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Abstract. In this paper, we are focusing on the problem of interpret-
ing Neural Networks on the instance level. The proposed approach uses
the Feature Contributions, numerical values that domain experts fur-
ther interpret to reveal some phenomena about a particular instance or
model behaviour. In our method, Feature Contributions are calculated
from the Random Forest model trained to mimic the Artificial Neural
Network’s classification as close as possible. We assume that we can trust
the Feature Contributions results when both predictions are the same,
i.e., Neural Network and Feature Contributions give the same results.
The results show that this highly depends on the level the Neural Net-
work is trained because the error is then propagated to the Random
Forest model. For good trained ANNs, we can trust in interpretation
based on Feature Contributions on average in 80%.

Keywords: Model interpretation· Artificial Neural Network · feature
contributions

1 Introduction

Neural Networks (NNs) are widely accepted machine learning technique to learn
complex relationships for classification and prediction problems. Their pattern-
matching and learning capabilities allowed them to address many difficult prob-
lems, impossible to solve by other computational methods. Unfortunately, they
lack transparency. It is hard to see how the network arrives at a particular con-
clusion due to the network architecture’s complexity. Therefore, ANN (Artificial
Neural Network) is often called a black-box model [12]. The interpretation of
the model (why the model makes a particular decision) is important [20], but
for non-linear models’ extraction of such knowledge is difficult to achieve.

There are two approaches to ANN models interpretation: methods based on
rule extraction and variable importance.

Rule extraction methods, that try to interpret trained neural networks or
opaque models, have a long track record in machine learning and its applica-
tions. The definition of the problem can be found in [5]. The taxonomy of rule
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extraction from neural networks distinguishes the following: decompositional (lo-
cal methods), pedagogical (global methods) [3] and eclectic methods. The main
disadvantage of this approach is a limited interpretation of a model for data with
a large number of variables. Models built for datasets that contain thousands of
variables (e.g., codes DNA, chemical compounds or binary data) are not readily
interpretable by rules.

Estimation of variable importance for ANN models explains the relative con-
tribution of each variable to the prediction result. In [14] authors presented the
interquartile range (IQR) method to rank variables based on their importance.
This method was used to rank variables but does not explain the influence of
a variable on predicted value. In [4, 6, 11] methods, based on partial derivatives
in ANN sensitivity analysis were proposed to calculate variable importance. In
[12] the relative importance of variable, calculated using various methods, was
averaged to handle the instability problem of variable importance.

The variable importance is applicable to datasets with a large number of in-
put variables as feature selection method. The variables with the most significant
importance are further used to build more accurate models [21]. The need for in-
terpretation and difficulties connected with this problem grow when we consider
deep networks. A survey paper [2] and two latest methods [22] used flip points to
explain the boundary between two classes and [6] proposed enhanced integrated
gradients. Using principal component analysis (PCA) and rank-revealing QR
factorization (RR-QR), the set of directions from each training input variable
to its closest flip point provides explanations of how a trained neural network
processes a dataset.

In some cases, we would like to interpret the model behaviour on the instance
level. As an example, let us consider two toxic chemicals (class toxic) with simi-
lar structures. We would like to know which part of the structures are the most
toxic by extracting contributions of chemical substructures toward the toxicity.
Applying the rules approach we could find that they share the same conditions
that classify them toxic, but when we look at variable contributions, we may
see differences in substructures toxicity. In [18] authors presented a method for
colouring molecule using a heat map for interpretation of support vector machine
models. Another method called Feature Contributions was proposed by Kuzmin
et al. in 2011 [8]. It was designed to extract feature contributions for random
forest models for regression problems. It has been extended to random forest
classification models in [13] and used in work [10], where authors compared the
predictions’ chemical interpretability based on scoring schemes for assessing heat
map images of substructural contributions. Another example of feature contribu-
tion was presented in [17] where authors propose the novel explanation technique
LIME (Local Interpretable Model-agnostic Explanations) that approximates an
interpretable model locally. Also, in [9], authors presented SHAP (SHapley Ad-
ditive exPlanations) values allowing interpretation of predictive models based
on a game theory approach.

