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Abstract. As the use of encryption protocols increase, so does the chal-
lenge of identifying malware encrypted traffic. One of the most signif-
icant challenges is the robustness of the model in different scenarios.
In this paper, we propose an ensemble learning approach based on
multi-grained features to address this problem which is called MGEL.
The MGEL builds diverse base learners using multi-grained features and
then identifies malware encrypted traffic in a stacking way. Moreover, we
introduce the self-attention mechanism to process sequence features and
solve the problem of long-term dependence. We verify the effectiveness
of the MGEL on two public datasets and the experimental results show
that the MGEL approach outperforms other state-of-the-art methods in
four evaluation metrics.

Keywords: Malware Encrypted Traffic Detection · Ensemble Learning
· Multi-Grained Features · Self-Attention.

1 Introduction

With the widespread use of encryption technology, the privacy, freedom, anonymity
of Internet users have been greatly protected, but also it has allowed attackers
to evade the anomaly detection system. For example, an attacker invades and
attacks the system by encrypting malware traffic. Besides, criminals penetrate
the darknet through tools such as Tor [12] to trade illegally. That is to say, the
abuse of encryption technology poses many challenges to network anomaly detec-
tion and secure management. Therefore, the identification of malware encrypted
traffic has aroused great concern in academia and industry.
⋆ Supported by the National Natural Science Foundation of China
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There are traditional rule-based methods such as port numbers [18] and deep
packet inspection(DPI) [11]. Port numbers are a quick and easy approach. How-
ever, its accuracy has declined because of the use of well-known port numbers.
Deep packet inspection(DPI) is to find patterns or keywords in the payloads. But
this method can only handle plaintext information and the matching process is
computationally costly.

Recently, some researchers have been using machine learning methods to
solve such problems. They extract packet features from plaintext messages of
the SSL/TLS handshake packets [1, 2] or use statistical features at the flow
level [9]. However, TLS/SSL handshake information may be incomplete in real
scenarios(e.g., the client reconnects to the server via session ID without the pro-
cess of certificate exchange and negotiate the secret key again), resulting in a low
accuracy rate of identification. The statistical features, such as byte distribution,
transition probabilities of lengths and times are often used as features. However,
statistical features require additional preprocessing, and the statistical method
is based on experience, which weakens the generalization ability of the model.

Deep learning has achieved great success in the areas of image process and
natural language process, and are also gradually being applied to the field of
traffic identification. In some recent literature, researchers mainly use AutoEn-
coder [10], CNN [16, 17], LSTM [20] and other network structures to learn repre-
sentations from raw data. Although deep learning methods have high accuracy,
there are some limitations in practical use:

(1) Deep learning methods are overly dependent on data size, and when there
is not enough data for the real scenario, deep learning methods cannot
learn a good representation.

(2) Some research only uses encrypted payloads of a few packets in a flow
for identification, which can fail in some application-level issues. More-
over, flow sequence features mainly face the challenge of the long-term
dependence problem.

(3) Deep learning methods typically have millions of parameters, and model
performance is greatly influenced by hyperparameters. Moreover, Deep
learning methods cannot adapt well to the new scenario.

The ability to generalize in different scenarios is critical because there are
many types of malware encrypted traffic. Drawing the idea of ensemble learning
that two heads are better than one, we use diverse base learners to enhance the
model’s robustness in different scenarios. In order to obtain diverse base learn-
ers, we use multi-grained features to learn separately. We first define packet
features and flow features. Packet features refer to key fields in certain packets,
such as port number, validity time of certificate, cipher suite, etc. Using the dis-
crepancy in these key fields, we can directly identify malware encrypted traffic.
Flow features refer to sequence features that reflect the communication process
between the client and the server, such as packet length sequence, message type
sequence, and time interval sequence. By learning these sequence features, we
can get the pattern of communication of different types of traffic, so as to distin-
guish between normal and malware encrypted traffic. After getting diverse base
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Malware Encrypted Traffic Detection Based on MGEL 3

learners, we use the idea of stacking to ensemble each base learner to get the
final identification result. This idea of ensemble learning based on multi-grained
features enhances the robustness of the model in different scenarios.

