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Abstract. Recurrent Neural Networks (RNN) received a vast amount of
attention last decade. Recently, the architectures of Recurrent AutoEn-
coders (RAE) found many applications in practice. RAE can extract the
semantically valuable information, called context that represents a latent
space useful for further processing. Nevertheless, recurrent autoencoders
are hard to train, and the training process takes much time. This paper
proposes a new recurrent autoencoder architecture with sequence-aware
encoding (RAES), and its second variant which employs a 1D Convo-
lutional layer (RAESC) to improve its performance and flexibility. We
discuss the advantages and disadvantages of the solution and prove that
the recurrent autoencoder with sequence-aware encoding outperforms a
standard RAE in terms of model training time in most cases. The ex-
tensive experiments performed on a dataset of generated sequences of
signals shows the advantages of RAES(C). The results show that the
proposed solution dominates over the standard RAE, and the training
process is the order of magnitude faster.
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1 Introduction

Recurrent Neural Networks (RNN) [22, 29] received a vast amount of atten-
tion last decade and found a wide range of applications such as language mod-
elling [18,24], signal processing [8, 23] and anomaly detection [19,25].

The RNN is (in short) a neural network adapted to sequential data that
have the ability to map sequences to sequences achieving excellent performance
on time series. The RNN can process the data of variable length or fixed length
(in this case, the computational graph can be unfolded and considered a feed-
forward neural network). Multiple layers of RNN can be stacked to process ef-
ficiently long input sequences [12, 21]. The training process of deep recurrent
neural network (DRNN) is difficult because the gradients (in backpropagation
through time [29]) either vanish or explode [3, 9]. It means that despite the
RNN can learn long dependencies the training process may take a very long
time or even fail. The problem was resolved by the application of Long Short-
Term Memory (LSTM) [13] or much newer and simpler Gated Recurrent Units
(GRU) [6]. Nevertheless, it is not easy to parallelize calculations in recurrent
neural networks which impacts the training time.
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A different and efficient approach was proposed by Aäron et al. [20] who
proved that stacked 1D convolutional layers can process efficiently long sequences
handling tens of thousands of time steps. The CNNs have also been widely ap-
plied to autoencoder architecture to solve problems such as outlier and anomaly
detection [1, 14,16], noise reduction [5], and more.

Autoencoders [4] are unsupervised algorithms capable of learning latent rep-
resentations (called context or code) of the input data. The context is usually
smaller than input data to extract only the semantically valuable information.
Encoder-Decoder (Sequence-to-Sequence) [7, 26] architecture looks very much
like autoencoder and consists of two blocks: encoder, and decoder, both contain-
ing a couple of RNN layers. The encoder takes the input data and generates the
code (a semantic summary) used to represent the input. Later, the decoder pro-
cesses the code and generates the final output. The encoder-decoder approach
allows having variable-length input and output sequences in contrast to clas-
sic RNN solutions. Several related attempts, including an interesting approach
introduced by Graves [12] have been later successfully applied in practice in
[2,17]. The authors proposed a novel differentiable attention mechanism that al-
lows the decoder to focus on appropriate words at each time step. This technique
improved the state of the art in neural machine translation (NMT) and was later
applied even without any recurrent or convolutional layers [28]. Besides the ma-
chine translation, there are multiple variants and applications of the Recurrent
AutoEncoders (RAE). In [10], the authors proposed the variational recurrent
autoencoder (VRAE), which is a generative model that learns the latent vector
representation of the input data used later to generate new data. Another varia-
tional autoencoder was introduced in [11,27] where authors apply convolutional
layers and WaveNet for audio sequence. Interesting approach, the Feedback Re-
current AutoEncoder (FRAE) was presented in [30]. In short, the idea is to add
a connection that provides feedback from decoder to encoder. This design allows
efficiently compressing the sequences of speech spectrograms.

This paper presents an autoencoder architecture that applies a different con-
text layout and employs a 1D convolutional layer to improve its flexibility and
reduce the training time. We also propose a different interpretation of the context
(the final hidden state of the encoder). We transform the context into the se-
quence that is passed to the decoder. This technical trick, even without changing
other elements of architecture, improves the performance of recurrent autoen-
coder.

We demonstrate the power of the proposed architecture for time series re-
construction (the generated sequences of signal). We perform a wide range of
experiments on a dataset of generated signals, and the results are promising.