Feature contributions are numerical values that allow extraction of a rela-
tionship between a particular feature value and a model’s decision. For each
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instance, we calculate how much a given variable/feature contributed to the pre-
dicted outcome. We can see which features have a positive/negative impact on
a predicted value and which of them have a more decisive influence.

There are no methods (that analyse a network structure) to interpret neural
networks prediction on an instance level. Currently, in the era of the application
of deep neural network in almost all areas with large data availability, the inter-
pretation of feature influence on the model decision would be beneficial for many
decision-making models. Many methods for extracting feature/variable contri-
butions are on a model level that is not sufficient for more detailed analysis.
Unfortunately, the structure of the neural network does not allow extraction of
such information, because it is distributed in the network.

In this paper, we address the problem of interpretation of neural networks on
an instance level. To achieve a solution, we propose the use of the neural network
as an oracle within a pedagogical approach (similar to rule extraction). This or-
acle could be any opaque model. Within that approach, we use a Random Forest
(RF) model together with its Feature Contribution (FC) method described in
[13]. In the presented research, we assume that the FCs are acquired from RF
mimicking the activity of ANN, we have to check whether we can trust the result
offered by FCs. We use feature contributions to build a classifier. If the ANN
responds with the same class as FCs for a new input vector, then this is an
indication that we can trust the interpretation delivered by FCs.

The paper is organised as follows. Section 2 describes the proposed method
for the ANN model interpretation. It provides the formal problem statement and
includes the definition of a random forest model, feature contributions, and their
analysis. Section 3 describes the experimental study and discusses the obtained
results. Section 4 concludes our work.

2 Methodology

Although extraction of feature contributions is not new, as we are borrowing
from existing methods, feature contributions in the context of ANN model in-
terpretation require the development of some methodology. In this section, we
recall the definition for feature contributions, and we describe how the feature
contributions can be used to interpret neural networks.

2.1 ANN Model Interpretation for a Single Instance

We assume that the ANN model trained for a specific classification problem is
given. Our idea is to train the Random Forest model to mimic the behaviour of
ANN then to calculate Feature Contributions.

The workflow of the ANN model interpretation is presented in Figure 1. In
step 1 we build Random Forest (RF) model using input data x and output
y ∈ YRF produced by the ANN model. Thus, the training data set for RF is
composed of pairs <x, y>, where x∈ DRF and y∈ YRF . In step 2, we extract
Feature Contributions from a Random Forest model. When, for a new input
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Fig. 1: A schema for the ANN model interpretation method via Random Forest
model and Feature Contributions

instance vector xnew we want to interpret the ANN classification result, we
calculate Feature Contributions (FCs) for this instance. They show the influence
(negative or positive) of each feature (input variable) on a predicted class. To
assess whether we can trust the result we perform classification based on FCs,
and the evaluation is positive if the class predicted by ANN and by FCs are the
same.

2.2 Random Forest Feature Contributions

Firstly, we recall the definition of the feature contributions proposed in [8, 13].
Feature contributions calculated for a given instance represent the influence (neg-
ative or positive) of each feature (input variable) on a predicted target. They
are computed in two steps. Firstly, local increments are calculated for each node
in the forest’s trees using the trees training datasets:

LIfc =

Y c
mean − Y p

mean,
if the split in the parent is performed
over the feature f ,

0, otherwise,

where Ymean is a fraction of the training instances in a given node c, where c -
is a child node and p - is a parent node, belonging to a selected class (for details
see [13]) or an average over the instances within the node for regression models.
A local increment for feature f represents the change of the probability of being
in a given class between the child node and its parent node in a tree.

Secondly, for any instance and a variable f these local increments are summed
on tree paths:

FCif =
1

ntree

ntree∑
k=1

knode∑
l=1

LIifkl
, (1)
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Algorithm 1 The method (in pseudocode) of ANN interpretation using feature
contributions

Require: ANN, DRF ,YRF and DNew,YNew

1: Train a random forest model RF on DRF , YRF datasets
2: Calculate feature contributions FC from the trained RF model
3: Find the class representative FCc

rep for feature contributions (medians or cluster
centres)

4: for each instance xi in DNew do
5: calculate feature contribution FCi for an instance xi)
6: for each class c in datasets classes C do
7: Calculate Euclidean distance between feature contributions FCi for the in-

stance xi and class representative: dE(FCi, FCc
rep)

8: end for
9: Select the class c for which the distance is minimal.