In this paper, We propose an ensemble learning approach based on multi-
grained features(MGEL) for malware encrypted traffic identification. The MGEL
first obtains diverse base learners using models suitable for different grained
features. Specifically, we use Xgboost to learn from packet features and use
a model based on Bi-LSTM+Self-Attention to learn from flow features. Then,
we introduce the idea of stacking to ensemble each base learner. We verify the
effectiveness of the MGEL on two public datasets and the experimental results
show that our MGEL approach outperforms other state-of-the-art methods in
four evaluation metrics.

Our contributions can be briefly summarized as follows:

(1) We propose an ensemble learning approach based on multi-grained fea-
tures for malware encrypted traffic identification. The attributes of multi-
grained features and the characteristics of ensemble learning enhance the
robustness of the model in different scenarios.

(2) For sequence features, we introduce a self-attention mechanism to solve
the long-term dependency problem. Meanwhile, self-attention runs faster
than RNN because its computation does not depend on the previous
state.

(3) Our MGEL achieves excellent results on the two public datasets for mal-
ware traffic encrypted identification and outperforms other state-of-the-
art methods.

2 Background and Related Work

2.1 SSL/TLS Encrypted Protocols

The Secure Sockets Layer(SSL) [6] and its successor Transport Layer Secu-
rity(TLS) [5] protocol are popular encryption protocols used to protect client-
server sessions. Fig. 1 shows the process of an SSL/TLS session. It mainly in-
cludes the handshake process and communication process. The handshake pro-
cess is used to negotiate secret key and verify identification. Specifically, the
client and server first exchange Client Hello and Server Hello messages to estab-
lish the session. Then both sides negotiate the secret key through Certificate,
Server Key Exchange, Client Key Exchange messages, and finally the client sends
ChangeCipherSpec and Finished messages to complete the handshake process.
Then the subsequent communication process encrypts the communication pay-
loads using the negotiated secret key and encryption algorithm.

2.2 Mainstream Method

Conventional Methods Conventional methods generally identify malware en-
crypted traffic by port number and DPI(Deep packet Inspect). The port-based
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Fig. 1. A Communication Session of SSL/TLS Protocol.

approach is very efficient as it identifies the port number extracted from the
packet and matches it with IANA TCP/UDP. However, the accuracy of port-
based methods has dramatically decreased due to the widespread use of port
obfuscation and dynamically assigned ports [4]. Deep Packet Inspect(DPI) tech-
nology is based on the analysis of information available in the payload of packets.
This method can only handle plaintext information and the matching process is
computationally costly.

Machine Learning Methods The machine learning method is mainly based
on the assumption that there are some distinguishable statistical features be-
tween normal and malware encrypted traffic. From millions of flows, Anderson
et. analyze the discrepancy in TLS key fields and summarize a number of distin-
guishing features such as Cipher Suite, Extension, Client’s Public key Length,
Validity of Certificate, etc [2]. In addition, some flow-level statistical features
such as byte distribution, transition probabilities of lengths and times [9, 7, 13]
are often used as features. However, since the statistical features are designed
empirically, they may be valid only for data in certain scenarios and have weak
generalization ability.

Deep Learning Methods Deep learning methods have been widely used in
image process and natural language process, but are still new to the problem
of encrypted traffic identification. Currently, the research of encrypted traffic
identification based on deep learning mainly uses flow sequences or raw byte
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data as input to learning a good representation by AutoEncoder(AE), Con-
volutional Neural Neteork(CNN), Recurrent Neural Network(RNN), etc. Wang
et. transform the raw data into images and learn feature representations using
2D-CNN [17] and 1D-CNN [16]. Liu et. proposed an AutoEncoder model based
on flow sequences and improve performance by adding classification loss and
reconstruction loss [10]. Li et. proposed a byte segment neural network where
payloads are divided into multiple segments [8]. They use the Attention mecha-
nism to further select significant representations as to the input of the softmax
layer.

