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Abstract. In this work, we introduce a novel graph embedding tech-
nique called NERO (Network Embedding based on Relation Order his-
tograms). Its performance is assessed using a number of well-known clas-
sification problems and a newly introduced benchmark dealing with de-
tailed laminae venation networks. The proposed algorithm achieves re-
sults surpassing those attained by other kernel-type methods and compa-
rable with many state-of-the-art GNNs while requiring no GPU support
and being able to handle relatively large input data. It is also demon-
strated that the produced representation can be easily paired with ex-
isting model interpretation techniques to provide an overview of the in-
dividual edge and vertex influence on the investigated process.

Keywords: Graph classification · Graph embedding · Representation
learning · Complex networks.

1 Introduction

Due to their expressiveness and flexibility, complex networks appear in numer-
ous real-world applications, such as sociology, bibliometrics, biochemistry, or
telecommunications (to name a few) [36]. However, there are practical issues
(i.a. lack of a universal notion of similarity, the fact that there are no bounds on
the total vertex number or the number of single vertex neighbours) that make
utilisation of such data representation challenging and cumbersome, especially in
the context of machine learning. Thus, finding a way to bridge the gap between
the graph domain and the vector-driven mainstream science is one of the most
important topics in structural pattern processing [4].

1.1 Related solutions

Classical answers to that problem tend to utilise the concept of graph kernels —
either explicit (bivariate functions whose results are equivalent to graph inner

? The research presented in this paper was financed using the funds assigned by the
Polish Ministry of Science and Higher Education to AGH University of Science and
Technology.
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products) or implicit (operators mapping the graphs into the vector spaces,
where there is a wide range of kernel functions available). Notable examples
include counting the number of matching shortest path in input graphs [3],
comparing estimated distributions of graphlets (small subgraphs with up to 5
nodes) [28], or relying on pairwise Wasserstein distances between graphs in the
dataset [30].

Recently, there was a resurgence of interest in graph representation learning.
Deep convolutional neural networks achieved tremendous results in computer
vision tasks and, as a consequence, numerous works tried to adapt the ideas
behind their success to the graph analysis domain [36]. While differing in imple-
mentation details, those approaches are collectively referred to as graph neural
networks (GNNs). Multiple directions are being currently pursued in the field,
such as imitating the popular U-Net architectures [12], leveraging the trans-
former self-attention mechanism [22], designing adaptive pooling operators [35],
employing Gaussian mixture models [16], or utilising anchor graphs [1].

Nonetheless, despite the considerable achievements of GNN techniques, one
should remember that their effectiveness comes with a high demand for memory,
computational power, and specialised hardware. Hence, it may still be of interest
to seek progress with kernel methods, especially in case of large networks.

2 Basic notations

Graph G = (V,E,TV,TE) is an ordered tuple comprised of a finite ordered set
of vertices V = {v1, . . . , vnV

}, a finite ordered set of edges E = {e1, . . . , enE
} |

E ⊆ V×V, a finite ordered set of vertex trait functions TV = {tV1
, . . . , tVnTV

},
and a set of edge trait functions TE = {tE1

, . . . , tEnTE
}, such that ∀tV ∈TV

dom(tV ) =

V and ∀tE∈TE
dom(tE) = E. We call given trait a label if its codomain is dis-

crete, or an attribute if it is continuous. Throughout this work we assume that
all graphs are undirected, i.e. (v, u) ∈ E =⇒ (u, v) ∈ E.

A k-dimensional array of sizem1-by- · · · -by-mk is denoted as A = Sm1×···×mk ,
where S is the set of possible element values. Ai1,...,ik represents its element on
position i1, . . . , ik. Using ∗ as a position component represents taking all el-
ements along the given dimension — e.g. A∗,j is the jth column of A. The
notation (Ai1,...,ik)C , where C is the set of conditions, is used to describe an
array sub-fragment — e.g. (Ai,j)1≤i≤3, 1≤j≤3 is the upper left 3-by-3 sub-array.

Additionally, 0m1×···×mk is the m1-by- · · · -by-mk array filled with zeros.