10: if class c is equal to the predicted ANN model class yi for the instance xi then
11: pi = 1
12: else
13: pi = 0
14: end if
15: end for

where the value LIifkl
is a local increment for the instance i, feature f in k tree

and its l node. The values ntree and knode represent the number of trees in the
forest and the number of nodes from the k tree, which split over a feature f ,
respectively.

Feature Contribution values estimate a contribution of feature values to the
difference between the actual prediction and the mean prediction for the current
set of feature values. As reported in [13], Y ′ = Y r +

∑
j FCj where Y ′ denotes

a predicted value and Y r averages of Ymean overall root nodes in the forest with
the assumption of unanimity (all elements in trees nodes belonging to the same
class). The magnitude represents how strongly the feature contributes and the
sign represents the direction (such as toward the model decision or against).

2.3 Interpretation of ANN Prediction Based on Feature
Contributions

Once feature contributions are extracted from a Random Forest model they can
be interpreted by domain expert reviling the model decision process. As these
values were calculated within the pedagogical approach we need to assess the
certainty of such interpretation. This procedure is shown in Algorithm 1. As the
input, the algorithm requires trained ANN, datasets DRF ,YRF for RF training.

To test if we can trust the interpretation of ANN prediction for a new instance
xnew we use a distance between feature contributions of the new data and fea-
ture contributions representatives for the Random Forest training dataset (line
2-3 in Algorithm 1). As described in [13] we can consider two feature contri-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_12

https://dx.doi.org/10.1007/978-3-030-77964-1_12


6 A.Palczewska and U.Markowska-Kaczmar

Sepal.Length Sepal.Width Petal.Length Petal.Width

0
.0

0
.5

1
.0

1
.5

(a) Setosa

Sepal.Length Sepal.Width Petal.Length Petal.Width

−
0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5
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Fig. 2: An example of feature contribution variations. Box plots of feature con-
tributions for two classes of IRIS dataset [1]. The axes x and y represent the
IRIS features and values of their contributions, respectively.

bution representatives: median and cluster centroids, computed for each class
separately. To calculate representatives, we used all instances from the random
forest training dataset that were correctly classified. Then:

– if there is no variation within feature contributions which means that all
values are distributed around the FC mean (see for example Figure 2a) then
as feature contributions representative we use a median.
To classify a new i-th instance xi

new based on its feature contributions, we
calculate feature contributions first. Then, the Euclidean distance dE (eq.2)
is computed for all class representative’s medians (line 5-9 in Algorithm 1),
and minimal distance is selected:

diE = min
l

√√√√nvar∑
f=1

(FCif −mfl)2, (2)

where FCif is calculated using eq. (1), nvar is a number of features (vari-
ables) in the input vector and mfl is a feature contributions median of f -th
feature and l-th class. The smallest distance indicates the class of the new
data i predicted by the feature contributions method.

– otherwise, there is a variation within feature contributions (see Figure 2b for
V irginica class as an example).
Many instances have values close to FC mean, and there are few elements
with different values. These few elements can produce a small group with
another feature contribution that differs from the majority group created.
The group with the smallest variance is called a core cluster [13] and its
centre is used as the class representative. If clusters have the same variance
(e.g equal to zero) we can have more than one representative for a class. For
each class, the best number of clusters is obtained using the elbow method
[15].
Training instances x ∈ DRF are assigned to these clusters. To classify a new
instance xi

new, the Euclidean distance (eq. 3) is calculated to all cluster
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Table 1: The number of instances in feature contributions groups for Virginica
class of IRIS dataset.