3 The MGEL Framework

Our ensemble learning model with multi-grained features(MGEL) is shown in
Fig. 2. The MGEL consists of three parts which are extracting multi-grained
features, first stage of MGEL, second stage of MGEL. In the first part, we use
the open source tool flowcontainer1 to obtain multi-grained features from the
raw flow data, and in the second part, we learn three base learners(MGEL-1,
MGEL-2, MGEL-3) using multi-grained features. In the third part, we use the
output of the three base learners to learn the meta learner. In the following
section, we will show the details of the last two parts.
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Fig. 2. The flow diagram of identifying malware encrypted traffic by MGEL. We per-
form a five-fold cross-validation on the model, which is represented by 5 colors.

1 https://github.com/jmhIcoding/flowcontainer
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3.1 The First Stage of MGEL

In the first stage, we use the training dataset to learn three base learners by
multi-grained features. Three base learners are based on flow features and packet
features as shown in Fig. 3. Suppose the size of the training dataset and test
dataset are Mtrain, Mtest , then after the first stage of learning, we will get the
prediction matrix of Ptrain ∈ RMtrain×3,Ptest ∈ RMtest×3.

Base Learner Based on Flow Feature Flow features reflect the communi-
cation process between the client and the server. As shown in Fig. 3(a) and
Fig. 3(b), MGEL-1 and MGEL-2 are based on message type sequences and
packet length sequences, respectively. They consist of three layers, which are
Embedding Layer, Bidirectional LSTM Layer and Self-Attention Layer.

x1 x2 xn

e1 e2 en

h1 h2 hn

FC  Layer

Softmax Layer

1h
2h nh

1h 2h nh

Message type sequence

(a) MGEL-1

p1 p2 pn

e1 e2 en

h1 h2 hn

FC  Layer

Softmax Layer

1h
2h nh

1h 2h nh

Packet length sequence

(b) MGEL-2

Client 
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Client 

Extension

     Xgboost   Classifier

Public_key

Length

Server 

Ciphersuit

Server 

Extension

Packet features

0 1 0 1 1 1 1 0 65

(c) MGEL-3

Fig. 3. The architecture of three base learners. Subgraph (a) and (b) are base learners
based on flow features(message type sequence and packet length sequence). From bot-
tom to top are Embedding Layer, Bi-LSTM Layer, and Self-Attention Layer. Subgraph
(c) is base learner based on packet features, and the packet features will be mapped to
one-hot vectors to input into the Xgboost Claffifer.

Embedding Layer Due to the large range values of flow features, the traditional
one-hot method can cause high-dimensional and sparse vectors. Drawing on the
idea of embedding in natural language processing, we map each value of flow
features to a fixed-length vector. We also introduce pad and unk tokens in the
dictionary to deal with unknown values and sequence length inconsistency.

Assume that the size of the dictionary is V , and the embedded vector dimen-
sion is d. The embedding layer can be viewed as a matrix E ∈ RV×d, where each
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row of the matrix represents a d-dimensional vector corresponding to a certain
value. The matrix E is learnable so that we can get embedding vectors that are
more context-sensitive.

Bi-directional LSTM Layer A bi-directional lstm runs a forward and backward
lstm on a sequence starting from the left and the right ends, respectively. A
forward language model computes the probability of the sequence by modeling
the probability of tokens st given the history(s1, ..., st−1):

p(s1, ..., sN ) =

N∏
t=1

p(st|s1, ..., st−1) (1)

A backward language model is similar to a forward language model, except it
runs over the sequence in reverse, predicting the previous token given the future
context:

p(s1, ..., sN ) =

N∏
t=1

p(st|st+1, ..., sN ) (2)

After going through bi-directional lstm Layer, we can get two context-dependent
representations −→h t and ←−h t at each position t. we concatenate them and get the
final output for each position: ot = [

−→
h t,
←−
h t]. With this setting, the output of

bi-directional lstm can be expressed as o = [o1, o2, ..., on], where o contains bi-
directional information about the the whole sequence.

