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Abstract. Recent research on sparse neural networks demonstrates that
densely-connected models contain sparse subnetworks that are trainable
from a random initialization. Existence of these so called winning tickets
suggests that we may possibly forego extensive training-and-pruning pro-
cedures, and train sparse neural networks from scratch. Unfortunately,
winning tickets are data-derived models. That is, while they can be
trained from scratch, their architecture is discovered via iterative prun-
ing. In this work we propose Monte Carlo Winning Tickets (MCTWs) —
random, sparse neural architectures that resemble winning tickets with
respect to certain statistics over weights and activations. We show that
MCTWs can match performance of standard winning tickets. This opens
a route to constructing random but trainable sparse neural networks.

Keywords: Lottery Tickets hypothesis - Neural network initialization -
Sampling.

1 Introduction

Contemporary neural network architectures tend to employ a large number of
trainable parameters. In computer vision, for example, convolutional nets fre-
quently have from over a million (as is the case in deep residual models) to tens
of millions of parameters (e.g. in certain DenseNet architectures [6]). Natural
language processing applications employ even larger models, with the current
record held by a transformer network with 175 billion parameters [2]. However,
available empirical evidence suggests that such large numbers of parameters are
not a necessary prerequisite for strong performance in learned tasks. On the
contrary: even though final performance in training usually increases with the
number of parameters, a trained network can often be pruned of unimportant
weights with virtually no performance loss. The fraction of parameters that can
be pruned from a trained model is significant: performance of a dense network
can often be matched by a pruned model with a tenth of the original number
of weights [5]. This may, in turn, translate to major computational gains in a
dedicated inference hardware, especially in energy-limited applications.
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An immediate question arising from the empirical evidence for strong per-
formance of pruned networks is whether we can avoid training dense models
altogether. Surprisingly, at least up until recently the answer was no. Frankle
and Carbin [3] show that randomly sampled sparse networks cannot be trained to
match the performance of pruned networks. Previously, Han et al. [5] observed
that pruned networks trained from scratch (i.e. from a random initialization)
also do not converge to good solutions. Crucially, however, Frankle and Carbin
also demonstrated that randomly initialized dense networks do contain sparse
subnetworks that train well — what they call winning tickets. To find such sub-
networks they start from dense models, which are iteratively trained, pruned and
rewound to original parameter values. Each iteration remove only a small frac-
tion of trainable weights. Ultimately, after a number of pruning iterations they
uncover sparse subnetworks that train well starting from original initializations.

Winning tickets, by their construction, are data-derived subnetworks — the
connectivity retained in the sparse model arises from pruning networks trained
on the given data set. Furthermore, the specific initial parameter values — which
can be seen as indirectly chosen via data-dependent pruning — also play an
important role. In particular, randomly reinitialized winning tickets do not train
as well as their counterparts with original initialization. Frankle and Carbin
therefore suggest that winning tickets can possibly be seen as networks whose
structures are adapted to the solved learning task. If so, then winning ticket-like
networks could be uncovered only by training large, dense models, usually across
many pruning iterations — a procedure with large computational cost.

In this work we explore an alternative hypothesis. Specifically, we investi-
gate sparse neural networks with random architectures. However, we do not
sample these architectures from a uniform distribution, but from a distribution
that approximates certain statistics over weights and activations in an untrained
winning ticket. In other words, we investigate networks that resemble untrained
winning tickets with respect to certain statistics, but are otherwise randomly
sampled. Our goal is to see whether such random architectures — which we call
Monte Carlo Winning Tickets MCWTs) — could achieve performance level close
to the original, data-derived winning tickets. The main outcome from our experi-
ments is that this may indeed be the case: we demonstrate Monte Carlo winning
tickets with performance close to the iteratively pruned winning tickets. The
main implication from this finding is that sparse, trainable neural networks can
possibly be constructed without expensive retraining and pruning of dense mod-
els.

2 Monte Carlo Winning Tickets

We hypothesise that a sparse trainable neural networks can be constructed by
sampling architectures (more precisely: network connections) from a distribution
that replicates certain statistics over weights and activations in an untrained win-
ning ticket. In this work we focus on two such statistics: magnitudes of weights
and connectivity, which we describe below in more details.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:
DOI] 10.1007/978-3-030-77964-1_11 |



https://dx.doi.org/10.1007/978-3-030-77964-1_11

Monte Carlo Winning Tickets 3

- MCWT
= Winning Ticket
0

40 40 i L
0

0
0

[l

0 20 0
0

10 0
O III I I I I
o 0 | ] o | =l

-0.2 =0.1 0.0 -0.2 0.1 -0.2 0.1 0.1 0.2

0.1 0.2 0.0 0.1 0.2 0.0
Weight magnitudes Weight magnitudes Weight magnitudes

50 50

N

Count

2 3
Count
Count
&

2

IS

»

Fig. 1. Weight magnitudes in an untrained dense layer (left) and a winning ticket
(center). Right: match between weight magnitudes in a winning ticket and an MCW'T.

