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Abstract.  In this paper, a second-order adaptive network model is introduced 

for a number of phenomena that occur in the context of PTSD. First of all the 

model covers simulation of the formation of a mental model of a traumatic course 

of events and its emotional responses that make replay of flashback movies hap-

pen. Secondly, it addresses learning processes of how a stimulus can become a 

trigger to activate this acquired mental model. Furthermore, the influence of ther-

apy on the ability of an individual to learn to control the emotional responses to 

the traumatic mental model was modeled. Finally, a form of second-order adap-

tation was covered to unblock and activate this learning ability. 
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1 Introduction 

A Post Traumatic Stress Disorder (PTSD) is usually developed after experiencing one 

or a course of events that trigger strong negative emotions like fear; e.g., [7, 21]. One 

of the symptoms is a recurring re-experiencing of the course of events that led to the 

trauma and that are played again and again in the mind as a kind of flashback movie 

and thereby trigger the strong negative emotions again. In the literature such as ([2-3, 

13, 28] strong evidence can be found for relations to amygdala, dorsal anterior cingu-

lated cortex, ventromedial prefrontal cortex and hippocampus. One of the reported is-

sues here is a reduction of the connections to regions of the prefrontal cortex, which 

makes it difficult to apply emotion regulation. The role of the amygdala in activating 

fear and of the relation between amygdala and the pre-frontal cortex areas in suppress-

ing fear was found to be crucial; e.g., [2, 20]. If the emotion regulation strategy based 

on suppression is strengthened, this leads to a decrease in physiological and experiential 

effects of negative emotions; e.g., [9, 19, 27]. 

Multiple forms of adaptivity play a crucial role in both the development of PTSD 

and therapies to recover from it. During the development, an important role is played 

by the learning of a form of mental model of the course of events leading to the trauma. 

This is a form of observational learning; e.g., [4, 26]. It is this learnt mental model that 

is the basis of the flashback symptoms. Moreover, during development also learning 
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takes place to connect different stimuli (by themselves irrelevant but just co-occurring 

with the traumatic events) to the traumatic stimuli which makes them triggers for the 

flashbacks; this is a form of sensory preconditioning; e.g., [5, 11]. To recover from 

PTSD another form of learning is required: learning to strengthen the connections to 

the relevant prefrontal cortex areas to improve emotion regulation; e.g., [19, 27]. How-

ever, this learning capability is impaired by the stress itself, which prevents the learning 

from taking place in a natural manner. This effect is called metaplasticity; e.g., [10]. 

Metaplasticity [1] is a form of second-order adaptation, as it exerts a form of control 

over adaptation. In contrast, the other forms of adaptation mentioned above are called 

first-order adaptation. 

The focus in the current paper is to introduce a computational network model ad-

dressing all these forms of adaptivity pointed out above. This leads to a second-order 

adaptive network model in which during development of PTSD a mental model for the 

flashbacks is learnt and also an association of a trigger to the traumatic events (both 

first-order adaptation). As an additional effect of the development phase, a negative 

effect of metaplasticity occurs that impairs the plasticity of the emotion regulation (sec-

ond-order adaptation). For recovery, a therapy is applied to resolve the impairment of 

the plasticity of the emotion regulation which is a positive effect of metaplasticity (sec-

ond-order adaptation). After this, the learning to strengthen the emotion regulation 

takes place which then leads to recovery (first-order adaptation). 

In Section 2 some background knowledge is discussed for the different types of 

adaptation. Section 3 introduces the second-order adaptive network model to address 

these forms of adaptation. In Section 4 some example simulations for this network 

model are discussed. Finally, Section 5 is a discussion. 

2 Background Knowledge on Adaptation Principles Used 

As discussed above, different forms of adaptation play a role in development of and 

recovery from traumas. The more specific adaptation principles for these forms of ad-

aptation are discussed in this section. 

2.1 First-order adaptation principle: Hebbian learning 

In neuroscientific literature such as [6], two types of first-order adaptation principles 

are discussed: synaptic and non-synaptic. An example of the latter type is intrinsic ex-

citability adaptation, which will not be used here. Hebbian learning is a well-known 

first-order adaptation principle of the first type; it addresses adaptive connectivity [12]. 