Self-Attention Layer In order to improve the speed of the model and solve the
problem of long-term dependencies, we introduce a self-attention mechanism [15],
which has recently been widely used in natural language processing and computer
vision. The self-attention mechanism generally adopts the form of query-key-
value(Q, K, V ), and its calculation equation can be expressed as follows:

H = softmax(
KTQ√

dk
)V

Q = XWQ,K = XWK , V = XWV

(3)

where X = [x1, x2, ..., xN ] is the input sequence, H = [h1, h2, ..., hN ] is the
output sequence. dk is the dimension of Q and K. WQ,WK ,WV are learnable
parameters. Through the self-attention mechanism, we can learn the parts that
should be focused on in the sequence. At the same time, because the calculation
of each step does not need to depend on the previous step, the computational
speed is faster than the RNN model.

Base Learner Based on Packet Feature Packet features refer to some key
fields in the packet such as cipher suite, extension, length of public key, validity
time of certificate, etc. According to the analysis in [2], there is a clear distinction
between these key fields in normal and malware encrypted traffic, which can be
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learned by a machine learning model. Through a comprehensive comparison, we
choose Xgboost as the base learners and the structure of the model is shown in
Fig. 3(c).

Xgboost Xgboost [3] is a scalable machine learning system for tree boosting
methods, which achieves state-of-the-art results in many areas. We choose Xg-
boost as the base learner based on two main considerations. Firstly, gradient tree
boosting combines the advantages of bagging and boosting and has been shown
to give state-of-the-art results in many applications. Secondly, by proposing a
novel tree learning algorithm, Xgboost can handle sparse data and the lack of
packet features. For a given sample , a Xgboost model uses M additive functions
to predict the output:

ŷi = ϕ(xi) =

M∑
k=1

fk(xi) (4)

where fk is a regression tree (also known as CART). Since the parameters of the
model are functions, we cannot use optimization algorithms like SGD. Instead,
the model is trained in an additive manner. Formally, let ŷ(t−1)

i be the prediction
of the ith instance at the (t− 1)th iteration, we will need to add ft to minimize
the following objective function.

Lt(ϕ) =

N∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) +Ω(ft)

where Ω(ft) = γT +
1

2
λ ∥w∥2

(5)

where l is a convex loss function that measures the difference between the target
yi and prediction ŷ

(t−1)
i , regularizer Ω(ft) is used to penalize the complexity of

the tth tree model. Equation 4 means we should add the ft that most minimizes
Lt(ϕ). In practice, Second-order approximation can be used to quickly optimize
the objective. By performing a second-order Taylor approximation expansion of
the loss function, we can approximate the objective function as following.

Lt(ϕ) ≃
N∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] +Ω(ft) (6)

where gi = ∂
ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ),hi = ∂2

ŷ
(t−1)
i

l(yi, ŷ
(t−1)
i ).

Therefore, we can transform packet features into one-hot vectors as the input
of Xgboost and set the parameter M for training. Moreover, the Xgboost model
is interpretable, and we can evaluate the importance of features based on the
number of times they are selected as split points.

3.2 The Second Stage of MGEL

In the second stage, we first train the meta learner using the output Ptrain ∈
RMtrain×3 of the three base learners on the training dataset. For simplicity, we
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choose logistic regression as the meta learner, which can be represented as:

Y = σ(f(Ptrain)) (7)

where σ(·) is activation function, f is the parameter to be learned, Y ∈ RMtrain×1

After the parameters are trained, we use Ptest ∈ RMtrain×3 as input to predict
the performance of our MGEL model on the test dataset.

4 Experment and Results

4.1 Experiment Settings

Dataset The first dataset(CIC-InvesAndMal2019) is regenerated from CIC-
InvesAndMal2019 [14] which includes 10 different families of Ransomware, such
as Charger family, Jisut family, Koler family, etc. A total of 3,797,000 data
packets and 63,953 flows are included in the malware sample. The benign sample
comes from normal Android applications, including 13,474,342 data packets and
69,670 flows.