3 Relation order embedding

The main idea behind the proposed embedding method is inspired by previous
research by Bagrow et al. [2] and the later improvements suggested by Czech et
al [6–8]. The former introduced the concept of a B-matrix — a way of portraying
an arbitrary network that contains information about its structure at multiple
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Relation order histograms as a network embedding tool 3

levels of abstraction and allows to express between-graph similarity as the eu-
clidean distance. For a given graph, the B-matrix Bk,l contains the number of
vertices that have a degree of l in the distance-k-graph corresponding to the kth

matrix row. A distance-k-graph, in turn, contains all the original nodes and con-
nects with edges those of them that were initially separated by the shortest path
distance equal to k. The latter expanded the framework and demonstrated that
it is possible to improve its performance by utilising the node-edge distance [6]
or employing alternative centrality measures [7]. It also explored the possibilities
of obtaining embeddings of large graphs in a distributed fashion [8]. However,
all those attempts were focused on purely structural data and assumed the lack
of labels or attributes, severely limiting their applicability.

This work aims to further develop the aforementioned techniques and adapt
them to support graphs with any type of traits. It is based on the observation,
that two crucial components are common for all of them: assembling the embed-
dings from feature histograms (thus making them invariant to changes in edge
and node processing order) and doing so not only for a starting graph but for
the whole distance-k family (therefore capturing both local and global relations
between elements).

We start by reducing the problem to a vertex-traits-only one by converting
the input graph to an edge-node bipartite form (see Algorithm 3.1). This decision
not only simplifies the subsequent steps but also potentially boosts the expressive
power of the method (as shown in [6]).

Algorithm 3.1 BipartiteEdgeVertexGraph(G)

(V,E,TV,TE)← G

VB = V ∪E

EB = {(v, e) | v ∈ V ∧ e ∈ E ∧ v ∈ e}

TB =

{(
VB 3 v 7→ tB(v) =

{
t(v) v ∈ dom(t)

∅ otherwise

)∣∣∣∣∣ t ∈ TV ∪TE

}
GB ← (VB,EB,TB,∅)

return GB

Next, we need to introduce the notion of elements relation order. Two graph
elements are in a relation of order r+1 with one another if they are separated by
a distance r in the corresponding graph. As a consequence, a node is in order-1
relation with itself, order-2 relation with edges incident to it, and order-3 relation
with its direct neighbours.

Now, it is possible to define in the broadest terms the excepted form of the
discussed embedding output. NERO (Network Embedding based on Relation
Order histograms) should produce a three-dimensional tensor N, where Ni,j,k

is the number of order-i relations between vertices for which the first relation
element is annotated with trait value j and the second with trait value k. If there
is only a single discrete trait present, then N3,∗,∗ is equivalent to a standard
graph attribute matrix, and N2k+1,∗,∗ to its distance-k graph incarnations.
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4 R.  Lazarz, M. Idzik

As we can see, the core architecture of the previously discussed techniques
is still upheld. There is a histogram as a basic building block (but this time
of trait connectivity, not of node centrality) and focus enumerating and repre-
senting multiple levels of abstraction (generalised as a relation order). However,
such general definition necessarily omits important practical details (e.g. some-
times traits are continuous and long-range relations often don’t need the same
representational resolution as the close ones) — the subsequent sections provide
a more comprehensive overview of the embedding algorithm and its intended
implementation.
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Fig. 1: NERO graph embedding workflow.
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Relation order histograms as a network embedding tool 5

3.1 NERO embedding scheme

The general flow of the proposed embedding scheme is outlined as Algorithm 3.2
and visualised in Figure 1. The first step is the already discussed conversion to
a bipartite graph form G′. Next, it is necessary to digitise any traits annotating
the graph vertices — a procedure resulting in the matrix T′, where T′i,j is
the single-integer representation of the trait Tj value for vertex vi. The actual
digitisation technique is a modular part of the solution and can be chosen with
a particular problem in mind (some of them might require prior supervised or
unsupervised training). The specific variants utilised in this work are described
in Section 3.2. One mandatory condition that has to be satisfied by any applied
digitiser is that there should be no overlaps between numbers assigned to values
among different traits (∀j1,j2 j1 < j2 =⇒ max T′∗,j1 < min T′∗,j2), so they are
not mixed in the final outcome. We also store the value tmax = max T′ for later
usage.