It can be explained by: 

 
‘When an axon of cell A is near enough to excite B and repeatedly or persistently      (1) 

takes part in firing it, some growth process or metabolic change takes place in one  

or both cells such that A’s efficiency, as one of the cells firing B, is increased.’  

[12], p. 62 

 

This is sometimes simplified (neglecting the phrase ‘one of the cells firing B’) to: 
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‘What fires together, wires together’ [14, 22]                     (2) 

 

This first-order adaptation principle will be used to model adaptation for the following. 

 

• Development of the trauma: 

o Learning of a connection of a trigger stimulus to the traumatic course of 

events based on sensory preconditioning [5, 11]  

o Learning the connections in the mental model of the traumatic course of 

events based on observational learning, also using sensory precondition-

ing [4, 26]  

• Recovery from the trauma: 

o Strengthening emotion regulation for recovery by learning the connec-

tions to the prefrontal cortex areas [19, 27]  

2.2 Second-order adaptation principle: Stress reduces adaptation speed  

In [10] the focus is on the role of stress in reducing or blocking plasticity. Many mental 

and physical disorders are stress-related, and are hard to overcome due to poor or even 

blocked plasticity that comes with the stress. Garcia [10] describes the negative role of 

stress-related metaplasticity for this, which often leans to a situation that a patient is 

locked in his or her disorder by that negative pattern. However, he also shows that by 

some form of therapy this negative cycle might be broken: 

 
‘At the cellular level, evidence has emerged indicating neuronal atrophy and cell loss 

in response to stress and in depression. At the molecular level, it has been suggested 

that these cellular deficiencies, mostly detected in the hippocampus, result from a 

decrease in the expression of brain-derived neurotrophic factor (BDNF) associated 

with elevation of glucocorticoids.’ [10], p. 629  

‘…modifications in the threshold for synaptic plasticity that enhances cognitive 

function is referred here to as ‘positive’ metaplasticity. In contrast, changes in the 

threshold for synaptic plasticity that yield impairment of cognitive functions, for ex-

ample (..) in response to stress (..), is referred to as ‘negative’ metaplasticity.’ [10], 

pp. 630-631 

‘In summary, depressive-like behavior in animals and human depression are as-

sociated with high plasma levels of glucocorticoids that produce ‘negative’ metaplas-

ticity in limbic structures (…). This stress-related metaplasticity impairs performance 

on certain hippocampal-dependent tasks. Antidepressant treatments act by increasing 

expression of BDNF in the hippocampus. This antidepressant effect can trigger, in 

turn, the suppression of stress-related metaplasticity in hippocampal-hypothalamic 

pathways thus restoring physiological levels of glucocorticoids.’ [10], p. 634 

 

This second-order adaptation principle will be used to model adaptation for the follow-

ing. 

• Development of the trauma: 

o Reducing the adaptation speed for the learning of the emotion regu-

lation connections to the prefrontal cortex areas due to the high stress 

levels [10] 
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• Recovery from the trauma: 

o Increasing the adaptation speed for the learning of the emotion regu-

lation connections to the prefrontal cortex areas due to a therapy that 

(temporarily) reduces the stress levels [10] 

 

In Section 3 it will be discussed how these have been modeled by using a so-called 

self-modeling network model. 

3 The Second-Order Network Model 

In this section, a detailed overview is presented of the designed second-order adaptive 

network model for modeling the learning of PTSD trauma and the influence of therapy 

on recovery. For the modeling, we use the Network-Oriented Modeling approach in-

troduced in [23] and further developed to cover higher-order adaptive networks in [24, 

25], where also the supporting dedicated software environment is presented.  