The second dataset(MTA) is regenerated from malware-traffic-analysis.net,
which is a website that provides real-time updates on current malware prevalent
in Europe and the United States. We collected malware samples from 2019 to
2020, totaling 10,793,979 data packets and 50,289 flows. Since the normal sample
is not provided on the website, we captured 9,990,438 data packets and 50,243
flows on the normal applications of Android.

Evaluation Metrics We evaluate and compare our model with the state-of-
the-art methods using four metrics. Namely, Accuracy , Precision , Recall , and
F-Measure:

Accuracy =
TP + TN

TP + FP + FN + TN
(8)

Recall =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

F −Measure =
2Precision ∗Recall

Precision+Recall
(11)

Where TP(True Positive) represents malware traffic is correctly identified as
malware traffic; FP(False Positive) represents benign traffic is incorrectly iden-
tified as malware traffic; TN(True Negative) represents benign traffic is correctly
identified as benign traffic; FN(False Negative) represents malware traffic is in-
correctly identified as benign traffic.
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Experimental Setings and Baselines For the base learner based on flow
features, We use the Adam optimizer with a batch size of 128, for training where
the learning rate was set to 5e−3. For the base learner based on Xgboost , we
choose the maximum depth of the tree to be 3 and the number of trees to be
160.

We compare our methods with other state-of-the-art methods as follows:

(1) FS-Net uses a multi-layer encoder-decoder structure and reconstruction
mechanism to identify malware flows from flow sequences(message type
sequences or packet length sequences) [10].

(2) MAMPF uses Random Forest to identify malware flows with features
learned from message type and length block Markov models [9].

(3) FoSM constructs a first-order Markov model using message sequences to
discriminate the class of traffic based on the maximum likelihood prob-
ability [7].

(4) SoSM is similar to FoSM, but utilizes a second-order Markov model [13].
(5) 2D-CNN converts raw traffic data into an image and use two-dimensional

CNN for classification [17].
(6) 1D-CNN views raw traffic data as an article and extracts features using

a 1D CNN and Max Pooling layer, and finally classifies them using a
softmax layer [16].

4.2 Analysis on MGEL Component

We explore several key points of each base learner in this section. For the base
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Fig. 4. The Experimental Results of MGEL Key Component

learner based on packet features, there are two main problems. The first one is
which packet features should be selected, and the second one is which classifier
should be chosen.
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In Fig. 4(a), We compare the performance of Xgboost, Random Forest(RF)
and Logistic Regression(LR) on the CIC-InvesAndMal2019 with different com-
binations of features. Due to space constraints, we use N1, N2, N3 accordingly
to denote the client-side cipher suite and extension fields, the server-side ci-
pher suite and extension fields, and the public key length. The combination of
numbers indicates the combination of features, e.g., N12 means we use both
client-side and server-side cipher suites and extension fields. According to the
experimental results, we can see that the Xgboost method can obtain the highest
accuracy rate. It can also be seen that as more features are added, the accuracy
of the model is improved except for Logistic Regression. This is attributed to
the fact that the tree-based model is more adept at dealing with missing fea-
tures. Therefore, we choose Xgboost as the base learner and N123 as the packet
features.

For the base learner based on flow features, we focus on exploring the effect of
sequence length and the self-attention mechanism on the accuracy of the model.

In Fig. 4(b) and Fig. 4(c), we take the length of the message type sequence
and packet length sequence as [4, 8, 16, 32, 64, 128, 256], respectively, and com-
pare the accuracy under the CIC-InvesAndMal2019 dataset with and without
attention layer. From the experimental results, it can be seen that the intro-
duction of the self-attention layer can improve the accuracy of the model. This
becomes more obvious as the sequence length increases, which is attributed to
the fact that the self-attention mechanism is stronger than LSTM in solving the
long-term dependence problem. Moreover, we can find that when the sequence
length exceeds 128, the accuracy improvement of the model is no longer obvious.
Therefore, we set the sequence length of both MGEL-1 and MGEL-2 to 128.