S.Length S.Width P.Length P.Width Count

0 0 1.26 0.65 25

0.18 0 0.9 0.83 9
-0.32 0 0.9 1.3 2

0 0 1.08 0.83 1

0.18 0.92 5.48 -0.74 1
0 -0.75 1.91 -0.25 1

0.18 0.25 1.55 -0.07 1

0 0.25 1.91 -0.25 1
0 0.3 -0.66 2.43 1

centres and the smallest distance is selected (line 5-9):

diE = min
l

√√√√nvar∑
f=1

(FCif − cfjl)
2 (3)

where cfjl is a centroid of a cluster j of class l, nvar is the number of
variables f . The smallest distance indicates which cluster a new data xi

new

belongs to and defines a class for the new instance.
To illustrate how to use centroids as representatives, let us consider the
example of Virginica class in detail. Table 1 shows examples of patterns in
feature contributions for the Virginica class from the IRIS dataset. There
were 42 elements in the training dataset for the random forest model that
were correctly classified. We can notice that there are two main groups with
cardinality 25 and 9 elements. The clusters that have the smallest variance
become core clusters and core clusters are further used to evaluate whether
we can trust in the interpretation of ANN offered by FC.

If the class assessed by the use of feature contributions is the same as the class
predicted by the ANN, we trust the FCs interpretation result (pi = 1), in another
case, it is not possible (pi = 0) (lines 10-14 in Algorithm 1).

3 Experimental Study

The experimental research goal is to test whether the feature contributions
method can be used to interpret a trained ANN model. In this research, we
focused on the shallow ANN, but it could also be a more complex model. The
process of training ANN for a given training dataset, developing the Random
Forest model, extracting Feature Contributions, identifying the model FCs rep-
resentatives, and testing ANN model reliability using FCs was repeated fifty
times. The averaged results are presented in this section.
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3.1 Datasets

Eight datasets from the UCL Machine Learning Dataset Repository [1] were
used. We selected the datasets that were often used as benchmark sets in rule
extractions for ANN models [7]: Breast Cancer Wisconsin (Diagnostic) Dataset
(BCWD), COX2 [19], German Credit Scoring, IRIS, SEEDS, Teaching Assis-
tant Evaluation (TEACHING), WAVEFORM, Database Generator (Version 1),
WINE.

3.2 Training the Artificial Neural Network Model

The multi-layer perceptron (MLP) network has been used as ANN model. Train-
ing is performed by the backpropagation method. We used the default settings
for the MLP model from the RSNNS package in R. We only set a parameter
size (describing the number of hidden neurons) to be equal to the averaged sum
of input and output variables, learning coefficient - learnFuncParams equals 0.1
and the maximal number of iteration equals 50. The ANN model had only one
hidden layer. The number of ANN’s output neurons was equal to the number of
classes in a given dataset because we used 1 of n encoding for the output layer.
We did not focus on the MLP model accuracy, so we did not optimize the model
parameters to get the most accurate model (the model accuracy was not the
subject of this study).

Table 2 presents the averaged results from building the MLP model. First four
columns show the cardinality of each dataset and the split for training (Dtrain),
testing (Dtest) and validating (Dnew) datasets. Testing Dtest and Dnew datasets
were randomly selected taking 20% of data for both datasets. To have an equally
represented set of elements in each class this selection was conducted for each
class separately. The fifth and sixth columns in the table represent the number of
attributes and classes for each dataset, respectively. The last two columns show
the averaged accuracies for the MLP models for training and testing datasets
obtained from the repeated procedure of 50 runs, each time splitting the dataset
and generating a new ANN model.

In the training MLP procedure, we do not focus on high-quality results,
therefore one can see that the MLP model gives for some datasets (BCWD,
IRIS, SEEDS, WAVEFORM and WINE) high averaged accuracy around 0.9,
but for some (TEACHING and COX2 dataset) they are less satisfying.

3.3 Training Random Forest Model and Calculating Feature
Contributions

Random Forest model was trained on a combined dataset Dtrain and Dtest called
DRF and YRF - an output of ANN for DRF as described in Section 2.1. We used
randomForest package in R. The number of trees was set to the number of input
variable for each dataset separately. The reason lies in avoiding the overfitting
for datasets like IRIS with a small number of variables. We used default settings
for this method. We set the parameter replace=False to avoid selection with a
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Table 2: Characteristics of datasets and average accuracy (ACC) of ANN over
50 runs of the ANN model development procedure. The columns represent: the
number of instances in the dataset (Inst), the number of instances for the training
and testing dataset for the ANN model (#Dtrain, #Dtest), the number of in-
stances for a validating dataset (#Dnew), the number of dataset’s attributes and
classes (#Attr, #Class), average accuracy for the training dataset (ACCtrain)
and accuracy for the testing dataset ACCtrain for the ANN model

.