3.1 The general format 

This approach can be broken down in the following steps: 

• Translating the domain into a conceptual causal network model in terms of network 

characteristics 

• Transcribing the conceptual causal network model into a standard table format 

called role matrix format. These role matrices break down the network characteris-

tics for all the different types of causal influences on a state in the model 

• The network characteristics are grouped into the following types: 

1. Connectivity characteristics 

What states X, Y and connections X → Y are there in the model and what are the 

weights X.Y of the connections? These are specified in role matrix mb (for the 

states and their connections) and mcw (for the connection weights X.Y) 

2. Aggregation characteristics 

How are different impacts from other states on a state Y aggregated by a combi-

nation function cY(..) and what are the values of the parameters for these com-

bination functions? The combination functions are chosen from a library by as-

signing weights i,Y to them and values for the parameters i,j,Y are set. These 

characteristics are specified in role matrix mcfw (for combination function 

weights i,Y) and mcfp (for the combination function parameters i,j,Y) 

3. Timing characteristics 

How fast do the states Y change upon the received impact, due to their speed 

factor Y? These speed factors Y are specified in role matrix ms. 

• Providing the above network characteristics as tables in role matrix format as input 

for the available dedicated software environment. Based on these received tables, 

the software environment runs simulations. 
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3.2 Translating the domain knowledge into a conceptual causal model 

Based on a domain study, the first step towards building a computational model is trans-

lating the processes and brain mechanisms discussed in the literature into a conceptual 

causal network model. To accommodate for the forms of adaptation of different orders 

order for the model, the conceptual model uses so-called self-modeling networks that 

include self-models, in this case leading to three levels (see Fig. 1): 

 

1. The Base Level 

This level includes all basic (non-adaptive/non-learning) processes of the con-

ceptual model.  

2. The First-Order Self-Model Level (or First Reification Level) 

On this level, states are added that represent (adaptive) network characteristics 

of the base level. For example, a self-model state WX.Y can be added to repre-

sent an adaptive connection weight X.Y, or a self-model state HY can be added 

to represent a speed factor Y. In the model in this way the learning of several 

connections in the base level takes place through Hebbian learning. These 

learning connections are represented by the dynamics of the W-states in the 

blue middle plane. This first-order self-model enables adaptation of the con-

nections of the mental model in the base level. 

3. The Second-Order Self-Model Level (or Second Reification Level) 

Because the learning itself is adaptive as well, another level is added on top of 

the first-order self-model level: the second-order self-model level. This level 

allows to control the learning speed of the states WX.Y for the learning connec-

tions by adding state HWX.Y here representing the speed factor of WX.Y. 

 

See for the connectivity of the network model Fig. 1; Table 1 shows the states and 

brief explanations of them. Within the network model, the first-order adaptation based 

on the Hebbian learning principle has been modeled by using a connectivity self-model 

(in the blue plane) based on self-model states WX,Y representing connection weights 

X,Y. These self-model states need incoming and outgoing connections to let them func-

tion within the network. To incorporate the ‘firing together’ part of (2) from Section 2, 

for the self-model’s connectivity, incoming connections from X and Y  to WX,Y are used; 

see Fig. 1 (upward arrows in blue). These upward connections have weight 1. Also a 

connection from WX,Y to itself with weight 1 is used to model persistence of the learnt 

effect; in pictures they are usually left out. In addition, an outgoing connection from 

WX,Y to state Y is used to indicate where this self-model state WX,Y has its effect; again 

see Fig. 1 (pink downward arrow). The downward connection indicates that the value 

of WX,Y is actually used for the connection weight of the connection from X to Y. For 

the aggregation characteristics of the first-order self-model, the Hebbian learning rule 

is defined by the combination function hebb(V1, V2, W) for self-model state WX,Y from 

Table 4. 
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Fig. 1. Connectivity of the introduced second-order adaptive network model 