Algorithm 3.2 EmbedGraph(G,nb)

(V,E,T,∅)← G′ ← BipartiteEdgeVertexGraph(G)

(T′, tmax)← DigitisedTraits(T)

δmax = 1

N← 0δmax×tmax×tmax

for Vb ∈ VertexBatches(V, nb) do

Nb ← 0δmax×tmax×tmax

for vi ∈ Vb do

(Nb,v, dmax)← VertexSourceSlice(v,V,E,T′, tmax)

if dmax > δmax then

δmax = dmax

Nb ← EnlargeEmbedding(Nb, δmax)

for j ∈ T′i,∗ do(
Nb

d,j,∗
)
1≤ d≤ dmax

←
(
Nb

d,j,∗
)
1≤ d≤ dmax

+ Nb,v

N← EnlargeEmbedding(N, δmax)

N← N + Nb

return N

After that, the result N is initialised with zeros and the main phase of the
procedure begins. Vertices are divided into nb batches of chosen size to enable
the possibility of map-reduce style parallel computations (every batch can be
processed independently). Then, for each vertex v in a batch, a source slice is
calculated, as specified in Algorithm 3.3.

The goal of the slice computation is to create matrix Nb,v containing infor-
mation about all the relations in which the current vertex is the first element
(Nb,v

i,j is the number of vertices with trait value j in order-i relation with the
vertex v). To do so, we first need to calculate all the pairwise distances between
the current vertex and all the other ones (e.g. by BFS graph traversal). How-
ever, using raw distance values turns out to be impractical unless the graph has
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Algorithm 3.3 VertexSourceSlice(v,V,E,T′, tmax)

D← ShortestDistances(v,V,E)

(D′, dmax)← CompressedDistances(D)

Nb,v ← 0dmax×tmax

for i ∈ {1, 2, . . . , nV }, j ∈ {1, 2, . . . , nT } do

Nb,v
D′i,T′i,j ← Nb,v

D′i,T′i,j + 1

return (Nb,v, dmax)

a low diameter. Instead, the distances are compressed using one of the options
presented in Section 3.3.

The slices are then added to appropriate regions of tensor Nb, iteratively
creating a partial embedding. After that, the batch outcomes are summed up
position-wise and form a complete result N (the accumulator is resized whenever
necessary based on current δmax. Finally, the obtained values are normalised (as
described in Section 3.4) and reshaped into a flat vector to facilitate later usage.

3.2 Trait digitisation

Discrete traits were digitised in the simplest possible way — by consecutively
assigning a natural number to a value whenever a new one is encountered. In
the case of continuous traits, two alternatives sharing the same basic scheme
were tested. They both utilise a fixed number nh of non-overlapping bins with
boundaries determined by fitting them to the training data. Trait values are then
mapped to the number of the bin they fit in, with two special numbers reserved
for those belonging outside of the bin scope and for vertices without specified
trait value.

The first variant (annotated ∅ and commonly known as equal-width bins [14])
was used as a baseline. It finds the minimal and maximal trait value in the set
and then divides that range into same-size chunks. The second one (annotated
A) tries to adapt bin edges to the way the values are distributed. It starts by
estimating the said distribution — to do so it uses ni � nh equal-width bins
to create a value histogram for each sample and then calculates their mean over
the whole training set. Finally, it picks edge positions so that there would be an
equal probability of falling into each one of them.