Name #Inst #Dtrain #Dtest #Dnew #Attr #Class ACCtrain ACCtest

BCWD 683 409 137 137 9 2 0.981 0.966
COX2 190 114 38 38 255 2 1.000 0.677

German CS 1000 600 200 200 20 2 0.878 0.737
IRIS 150 90 30 30 4 3 0.958 0.941

SEEDS 210 126 42 42 7 3 0.953 0.916
TEACHING 151 90 30 31 5 3 0.576 0.491
WAVEFORM 5000 2998 1000 1002 21 3 0.904 0.856

WINE 178 105 36 37 13 3 1.000 0.980

Table 3: Average accuracy for ANN (ANNnew) and RF (RFnew) models for
validation dataset Dnew and for RF training DRF dataset (RFtrain column),
AUC for ANN and RF models for Dnew

Name #Dnew ANNnew AUCANNnew RFtrain RFnew AUCRFnew

BCWD 137 0.97 0.96 0.99 0.98 0.97
COX2 38 0.68 0.67 0.95 0.77 0.74

German CS 200 0.74 0.66 0.96 0.81 0.72
IRIS 30 0.95 0.94 0.99 0.97 0.96

SEEDS 42 0.93 0.84 0.99 0.92 0.90
TEACHING 31 0.64 0.53 0.98 0.93 0.90
WAVEFORM 1002 0.86 0.84 0.97 0.84 0.83

WINE 37 0.98 0.98 0.99 0.94 0.94

replacement for training trees. We also keep information on records that were
used to train a tree in a forest by setting the parameter keep.inbag=True. This
is needed to calculate Feature Contributions.

Table 3 shows the averaged results for Random Forest models and for the
MLP models. Column #Dnew informs how many instances contains the Dnew

dataset. The averaged accuracy of MLP model for Dnew is included in the col-
umn (ANNnew). The column RFnew describes average accuracy for the Random
Forest models. The table also shows the average accuracy of the Random Forest
models for training data (column RFtrain) achieved on the DRF dataset.

To test how well the Random Forest model mimics the ANN model, we cal-
culated the average Area Under Curve for each RF model. Table 3 presents
averaged AUCs for Dnew. The higher the AUC value – closed to one, the less
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noise/error was introduced by the Random Forest model, and the better inter-
pretability of the ANN model we can expect. As the ground truth, the instances
from YRF and Ynew were considered, respectively.

3.4 Certainty Assessment of ANN Interpretation

Feature Contributions calculated for the instance xnew give information about
the relation between predicted class and input features for an RF model. Because
the RF model only mimics the ANN model we are interested in evaluating how
much we can rely on this interpretation. To decide whether the extracted Feature
Contributions for an instance xnew give certain interpretation we test them
against ANN model prediction for this instance. The verification of the ANN
model prediction is based on the comparison of the classification of xnew data
made with the ANN model and the class found by the Feature Contribution
analysis. If the prediction from FC agrees with the prediction from ANN for
an instance xnew, we say that interpretation is certain for this instance. If the
predicted class from ANN agrees with FC prediction and with the original class
for this instance, we say that prediction is correct.

Following the Algorithm 1 we calculated Feature Contributions for instances
from the Random Forest training dataset DRF and the validation dataset Dnew.
We used the rfFC R package [16]. We selected these instances from DRF for
which predictions from RF and ANN models agree with the original value of
the output variable. Then for each class, we calculated Feature Contributions
medians. In the second step, we applied k-means to cluster Feature Contributions
within each class. For each Feature Contribution subset with non zero variance,
the number of clusters was assessed using the MClust R package. Finally, we
extract the Feature Contributions representatives for each class. In Figure 3 we
present medians representatives of Feature Contributions for two datasets and
all classes (for each dataset). Contributions can be positive as well as negative
values and representatives differ between classes.

Having the Feature Contributions representatives for each class, we calculate
Feature Contributions for each xnew instance from Dnew. Then, to find the class
for the new instance, we compute distances between representatives and Fea-
ture Contributions for instances from Dnew using eq. (2) and (3). The smallest
distance assigns the class.