The sensing of an example of a traumatic course of events is modeled by the sensor 

states sste1, sste2, sste3. For example, te1 or traumatic event 1, is a potentially dangerous 

situation for a child you observe , te2 is an action from your side with the intention to 

save the child from that situation and te3 is an unfortunate failure of your action such 

that the child actually gets hurt. During this traumatic course of affairs, sensory repre-

sentations srste1, srste2, srste3 are activated for these events te1, te2 and te3, and by sen-

sory preconditioning the connections between these sensory representations are 

learned. By this observational learning process, the mental model of the traumatic 

course of events is formed and represented by first-order self-model states Wsrste1,srste2 

and Wsrste2,srste3. Similarly, the connection between the sensory representations of the 

trigger tr and the traumatic events is learnt based on sensory preconditioning, repre-

sented by Wsrstr,srste1. These newly formed connections activate the mental model every 

time the trigger is sensed. For the traumatized person this shows as an internal flashback 

movie of the traumatic course of events. In turn, this flashback movie activates the 

related negative emotions experienced at the original traumatic events. 
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Table 1. The states in the network model and their explanation 

state explanation 

X1 sste1 Sensor state for traumatic event phase 1: observation te1 

X2 sste2 Sensor state for traumatic event phase 2: action te2 

X3 sste3 Sensor state for traumatic event phase 3: effect te3 

X4 sstr Sensor state for trigger tr for traumatic sequence of events  

X5 ssth Sensor state for trigger th for therapy input  

X6 srste1 Sensory representation state for traumatic event phase 1: observation te1 

X7 srste2 Sensory representation state for traumatic event phase 2: action te2  

X8 srste3 Sensory representation state for traumatic event phase 3: effect te3 

X9 srstr Sensory representation state for trigger tr for traumatic sequence of events  

 X10 srsth Sensory representation state for therapy th from therapy  

 X11 aste Awareness state for traumatic sequence of events te 

 X12 psb Preparation state for emotional response b 

 X13 fsb Feeling state for emotional response b 

 X14 csb Control state for emotional response b 

  X15 bsb,te Belief that emotional response b is from traumatic event te 

  X16 esb Bodily expressed emotional response b 

  X17 esb,te Expressing that emotional response b is from te 

  X18 Wsrste1,srste2 
Representation state for weight of connection from srste1 to srste2 for im-

printing traumatic sequence of events 

  X19 Wsrste2,srste3 
Representation state for weight of connection from srste2 to srste3 for im-

printing traumatic sequence of events 

  X20 Wsrstr,srste1 
Representation state for weight of connection from srstr to srste1 for sen-

sory preconditioning to link trigger tr to the traumatic sequence of events 

  X21 Wpsb,csb 
Representation state for weight of connection from psb to csb  for learning 

of emotion regulation   

  X22 Wfsb,csb 
Representation state for weight of connection from fsb to csb  for learning 

of emotion regulation   

  X23 Wth,csb 
Representation state for weight of connection from th to csb  for learning 

of emotion regulation from therapy  

  X24 HWsrste1,srste2 
Control state for adaptation speed for weight of connection from srste1 to 

srste2 

  X25 HWsrste2,srste3 
Control state for adaptation speed for weight of connection from srste2 to 

srste3 

  X26 HWsrstr,srste1 
Control state for adaptation speed for weight of connection from srstr to 

srste1 

  X27 HWpsb,csb 
Control state for adaptation speed for weight of connection from psb to 

csb 

  X28 HWfsb,csb Control state for adaptation speed for weight of connection from fsb to csb 

 

In contrast to what was believed earlier, such learnt connections usually do not show 

any form of natural extinction; e.g., [15], p. 507. Therefore, to make their effect more 

bearable, the only option is to suppress the emotional consequences related to the 

trauma by activating the emotion regulation control state csb. However, due to the high 

negative emotion levels the learning process for the activation of csb is impaired: learn-

ing speeds HWpsb,csb and HWfsb,csb are very low. Therefore, without any additional help 

the situation will stay as it is. But, following [10] the therapy th is able to temporarily 
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reduce the level of negative emotions, so that HWpsb,csb and HWfsb,csb get higher values. 

Due to this, learning of the connections to the control state takes place: Wpsb,csb and 

Wfsb,csb get higher values.  

3.3 Transcribing the conceptual model into role matrices 

To allow for easy formalization of the conceptual model into role matrices and an exe-

cutable computational model, we use generic ways to describe the states, intra-level 

connections and interlevel connections. See an abstracted overview of all types of states 

and connections used in the model in Tables 2 and 3.  