3.3 Relation order compression

Relation order compression is a non-linear mapping between the actual between-
vertex distance and the declared relation order. The rationale for employing it is
twofold. Firstly — it directly reduces the dimensionality of the resulting embed-
ding, decreasing the memory requirements and speeding up the later operations.
Secondly — the experiences from the computer vision field [29] strongly suggest
that the higher the relation order, the less important it is to know its exact value
(i.e. if a vertex is on the opposite side of the graph it might not be crucial to
differentiate whether it lies exactly one step further than another one or not).
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Relation order histograms as a network embedding tool 7

We utilised three types of compression: no compression at all (∅) as a base-
line, and two bin-based compression schemes similar to trait digitising ones dis-
cussed in the previous section. Bin edges bi were determined by the following
formulas: bi = Fibonacci(i) (a standard Fibonacci sequence, denoted by F )
and bi−1 = baii+ bi+ cc with a = 1.074, b = 1.257, c = −3.178 (denoted by V ,
a solution inspired by VGG19 [29] CNN layers receptive field sizes). Whichever
one was used, the first two boundaries were set to fixed values of b0 = 0 and
b1 = 1, while target number of bins was set to a fixed value nr.

3.4 Normalisation

The relative values of individual NERO embedding components differ in magni-
tude, as the relation order density is not uniform (there are much more moder-
ately distanced vertices than those in close vicinity or in highly eccentric pairs).
Thus, it is practical to normalise them before any further processing. Through-
out this work, all values were always subject to the so-called standard scaling
— i.e. standardised by removing the mean and scaling to unit variance (baseline
∅). Additionally, they were sometimes scaled relative to the maximum value per

given relation order — ∀i Ni,∗∗ ← Ni,∗∗
maxNi,∗∗

(variant R).

(a) Accepted and discarded circles. (b) Examples of cropped fragments.

Fig. 2: Obtaining leaf fragment samples.

4 Laminae venation graphs

Leaf venation networks of flowering plants form intricate anastomosing struc-
tures, that evolved to serve numerous functions, from efficient water transporta-
tion to mechanical reinforcement of the lamina [26]. As a result, they are in-
tensively studied by numerous research fields, such as plant paleoecology, plant
physiology, developmental biology, or species taxonomy [24].

From the graph embedding point of view, processing of such networks creates
an interesting computational challenge - not only because of the hefty numbers
of vertices and edges but also due to their large radii making shortest path
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computations significantly harder [18]. However, popular datasets tend to focus
almost solely on data coming from either biochemistry, computer vision, or social
sciences [20]. In this work, we introduce an additional set of novel benchmark
problems that require correct recognition of organism genus on the basis of small
vasculature fragments.

The results obtained by Ronellenfitsch et al. [25] were utilised as the founda-
tion for the subsequent sample generation. They consist of 212 venation graphs
belonging to 144 species from 37 genera and were obtained by a multi-stage
procedure, involving chemical staining, high-resolution scanning and numerous
image transformations. Unfortunately, the samples are strongly unbalanced, with
102 belonging to Protium and 25 to Bursera genus. Furthermore, it was necessary
to remove 44 of them due to various defects caused by unsuccessful extraction
or accidental laminae damage. The remaining ones are highly reticulate large
planar graphs comprised of up to 300000 elements, with two continuous edge
attributes — their lengths and diameters.

Algorithm 4.1 CropSamples(G,na, τAc , τ%v , τrc)

Sc ← ∅
(V,E, {Tx},TE)← G

Vu ← V

X← {Tx(v) | v ∈ V}
H← ConvexHull(X)

A← ShoelaceArea(H)

%v ← |V|
A

Ac ← τAc
A

rc ←
√

Ac

π

while na > 0 ∧ |Vu| > 0 do

vc ← RandomChoice(Vu)

xc ← Tx(vc)

Vc ← {v | v ∈ V ∧ ‖Tx(v)− xc‖ < rc}
if |Vc|

Ac
> τ%v%v then

Vu ← Vu \ {v | v ∈ V ∧ ‖Tx(v)− xc‖ < τrcrc}
Ec ← {e = (vb, ve) | e ∈ E ∧ {vb, ve} ⊆ Vc}
Gc ← (Vc,Ec, {Tx},TE)

Sc ← S ∪ {Gc}
else

Vu ← Vu \ {vc}
na ← na − 1

return Sc

Algorithm 4.1 was then employed in order to convert those networks into
the final datasets by cropping out meaningful circular fragments. It starts by
finding the convex hull H of a given venation graph. Next, the area A of the
obtained polygon is calculated using the well-known shoelace formula and used
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to estimate the vertex density %v together with the target cropping radius rc (the
latter depending on the target area percentage parameter τAc

). Then, a central
vertex vc is randomly selected from the available vertices pool Vu and together
with all its neighbours up to the distance rc forms a crop candidate set Vc.