Following contributions of this work can be enumerated: (i) We propose a
recurrent autoencoder with sequence-aware encoding that trains much faster
than standard RAE. (ii) We suggest an extension to proposed solution which
employs the 1D convolutional layer to make the solution more flexible. (iii) We
show that this architecture performs very well on univariate and multivariate
time series reconstruction.
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2 The model

In this section, we describe our approach and its variants. We also discuss the
advantages and disadvantages of the proposed architecture and suggest possible
solutions to its limitation.
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Fig. 1: Recurrent autoencoder architectures: (a) Recurrent AutoEncoder
(RAE) [7, 26]; (b) Recurrent AutoEncoder with Sequence-aware encoding
(RAES); (c) Recurrent AutoEncoder with Sequence-aware encoding and 1D
Convolutional layer (RAESC).

2.1 Recurrent AutoEncoder (RAE)

The recurrent autoencoder generates an output sequence Y = (y(0), y(1), . . . ,
y(nY −1)) for a given an input sequence X = (x(0), x(1), . . . , x(nX−1)), where nY
and nX are the sizes of output and input sequences respectively (both can be
of the same or different size). Usually, X = Y to force autoencoder learning
the semantic meaning of data. First, the input sequence is encoded by the RNN
encoder, and then the given fixed-size context variable C of size mC (a single
vector containing mC features) is decoded by the decoder (usually also RNN),
see Figure 1a. If mC < nX , then the autoencoder is called undercomplete. On
the other hand if mC > nX , then the autoencoder is called overcomplete. The
first variant is much more popular as it allows the autoencoder to learn the
semantically valuable information.

2.2 Recurrent AutoEncoder with Sequential context (RAES)

We propose a recurrent autoencoder architecture (Figure 1b) where the the final
hidden state of the encoder C = (c0, c1, . . . , cmC−1) is interpreted as the sequence
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of time steps C ′ = (c′(0), c′(1), . . . , c′(nC−1)), thus c′(i) = (c
′(i)
0 , c

′(i)
1 , . . . , c

′(i)
mC′−1),

where nC is the number of time steps (equal to nY ) and mC′ is the number of
features (called λ later). It is an operation performed on the context and may
be defined as f : C 7→ C ′. The code C = (ci)

nC−1
i=0 is transformed to

C ′ = ((ciλ+j)
λ−1
j=0 )

nC/λ−1
i=0 (1)

where λ = nC/nX (λ ∈ N). Once the context is transformed (C ′ =
(c′(0), c′(1), . . . , c′(nX−1))), the decoder starts to decode the sequence C ′ of
mC′ = λ features producing the output sequence Y . This technical trick in
the data structure speeds up the training process (Section 3).

Additionally, this way, we put some sequential meaning to the context. It
means that this architecture model should attempt to learn the time depen-
dencies in the data and store them in the context. Therefore, we can expect
the improvement in the training performance, in particular for long sequences
(hundreds of elements).

Finally, the one easily solvable disadvantage of this solution is that the size
of context must be multiple of input sequence length nC = λnX , where nC is
the size of context C, which limits the possible applications of such architecture.

2.3 RAES with 1D Convolutional layer (RAESC)

In order to solve the limitation mentioned in Section 2.2, we propose adding a
1D convolutional layer (and max-pooling layer) to the architecture right before
the decoder (Figure 1c). This approach gives the ability to control the number of
output channels (also denoted as feature detectors or filters), defined as follows:

C ′′(i) =
∑
k

∑
l

C ′(i+ k, l)w(k, l) (2)

In this case, nC does not have to be multiple of nX , thus to have the desired
output sequence of nY length, the number of filters should be equal to nY .
Moreover, the output of the 1D convolution layer C ′′ = conv1D(C ′) should be
transposed. Hence each channel becomes an element of the sequence as shown in
Figure 1c. Finally, the desired number of features on output Y can be configured
with hidden state size of the decoder.

A different and simpler approach to solve the mentioned limitation is stretch-
ing the context C to the size of decoder input sequence and filling the gaps in
with averages.

The described variant is very simplified and is only an outline of proposed
recurrent autoencoder architecture (the middle part of it, to be more precise)
which can be extended by adding pooling and recurrent layers or using different
convolution parameters (such as stride, or dilation values). Furthermore, in our
view, this approach could be easily applied to other RAE architectures (such
as [11,30]).

The recurrent neural network gradually forgets some information at each time
step, and may completely ignore the time dependencies between the beginning
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and end of the sequence. It is even worse in the recurrent autoencoder where
the context size is usually limited. We believe that the proposed layout of the
context enforces the model to store the time dependencies in the context, thus
it works well on long sequences. Additionally, this characteristic may be very
interesting in signal classification tasks where such memory may be crucial to
identify an object.