Table 2. Overview of types of states 

State Name Representation 
ssy Sensor state for state y in the world 
srsy Sensory representation state for y 
ass Awareness state for s 
fsb Feeling state for feeling b 
psb Preparation state for feeling b 
csb Control state for feeling b 
bsb Belief state for feeling b 
esb Execution state for feeling b 
WX,Y Connection weight representation state for connection X → Y 

HWX,Y Learning control state for the connection weight state for connection X → Y 

Table 3. Overview of types of connections 

Connection Representation Connection Type 

X → Y Connection between base states X and Y Intra-level (horizontal) connection 
X  → WX.Y 

Y  →  WX.Y 

Connections from base level states X and 

Y to connection adaptation state WX.Y to 

support the Hebbian learning formation 

Interlevel connection, upward from 

the base level to the first-order self-

model level 
WX.Y → Y Connection from connection adaptation 

state WX.Y to base state Y;  these connec-

tions effectuate the learnt connection 

Interlevel connection, downward 

from the first-order self-model level 

to the base level 
WX.Y → HWX.Y 

X → HWX.Y 

Y → HWX.Y 

Connections from connection adaptation 

state WX.Y and base level states X and Y to 

learning control state HWX.Y 

Interlevel connections, upward from 

the base level to the second-order 

self-model level, and upward from 

the first-order self-model level to the 

second-order self-model level 
HWX.Y → WX.Y 

 

Connection from learning control state 

HWX.Y to adaptive connection adaptation 

state WX.Y to effectuate learning control  

Interlevel connection, downward 

from the third level to the second 

level 

 

The model with connectivity shown in Fig. 1 was then specified by tables in role 

matrix format: Connectivity characteristics (1), aggregation characteristics (2) and tim-

ing characteristics (3). See the Appendix at URL https://www.researchgate.net/publi-

cation/350159052. Four different combination functions from the library are used that 

each serve a different purpose; see Table 4. 
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Table 4. The combination functions used from the library 

Combination 

function 
Notation  Formula Parameters 

Advanced  

logistic sum 
alogistic,(V1, …,Vk) [

1

1+e−𝛔(𝑉1+⋯+𝑉𝑘−𝛕)   −   
1

1+e𝛔𝛕)](1+e-στ) 
Steepness >0 

Excitability 

threshold  

Hebbian  

learning 
hebb(V1, V2, W) 𝑉1𝑉2(1 − 𝑊) + 𝑊 

Persistence  

factor 0 

Steponce steponce(V)   1 if   t  , else 0 
0 begin, 

 end time 

Stepmod stepmod,(V1, …,Vk) 0 if t mod  < , else 1  

Repetition 

0 

Duration 0 

 

The advanced logistic sum combination function combines influences of multiple 

states by adding them but makes sure they stay between 0 and 1, with parameters steep-

ness  and threshold . The Hebbian learning combination function is used for learning 

of a connection weight. The stepmod function allows for an activation of states with a 

predefined length and frequency (here, that is used for the recurring trigger state). The 

steponce function allows for the activation of states with predefined length and start 

time (here, that is used for the therapy and trauma states). 

The following standard generic difference equation is used for simulation purposes 

and also for analysis. It incorporates the network characteristics X,Y, cY(..), Y in a nu-

merical difference equation format:  

 

𝑌(𝑡 + 𝑡)  =  𝑌(𝑡)  + 
𝑌
[𝐜𝑌(𝑋1,𝑌𝑋1(𝑡), … ,𝑋𝑘,𝑌𝑋𝑘(𝑡)) −  𝑌(𝑡)] 𝑡 (1) 

 

for any state Y and where 𝑋1 to 𝑋𝑘  are the states from which Y gets its incoming con-

nections. Based on the role matrices as input, his generic difference equation is auto-

matically applied to all network states (including the self-model states) within the ded-

icated software environment used to perform simulation experiments. 