If the candidate density is higher than a chosen percentage τ%v of the average
one, the crop area is considered to be sufficiently filled with content. In this case,
the vertex set is supplemented by all the edges Ec incident to its members and
forms a new sample Gc. After that, vertices closer than τrc times the radius rc
from the centre are excluded from the Vu pool to ensure the lack of overlaps
between the produced samples. On the other hand, if the density criterion is not
satisfied only vertex vc leaves the pool and the attempt is counted to be a failed
one. The aforementioned loop is repeated until there are na failed attempts reg-
istered and then proceeds to the next leaf. Figure 2a depicts a possible outcome
of the procedure (green circles are accepted and the red ones are omitted due
to containing excessive free space) and Figure 2b shows examples of isolated
fragments.

Presented cropping scheme enables the production of venation datasets with
chosen fragments radii and distribution, three of which were used to evaluate
the proposed embedding technique. Each of them was generated with a different
focus in mind: LaminaeBig (τAc = 0.05, τ%v = 0.7, τrc = 2.0) contains a
smaller number of densely packed graphs with large diameter, LaminaeSmall
(τAc

= 0.005, τ%v = 0.7, τrc = 2.0) increases samples count while decreasing
their size, and LaminaeLight (τAc

= 0.01, τ%v = 0.9, τrc = 3.0) is intended to
have lower computational demands due to a moderate number of high quality
smaller radius samples. A brief summary of their characteristics can be found in
Table 1. The cropping attempts threshold was always set to na = 100.

5 Experiments and validation

Multiple configurations of the proposed algorithm are utilised throughout this
section. Whenever it happens, the specific version is stated using the NEROD,C,N

signature, where D is the chosen trait digitisation method, C specifies the rela-
tion order compression scheme, and N is the utilised normalisation. All calcula-
tions were performed using a Ryzen 7 3700X 3.6GHz CPU. GNNs training was
supported by a GeForce RTX 2080Ti 11GB GPU.

5.1 Graph classification

The graph classification task is one of the standard ways of assessing repre-
sentation robustness. In order to evaluate our proposed embedding scheme, we
performed a series of tests on a diverse selection of benchmark problems, in-
cluding the popular options from TUDataset [20] and three new ones intro-
duced in this work. The first group contains macromolecular graphs represent-
ing the spatial arrangement of amino acid structures (Proteins [11], DD [27])
or small molecules described as individual atoms and chemical bonds between
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Table 1: Benchmark datasets characteristics.

Name Graphs Classes
Average
Nodes

Average
Edges

Node
Labels

Edge
Labels

Node
Attrib.

Edge
Attrib.

DD 1178 2 248.32 715.66 + (1) - - -
Mutag 188 2 17.93 19.79 + (1) + (1) - -

Proteins 1113 2 39.06 72.82 + (1) - + (1) -
NCI1 4110 2 29.87 32.30 + (1) - - -

LaminaeBig 2044 36 3585.35 4467.58 - - - + (2)
LaminaeSmall 17924 36 392.67 473.82 - - - + (2)
LaminaeLight 4110 36 820.74 1004.31 - - - + (2)

them (Mutag [9], NCI1 [32]) and the second focuses on large-diameter laminae
venation networks (Section 4 presents a more detailed overview of its origins).
A brief comparison of their key characteristics is collected in Table 1.

