrices mcfw, mcfp and ms specifying the aggregation and timing characteristics 

of the network model 
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5 Simulation Results 

From the simulated scenarios, the following one is presented. First (from time 0 to time 

40), only a normal stimulus occurs. As a result the states related to action a1 are acti-

vated (see Fig. 4). After time 40, a supernormal stimulus occurs. As a result the base 

states related to action a2 are activated. But what also can be seen in Fig. 4, at the same 

time the activations of the states related to action a1 that are triggered by the normal 

stimulus (which is still present) drop.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Fig. 4. Simulation results for the base states 

The explanation for this drop can be found in Fig. 5, where the values of the adapta-

tion states (the first- and second-order self-model states) have been visualized. When 

the supernormal stimulus arrives (in addition to the normal stimulus), the normal stim-

ulus does not seem to have much effect anymore because the T-state for the dopamine 

tolerance (the blue line) goes up between time 40 and 50. This indicates desentisitation. 

Hence the action does not happen anymore when the stronger supernormal stimulus 

emerges which prevents the normal action from getting much effect. 

 

 

 

 

 

  

X1 srsnormal 

X2 dopaminea1 

X3 mota1 

X4 prepa1 

X5 exea1 

X6 expa1 

X7 owna1 

X8 srssupernormal 
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X10 imitation 

X11 emotion 

X12 mota2 
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X15 expa2 
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Fig. 5. Simulation results for the first- and second-order self-model states 

6 Verification of the Network Model by Stationary Point 

Analysis 

The dynamics of the implemented model were mathematically verified against its de-

sign specification by inspecting stationary points, i.e., points for some state Y where 

dY(t)/dt = 0. Based on difference equation (2), the following criterion is obtained for a 

state Y to have a stationary point at t (e.g., [9], Ch 12):  

 

Y = 0   or 

𝐚𝐠𝐠𝐢𝐦𝐩𝐚𝐜𝐭𝑌(𝑡) =   𝑌(𝑡)              (3) 

 

where according to (1) 

 

𝐚𝐠𝐠𝐢𝐦𝐩𝐚𝐜𝐭𝑌(𝑡) =  𝐜𝑌(𝑋1,𝑌𝑋1(𝑡), … ,𝑋𝑘,𝑌𝑋𝑘(𝑡)) 

 

with X1, …, Xk the states from which the state Y has incoming connections. In the ex-

ample simulation, it can be observed that shortly after the individual starts being ex-

posed to the supernormal stimulus, all of the states regarding the normal stimulus seem 

to reach a maximum shortly after arrival at time 40 of the supernormal stimulus. Hence 

X17 Tdopetolerance 

X18 Wsrssupernormal,prepa2  

X19 Wsrsnormal,prepa1  

X20 HWsrssupernormal,prepa2 

X21 HWsrsnormal,prepa1 
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the addition of the supernormal stimuli does make the action a1 be performed less. The 

numerical data of the simulation do confirm this since the difference between the left 

hand side and right hand side of criterion (3) is less then 0.01 for all indicated states 

related to action a1 within a few time units after the supernormal stimulus is added (see 

the upper part of Table 3). 

Table 3 Mathematical analysis of stationary points and equilibrium values 

 
State Xi prepa1 exea1 expa1 owna1 

Time t  42.0 45.3 44.7 44.3 

Xi(t) 0.826204054 0.88181571 0.929487085 0.590019599 

aggimpactXi(t) 0.825695857 0.880066117 0.928358746 0.589006296 
deviation -0.000508197 0.001749593 0.001749593 0.001013302 

     

State Xi  exea1 exea2 
 

Time t   100 100  
Xi(t)  0.147271358 0.999819353  
aggimpactXi(t)  0.144670364 0.999829352  

deviation  0.002600994 -0.001001  

 

Also, at time 100 many states seem to have fairly constant values. We have checked 

the difference between aggregated impact for how much both actions are performed at 

the end of the simulation (see the lower part of Table 3). As can be seen in Table 3, the 

aggregated impact is always within a threshold of 0.01 from the state value. Hence, the 

stationary points analysis does not show any evidence that there is anything wrong with 

the implemented model in comparison to its design specification. 

7 Discussion 

In this paper an adaptive temporal-causal network model has been introduced by which 

the effect of overstimulation on the performance of actions is modeled. Simulation ex-

periments have been performed in with which a supernormal stimulus and/or normal 

stimulus was present and led to a desensitization adaptation. The model has been math-

ematically verified by analysis of stationary points for one of the simulation scenarios. 

The proposed model has been built according to the adaptive network modeling ap-

proach based on self-modeling networks (or reified networks) described in [10]. This 

method of modeling makes it possible to easily design any adaptive network model, 

which in this case describes how by adaptation supernormal stimuli distract people from 

the day to day activities. 

In future work, simuli with different gradations can be explored and further valida-

tion of the model may be performed when suitable data sets are available. 
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