4 Example Simulations 

The role matrices can easily be transferred to the dedicated softare environment for 

simulations. Running the software loops over a chosen time period (in this case a time 

interval from 0 to 1400 with step size t = 0.5) and provides as output a simulation 

graph for the model. In Fig. 2 the development of PTSD is shown based on traumatic 

events te1 to te3 in time period from 100 to 200 without applying therapy. The trigger 

also occurs from 100 to 200 and after that regularly recurs from 300 to 400, from 500 

to 600, et cetera. In Fig. 3 the same is shown but this time therapy is taking place from 

time 400 to time 800 where the therapy leads to recovery. In both Fig. 2 and 3 in the 

time period from 100 to 200 the sequence of traumatic events te1 to te3 in the world 

are sensed (via sensor states sste1, .., sste3) of which internal representations srste1, .., 

srste3 are made. Due to sensory preconditioning (first-order adaptation based on 
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Hebbian learning), the connections between them are developed (thus forming a mental 

model of the traumatic course of events) and also a connection from the trigger repre-

sentation srstr to srste1. Moreover, they trigger the negative emotional response prepara-

tion psb and feeling state fsb, and these in turn reduce the adaptation speed (represented 

by the H-states) of the learning of the connections to the control state csb (second-order 

adaptation for metaplasticity). Therefore, no strengthening of the emotion regulation 

takes place, what would be needed to get rid of the negative feelings. Every time period 

that the trigger recurs, due to the connection from srstr to srste1 and the connections 

between srste1, .., srste3, the flasback movie is replayed (as a form of internal simulation) 

and because of that the negative emotion and feeling are activated to high values again.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Development of PTSD without using therapy. The trauma develops from time 100 to 200. 

The trigger also occurs from 100 to 200 and after that regularly recurs from 300 to 400, from 500 

to 600, et cetera. No recovery from PTSD takes place. 

5 Discussion 

In this work, a second-order adaptive model was developed to allow for simulation of 

the formation of a mental model of a trauma that is built up over time and its emotional 

responses, and neurological processes of how a stimulus can become a trigger to acti-

vate this mental model. Furthermore, the influence of therapy on the ability of an indi-

vidual to control the emotional response to the trauma mental model was explored. The 
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computational model was developed following the approach described in [25], using 

the following steps: 

 

• A conceptual causal network model was designed based on literature on pa-

tients with PTSD and existing theories and models about PTSD and emotion 

regulation  

• The conceptual causal network model was translated into role matrices format 

• The role matrices were used in the dedicated software environment to obtain 

simulations; this software environment is available at  

https://www.researchgate.net/project/Network-Oriented-Modeling-Software.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Development of PTSD and recovery using therapy. Again, the trauma develops from time 

100 to 200 and the trigger also occurs from 100 to 200 and after that regularly recurs from 300 

to 400, from 500 to 600, et cetera. In this case therapy takes place from time 400 to 800 which 

leads to recovery. 

Different simulation experiments were done, for individuals developing a trigger re-

sponse, individuals not developing a trigger response, and individuals receiving ther-

apy.  

Other work addressing computational modelling for trauma development and re-

covery can be found in [8, 16-17]. However, none of these previous works allowed for 

the adaptation of the learnt connections of the mental model and therapy. In addition, 

in [16-17] it is assumed that already built-in upward connections for the emotion regu-

lation exist and are static, while in the model presented here an important part of the 
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development of a trauma is the learning for the mental model of the traumatic course 

of affairs.  In another comparison, [8] addresses social support instead of the type of 

therapy suggested by Garcia [10] and used in the current paper. Moreover, the under-

lying second-order adaptation process as explained extensively by [10] is fully ad-

dressed here while it is ignored in [8, 16-17]. Finally, in the current paper the source of 

the trauma can be a process taking place over a longer time period with a successive 

course of events over time, and modeled in the form of an internal mental model that 

can be replayed as a flashback movie, while in [8, 16-17] only one traumatic state at 

one time point is assumed where a flashback is only one static image, which is not quite 

realistic. 

The second-order adaptive model described in this paper can be used as a basis for 

development of integrated computing applications to support PTSD therapy or to de-

velop virtual characters illustrating the processes involved in patients with PTSD. In 

such contexts, also possibilities may be exploited for further validation of the model.  
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