The testing procedure was arranged following the guidelines presented in [20].
Accuracy scores were obtained as a result of stratified 10-fold cross-validation.
For each split the training set was further subdivided into the actual training
set and an additional validation set, the latter consisting of 10% of the initial
samples and keeping the class frequencies as close as possible to the original
ones. The optimal parameters of each utilised algorithm were estimated using
a grid search over sets of available values with validation accuracy used as a
ranking basis. The winning configuration was then retrained once more on the
larger group of training samples and evaluated on the test batch previously set
aside. Finally, the result was calculated as a mean of the 10 partial ones acquired
in an aforementioned way.

In case of the classic benchmarks (Table 2), there were 3 repetitions of the
said experiment — the reported value is the average outcome of the whole cross-
validation procedure and the ± notation is employed to show the standard devi-
ation of the mean accuracy. Obtained scores are compared with those achieved
by a wide range of well-established solutions, representing both the graph ker-
nel family (WL [27], GR [28], SP [3], WL-OA [17], WWL [30]) and the GNN
approach (GIN-ε [33], GIN-ε-JK [34], U2GNN [22], g-U-Net [12], DDGK [1],
GIC [16], PPGN [19], HGP-SL [35], GraphSAGE [15], GAT [31], EdgePool [10],
PSCN [23]). The sources of the provided values are referenced in corresponding
rows. Due to differences in applied measurement methodologies, the declared
errors should not be directly compared with one another and should instead
be treated only as an approximate credibility gauge. The scores are declared as
not available (N/A) if they were not reported in any publications known to the
authors (in case of algorithms our solution is being compared to)1, would make
no sense in the context (different trait digitisation techniques when there are
no continuous attributes present)2, or were not computationally feasible (e.g. no
relation order compression for large graphs)3.

NERO runs used an Extremely Randomised Trees [13] classifier with number
of decision sub-trees equal to nX = 5000 as its final step. Number of digitiser
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Table 2: Classification accuracies on popular TUDatasets benchmarks.
DD Mutag Proteins NCI1

WL[30] 78.29%±0.30% 85.78%±0.83% 74.99%±0.28% 85.83%±0.09%
GR[22, 20] 78.45%±0.26% 81.58%±2.11% 71.67%±0.55% 66.0%±0.4%
SP[35, 21, 20] 78.72%±3.89% 85.8%±0.2% 75.6%±0.7% 74.4%±0.1%
WL-OA[30] 79.15%±0.33% 87.15%±1.82% 76.37%±0.30% 86.08%±0.27%
WWL[30] 79.69%±0.50% 87.27%±1.50% 74.28%±0.56% 85.75%±0.25%
GIN-ε[20] 71.90%±0.70% 84.36%±1.01% 72.2%±0.6% 77.7%±0.8%
GIN-ε-JK[20] 73.82%±0.97% 83.36%±1.81% 72.2%±0.7% 78.3%±0.3%
U2GNN[22] 80.23%±1.48% 89.97%±3.65% 78.53%±4.07% N/A1

g-U-Net[12] 82.43% N/A1 77.68% N/A1

DDGK[1] 83.1%±12.7% 91.58%±6.74% N/A1 68.10%±2.30%
GIC[16] N/A1 94.44%±4.30% 77,65%±3.21% 84.08%±1.77%
PPGN[19] N/A1 90.55%±8.70% 77,20%±4,73% 83.19%±1.11%
HGP-SL[35] 80.96%±1.26% N/A1 84.91%±1.62% 78.45%±0.77%
SAGE[35, 22] 75.78%±3.91% 79.80%±13,9% 74.01%±4,27% 74.73%±1.34%
GAT[35, 22] 77.30%±3.68% 89.40%±6,10% 74.72%±4,01% 74.90%±1.72%
EdgePool[35] 79.20%±2.61% N/A1 82.38%±0.82% 76.56%±1.01%
PSCN[16] N/A1 92.63%±4.21% 75.89%±2.76% 78.59%±1.89%
NEROA,V,R 79.40%±0.49% 86.49%±0.89% 77.89%±0.60% 80.40%±0.25%
NEROA,F,R 80.45%±0.18% 86.55%±0.25% 77.30%±0.30% 80.01%±0.44%
NEROA,V,∅ 79.15%±0.28% 88.68%±0.25% 76.82%±0.44% 81.63%±0.14%
NEROA,F,∅ 79.40%±0.26% 88.10%±1.32% 76.88%±0.19% 80.89%±0.29%
NEROA,∅,R N/A3 85.64%±0.41% 76.55%±0.19% 79.80%±0.20%
NERO∅,V,R N/A2 N/A2 75.68%±0.29% N/A2