Interpretability Method Evaluation for all Datasets In this section, we
repeat the procedure described in Algorithm 1 for all eight chosen datasets. Table
4 shows averaged results from repeated runs of the method for each dataset. The
values were rounded to the nearest integer. The first column in this table shows
the number of elements in the new dataset Dnew. The second (Med Certain)
column shows the number of instances that were marked certain with the me-
dian approach. The third (Med Correct) column shows how many instances were
correctly classified by the median approach concerning the original class value.
The last two columns show the number of interpretations that were marked
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(a) Feature contributions medians for
SEED dataset. The variable numbers
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(b) Feature contributions medians for
BCWD. The variable numbers repre-
sent: Clum Thickness, Uniformity of
Cell Size, Uniformity of Cell Shape,
Marginal Adhesion, Single Epithelial
Cell Size, Bare Nuclei, Bland Chro-
matin, Normal Nucleoli, Mitoses, re-
spectively.

Fig. 3: Example of Feature Contributions median for selected datasets

as certain based on the clustering approach (Clust Certain) and the number of
correctly classified instances for the original class (Clust Correct). Also, Table
5 presents detailed results from the certainty assessment of the interpretability
method. For each dataset, columns represent instances for which ANN inter-
pretation was marked as certain and uncertain for both median and clustering
methods. In rows, we have ANN prediction expressed by instances that were
classified wrongly by the ANN model.

The aggregated results confirm that the presented method is suitable to in-
terpret the ANN model for new data. For ANN models with good predictive
accuracy such as for IRIS, BCWD, WINE, SEEDS, the certainty of ANN inter-
pretation is greater than 80%. This means that Feature Contributions represent
the true importance of the ANN model. For weak models (TEACHING and Ger-
man CS datasets), the certainty is greater than 60%. It is worth noticing that
models for these two datasets had a low predictive accuracy. This shows that the
proposed approach of assessment of the ANN model interpretability can filter
instances with correct ANN prediction and with certain Feature Contribution
values. Also, the results show that the use of clustering seems to work better
than the use of the median approach.

4 Conclusions

In this paper, we showed that Feature Contributions could be used to interpret
an ANN model for a before unseen data (instance) to find relationships between
instance variables and the predicted outcome. We used shallow ANN models
as the example of a non-transparent model. This approach offers interpretation
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Table 4: Number of elements from the Dnew dataset marked as a correctly pre-
dicted by ANN model via median and clustering methods in respect to their
original class label

Name #Dnew Med Certain Med Correct vs Orig Clust Certain Clust Correct

BCWD 137 130 (94,8%) 127 133 (97%) 130
COX2 38 28 (73,6%) 21 29 (76,3%) 23

German CS 200 161 (80,5%) 127 180 (90%) 145
IRIS 30 27 (90%) 26 28 (93,3%) 27

SEEDS 42 35 (83,3%) 33 39 (92,8%) 37
TEACHING 31 22 (70,0%) 19 27 (87%) 22
WAVEFORM 1002 674 (67,2%) 585 745 (74,3%) 663

WINE 37 31 (83,7,4%) 29 34 (91,8%) 33

for any opaque model and does not limit its architecture. The idea of method
interpretation lies in building a forest of trees that with high accuracy emulates
the behaviour of the opaque model and then Features Contributions calculation
allow us interpretation on an instance level.

To test the certainty of Feature Contribution for the ANN model interpreta-
tion, we proposed the procedure for the classification of instances based on their
feature contribution values. Using a distance measure between a new instance
feature contribution and the model representatives Feature Contributions we
can decide wherever to trust the interpretation of the ANN model. The repre-
sentatives in this work were defined by a median or by cluster centres defined on
the model training dataset. The averaged results showed that for the best ANN
models in 80% of new instances we were able to tell whether the interpretation
was certain. The experiment was carried on eight datasets from the UCI Machine
Learning repository.

A study on the threshold level for the Euclidean distances used in median and
clustering methods and its influence on the ability of ANN interpretation is the
next step of our research in this area. Further research, focusing on the distance
metrics choice will be an essential enhancement of the study presented here.
Comparison of the proposed method with other available methods to test the
agreement on the explained model decision will be the next interesting research
problem to address.
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