4.3 Comparison Results

We conducted comparative experiments on two public datasets using the six
state-of-the-art methods mentioned in Section 4.1, and the experimental results
are shown in Table 1 and Table 2. From Table 1 and Table 2, we can obtain the
following conclusions:

(1) MGEL achieves the best performance and outperforms all the other
methods on all the overall metrics. In addition, we can see that MGEL
can reach more than 99% of F1 values on both two public datasets.

(2) Models using a single feature (FS-Net, FoSM, SoSM) have unstable per-
formances on the two public datasets. For example, FS-Net has higher
accuracy on MTA dataset, while FoSM and SoSM have better perfor-
mance on CIC dataset. This is due to the different sensitivity of data to
features, further confirming the importance of using multi-grained fea-
tures.

(3) Deep learning models using raw byte data (1D-CNN, 2D-CNN) and
multi-attribute features models(MAMPF) have a robust performance on
both public datasets, but in general worse than MGEL. This is because
of the advantage of self-attention and stacking ensemble method.
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Table 1. Comparison Results on CIC-InvesAndMal2019 Dataset

Method Accuracy Precision Recall F-Measure

MGEL 0.9988 0.9998 0.9978 0.9988
FS-Net 0.7953 0.7760 0.8859 0.8273

MAMPF 0.9332 0.9184 0.9613 0.9394
FoSM 0.933 0.9765 0.8976 0.9354
SoSM 0.9587 0.9558 0.9680 0.9619

2D-CNN 0.744 0.7429 0.7463 0.7446
1D-CNN 0.7424 0.694 0.7684 0.7293

Table 2. Comparison Results on MTA Dataset

Method Accuracy Precision Recall F-Measure

MGEL 0.9999 0.9999 1.0 0.9999
FS-Net 0.9998 0.9998 0.9997 0.9998

MAMPF 0.9984 0.9989 0.9977 0.9983
FoSM 0.9772 0.9904 0.9599 0.9749
SoSM 0.9780 0.9955 0.9566 0.9577

2D-CNN 0.9949 0.9958 0.9934 0.9946
1D-CNN 0.9970 0.9947 0.9991 0.9969

4.4 The Advanced of Ensemble Learning

In order to verify the advanced of the ensemble method, we compared the per-
formance of a single model on two public datasets. Table 3 is our results on the
CIC-InvesAndMal2019 dataset, and Table 4 is our results on the MTA dataset.
It can be seen from Table 3 and Table 4 that a base learner trained using only a
single feature cannot achieve the best performance on different datasets. With
the stacking ensemble method, the adaptability of features on different datasets
can be adjusted adaptively, so that the best performance can be achieved on
different datasets.

Table 3. The Results of Advanced Analysis on CIC-InvesAndMal2019
Dataset

Method Accuracy Precision Recall F-Measure

MGEL 0.9988 0.9998 0.9978 0.9988
base-learner 1 0.9988 0.9998 0.9978 0.9998
base-learner 2 0.7403 0.7634 0.6964 0.7284
base-learner 3 0.6221 0.6406 0.5502 0.5963
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Table 4. The Results of Advanced Analysis on MTA Dataset

Method Accuracy Precision Recall F-Measure

MGEL 0.9999 0.9999 1.0 0.9999
base-learner 1 0.9672 0.9661 0.9683 0.9672
base-learner 2 0.9980 0.9984 0.9969 0.9977
base-learner 3 0.9908 1.0 0.9817 0.9907

5 Conclusion and Future Work
In this paper, we propose an ensemble learning approach with multi-grained
features for malware encrypted traffic identification. It jointly trains three base
learners using flow features and packet features, and finally ensembles the three
base learners by a stacking way. Since the three base learners use multi-grained
features for learning, they can focus on different parts of the data. Moreover, our
model is more robust on different scenarios by ensembling base learners through
stacking. We validate the effectiveness of the MGEL on two public datasets, and
the experimental results demonstrate that the MGEL can achieve an excellent
identification performance and outperform other state-of-the-art methods. In
the future, we would like to explore the performance of the model on multi-
classification tasks. In addition, we would like to apply for the recent advances
in the field of deep learning to improve the performance of traffic classification.
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