bins was chosen from nh ∈ {5, 10, 20} (with ni = 500 where applicable), similarly
for the relation order compression nr ∈ {5, 10, 20}.

For the laminae benchmarks (Table 3) only a single experiment run was per-
formed and the ± symbol denotes the standard deviation of the accuracy itself
(estimated over the 10 cross-validation splits). As a consequence, the potential er-
ror of such estimation is much higher that the one demonstrated for the previous
benchmark group. The NERO parameters were set to nh = 10 and nr = 20 and
the RBF kernel SVM [5] with L2 penalty parameter C ∈ {0.1, 1.0, 10.0, 100.0}
was the classifier of choice. Some scores were declared as not available (N/A)
due to exceeding per-algorithm computation time limit (12 hours)4. Methods
supporting only discrete edge labels had them provided after being digitised by
scheme A.

5.2 Results interpretability

An additional feature of the proposed NERO embedding is the fact, that the final
tensor N is always the combination of individual node and edge contributions
Nb,v. This, in turn, enables few useful routines. First, as already mentioned,
it is possible to parallelise the computation in accordance with the map-reduce
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Table 3: Classification accuracies on laminae fragments benchmark datasets.
LaminaeBig LaminaeSmall LaminaeLight

WL 71.6%±2.0% 66.9%±1.5% 66.0%±2.7%
GR 73.5%±2.7% 65.9%±1.5% 64.7%±3.4%
SP N/A4 N/A4 67.5%±3.3%
GINE-ε 80.7%±5.0% 83.26%±0.91% 76.0%±2.2%
GINE-ε-JK 84.2%±3.0% 82.71%±0.93% 79.1%±2.2%
NEROA,V,R 94.2%±4.2% 85.2%±2.8% 86.6%±4.1%
NEROA,V,∅ 88.5%±6.9% 83.7%±4.4% 85.1%±3.4%
NERO∅,V,R 66.3%±5.9% 65.4%±5.1% 70.5%±8.2%

paradigm. Second, when completion time is still an issue, one can sample a
smaller vertex subset and calculate only the associated embedding fragments,
resulting in an approximate solution. Finally, if there is any information asso-
ciated with individual embedding elements available (e.g. feature importance
scores), it can be traced back to the network components that contributed to
that particular cell. Figure 3b shows a proof of concept of that application —
a venation graph is painted using a heatmap obtained from the impurity values
provided by an extra-trees classifier.

(a) Venation fragment. (b) Importance heatmap.

Fig. 3: Visualisation of element importances based on extra-trees impurity scores.

6 Conclusions and future works

The presented embedding technique performed similarly or better than all the
other graph kernels it was compared to on all but one of the utilised bench-
mark datasets. Obtained accuracies were often on-par with general-purpose GNN
methods, without the need for costly GPU-based learning computations. This
property was especially useful in case of large laminae venation graphs, where
many of those models stopped being applicable due to memory constraints. The
technique itself is highly modular and could be further adapted to the better
suit a given problem. Lastly, its outcomes can be directly associated with the
original nodes and edges, facilitating any attempts at results explanation.

Nevertheless, there are still topics requiring additional studies. The embed-
ding may be further enriched by incorporating supplementary information about
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the structure itself, such as node centrality measures. Advanced trait digitisa-
tion schemes can be designed utilising tiling algorithms, clustering procedures,
and fuzzy boundaries. Finally, the real potential of the method interpretability
should be assessed in a separate investigation.
Acknowledgements The authors would like to express their sincerest gratitude to Jana Lasser for
providing a unique venation dataset and for her useful tips about its usage.
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