Let & be a set of parameters (i.e. weights) in neural network N, e.g. a
densely connected convolutional network with certain number of layers and chan-
nels. Further, let wff] € &y be the (¢4, 7) element of the k-th kernel in the I-th
convolutional layer, where ¢ enumerates input channels and (i,j) are indices
over the kernel width and height, respectively. Similarly, for a fully connected
layer | we will write wéj € @ to denote the weight between the i-th neuron in
layer | — 1 and j-th neuron in layer {. We will also write w € @5 to denote a
network parameter irrespective of its location in the architecture. Consider an
untrained network N. If N is densely connected, or is a sparse network sampled
from a uniform distribution over all possible subsets of parameters, the distribu-
tion p (w | w € @) will simply match the density from which we sample initial
parameter values. However, this will generally not be the case if IV is a sparse
network chosen in some non-uniform way from all possible subsets of parameters.
In particular, if N is an untrained winning ticket, the parameters w € @ will
be chosen by iterative training, pruning and rewinding to initial values. Thus,
the conditional density p (w | w € ) may be quite different from the density
used to sample initial parameter values. Indeed, in Fig. 1 (center) we report an
empirical distribution of initial parameter values retained by a winning ticket
in a fully connected layer. Under uniform pruning we would expect a Gaussian
distribution, which was used to initialize the layer (Fig. 1, left). However, win-
ning tickets appears to preferentially prune weights with small initial values. We
observed similar tendency in weights retained in convolutional layers.

Our first goal is to construct a randomly sampled sparse network S (Monte
Carlo winning ticket) which replicates empirical distribution of weights in a gen-
uine winning ticket. To approximately replicate this distribution, we begin with
a densely connected model and sample pruning masks for its parameters from
Bernoulli distributions parametrized by probabilities that depend on magnitudes
of weights. That is, let z,, € {0,1} be an indicator variable such that z, = 1 if
w is retained in S, and z,, = 0 otherwise. Then:

zw ~ Bernoulli (f (Jw|)) . (1)
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To fit the acceptance probability f (Jw|) we fit a simple logistic regression model
f (Jw]) = o (u|w|), with parameter u, to the set {w | w € N} of weights retained
in an untrained (genuine) winning ticket N. We fit two distinct models for prob-
abilities of retaining weights: one for fully connected layers and one for convo-
lutional layers. This sampling procedure allows us to construct sparse, random
networks in which magnitudes of weights resemble those in untrained winning
tickets (Fig. 1, right).
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Fig. 2. (a) Connectivity measure in a sparse neural network. (b) Connectivity in a
standard winning ticket (left), Monte Carlo winning ticket (center) and a uniformly
sampled sparse network (right).

Sampling that is driven purely by weight magnitudes disregards any connec-
tivity structure in the sampled network. To remedy this, we introduce a simple
connectivity measure illustrated in Fig. 2a. Let x ~ D be an input observation
chosen randomly from the train set D. Further, let al~! (m,n;x) be an input
activation map (channel) connected to the parameter wfilj and evaluated for in-
put x. Indices m, n enumerate spatial locations in the input channel. We define

the connectivity of wle] as an expected input to that parameter in an untrained
network:
Kl -1 )
g (wm-j) = E%E [ac (m,n,x)] ) (2)

Note that expectation is taken with respect to input examples and spatial loca-
tions in the channel connected to w’gfj In practice, we approximate this expec-
tation by averaging across all inputs in the training set. A similar connectivity
measure can be defined for fully connected layers:

9 (wi;) = Eonp [ar-1 (i3%)], 3)

where a;_1 (i;x) is the i-th input to the fully connected layer ! in an untrained
network evaluated for x.

Connectivity measures introduced above express the expected input to a
given network parameter, which in turn reflect contributions to that input from
parameters in proceeding layers. In Fig. 2b we compare distributions of connec-
tivity measure in an untrained standard winning ticket (left) and a uniformly
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sampled sparse network (right). Note a substantial difference between the two
distributions. We leverage this discrepancy to incorporate connectivity informa-
tion into the sampling model for Monte Carlo winning tickets. That is, we extend
the magnitude-base sampling (Eq. 1) to account for g (w):

zw ~ Bernoulli (f (Jw|, g (w))),

f(lwl, g (w)) = o (u1|w| + uzg (w)) . (4)

Again, we use a simple logistic regression model for the acceptance probability
(with parameters ug, us), and fit it to the magnitudes of weights and connectivi-
ties observed in a genuine winning ticket. The resultant connectivity distribution
in a Monte Carlo winning ticket is pictures in Fig. 2b (center). To estimate con-
nectivity in a layer | we must known which parameters from the proceeding
layers are retained. Thus, we sample Monte Carlo wining tickets in a greedy
layer-wise way, by moving from the network input towards the last layer. In the
first layer we account only for weight magnitudes. In subsequent layers we also
estimate connectivity values.

3 Results

Experiments in this work follow the setup used in Frankle and Carbin [3]. Specif-
ically, we evaluate MCWTs on Conv2, Conv4 and Conv6 architectures used
therein, and use hyper-parameter values reported in that work. In each case,
we prune 80% of weights in every network layer using either random pruning,
iterative pruning described by Frankle and Carbin [3] (i.e. winning tickets) or
Monte Carlo method described in the previous section.

We use CIFAR-10 dataset [7] to evaluate MCWTs. It consists of 60,000 im-
ages from 10 classes. Of these images, 50,000 are in the train set and the re-
maining 10,000 in the test set. All images are 32 x 32 pixels in size. To follow
the experimental setup from [3], we use only the 50,000 train samples. Specifi-
cally, we train networks on 45,000 examples and evaluate on the remaining 5,000.
Even though we train for up to 300-500 epochs, MCWTs learn faster, achieving
near-final performance after 10-20 epochs.

Results from our experiments are reported in Table 1. The main finding here
is that Monte Carlo winning tickets allow for low-computational-cost discovery
of sparse trainable neural network architectures. Specifically, we observe similar
performance for original winning tickets and our Monte Carlo winning tickets.
These results are slightly above unpruned networks and significantly outperform
baseline, i.e. random pruning. In Monte Carlo winning tickets most of the im-
provement comes from fitting distributions of initial weights, with connectivity
playing a less important role. For Conv4 and Conv6 models our approach shows
modest improvement over original winning tickets, while for smaller Conv2 ar-
chitecture it exhibit slightly worse, but still similar performance. Note, however,
that it is often impossible to exactly replicate experimental conditions in deep
learning, due to missing data on some hyper-parameters or differences in software
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Experiment Conv2 Conv4 Conv6
Unpruned network 67.20% 74.62% 77.40%
Randomly pruned network 66.90% 73.20% 73.14%
Original Winning Ticket 70.42% 74.92% 78.04%
Monte Carlo Winning Ticket - w/o Connectivity — 69.47% 76.39%  78.10%
Monte Carlo Winning Ticket - Connectivity 68.40% 76.21% 78.17%

Table 1. Experimental results for networks with 80% pruning. To facilitate compari-
son, we reproduced the original Winning Ticket results in our code. We also compare
against random pruning and unpruned networks.

versions. As a result, we observed higher performance for unpruned networks and
slightly better results for the original winning tickets, than those reported in [3].

4 Related work

The starting point for the research presented in this work was the Lottery Tickets
Hypothesis formulated by Frankle and Carbin [3]. From a practical perspective
it presents an iterative pruning mechanism for discovering sparse, trainable neu-
ral networks. The main disadvantage of this approach is the necessity to train
the network several times, each time increasing the number of pruned parame-
ters by a certain, architecture-dependant factor. Zhou et al. [9] conduct further
research on this subject and introduce the concept of supermasks. They show
that choosing the pruning masks with a specific, carefully designed criteria can
lead to significantly better-than-chance performance of the randomly-initialized
sparse network. Our research shows that for good results, we can simply sample
the connections in the sparse model in such a way that they resemble winning
tickets with respect to certain statistics over magnitudes of weights and net-
work connectivity. Frankle et al. [4] further develop their technique for finding
winning tickets, thereby enabling its use on more complex datasets, such as Im-
ageNet. Most importantly they show that it is easier to start pruning networks
that are trained for a few epochs, rather than rewinding them all the way to the
initial parameter values. This suggest an avenue for further research on Monte
Carlo Winning tickets, namely investigation of performance of models sampled
using our approach on ImageNet-scale datasets. Concurrently to work on Monte
Carlo winning tickets, Blalock et al. [1] suggested alternative ways to assess neu-
ral network pruning. However, their findings cannot be applied directly to our
work, because we compare two networks with the same architecture and pruning
ratio. Finally, Xie et al. [8] investigated randomly wired neural networks con-
structed using random graph models. They obtained competitive performance
in computer vision tasks.
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5 Conclusions

In this work we presented Monte Carlo winning tickets. These sparse neural
networks are constructed by sampling connections from a probability distribu-
tion that replicates statistics over weights and connectivity in standard winning
tickets. We demonstrated that Monte Carlo winning tickets are trainable from
scratch, i.e. they train to a performance level matching standard winning tick-
ets and densely connected model. Typically, this level of performance used to
be achieved by training and then pruning a densely connected model. Thus,
Monte Carlo winning tickets open an avenue to lower the computational cost of
deploying sparse neural nets.
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