3 Experiments

In order to evaluate the proposed approach, we run a few experiments, using a
generated dataset of signals. We tested the following algorithms:

– Standard Recurrent AutoEncoder (RAE) [7, 26].
– RAE with Sequence-aware encoding (RAES).
– RAES with Convolutional and max-pooling layer (RAESC).

The structure of decoder and encoder is the same in all algorithms. Both
decoder and encoder are single GRU [6] layer, with additional time distributed
fully connected layer in the output of the decoder. The algorithms were imple-
mented in Python 3.7.4 with TensorFlow 2.3.0. The experiments were run on
a GPU server with an AMD Epyc 7702P CPU (64 cores, 128 threads) clocked
at 2.0 GHz with 4 MiB L1, 32 MiB L2 and 256 MiB L3 cache and 6x Quadro
RTX 6000 graphic cards with 24220MiB VRAM each (only one was used). The
test machine was equipped with 504 GB of RAM and running Ubuntu 18.04.4
64-bit OS. We trained the models with Adam optimizer [15] in batches of size
100 and Mean Squared Error (MSE) loss function. All the presented algorithms
were implemented and the source codes (including all the datasets mentioned
above) can be found at the following URL: https://github.com/rsusik/raesc. The
dataset contains generated time series (sum of sine waves) that consists of 5000
sequences of length 200 with {1, 2, 4, 8} features and is published in the same
repository along with source codes. The dataset was shuffled and split to training
and validation sets in proportions of 80:20, respectively.

In the first set of analyses, we investigated the impact of context size and
the number of features on performance. We noticed a considerable difference in
training speed (number of epochs needed to achieve plateau) between the classic
approach and ours. To prove whether our approach has an advantage over the
RAE, we performed tests with different size of the context nC and a different
number of input features mX . We set context size (nC) proportionally to the
size of the input and we denote it as:

σ =
nC

mXnX
(3)

Figure 2 proves that the training process of the RAE needs much more epochs
than RAESC to achieve a similar value of loss function. In chart a) the size of
context is set to σ = 25% and in b) it is set to σ = 100% of the input size. For
σ = 25% the RASEC achieves plateau after 20 epochs while the RAE does not
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Fig. 2: Loss as function of epoch number for univariate data and σ =
{25%, 100%}.

at all (it starts decreasing after nearly 80 epochs, but behaves unstable). There
is no RAES result presented in this plot because of the limitation mentioned in
Section 2.2 (size of the code was too small to fit the output sequence length). For
σ = 100% both RASEC and RAES achieve the plateau in less than five epochs
(order of magnitude faster) while the RAE after about 35 epochs.
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Fig. 3: Loss as function of epoch number for two features (mX = 2) and σ =
{25%, 100%}.

Figure 3 shows the loss in function of the number of epochs for two features
in input data. This experiment confirms that both RAES and RAESC dominates
in terms of training speed, but a slight difference can be noticed in comparison
to univariate data (Figure 2). It shows that the RAE achieves plateau in about
50 epochs for both cases while RAES and RAESC after 20 epochs for σ = 25%
and in about five epochs for σ = 100%.

Figure 4 presents a loss in function of the number of epochs for four features.
Comparing Figure 4a to previous ones (Figure 3a and Figure 2a) we can clearly
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Fig. 4: Loss as function of epoch number for four features (mX = 4) and σ =
{25%, 100%}.

see a downward trend (for growing number of features) in all architectures’
performance, but the slope for proposed ones look steeper than for RAE. On
the other hand, it can not be observed for σ = 100% (Figure 4b) because in this
case, the difference is marginal.
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Fig. 5: Loss as function of epoch number for mX = 8 and σ = {25%, 100%}.

Figure 5 shows a loss in function of the number of epochs for eight fea-
tures. This figure is interesting in several ways comparing to the previous ones
(Figures 2, 3, 4). The chart a) shows that, for a much larger number of features
and relatively small size of the context, the training of RAES variant takes much
more epochs. The similar observation may be noticed for RAESC, where the loss
drops much faster than the RAE at the beginning of the training but achieves
the plateau at almost the same step. On the other hand, chart b) shows that for
a larger size of context, the proposed solution dominates.

We measured each algorithm’s training time to confirm that the proposed
solution converges faster than RAE for the same size of context. Table 1 shows
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σ
features (mX) algorithm 25% 50% 100%

RAE 0.61 0.61 0.93
1 RAES - - 0.89

RAESC 0.63 0.63 0.98

RAE 0.64 0.92 1.77
2 RAES - 0.88 1.57

RAESC 0.65 0.96 1.85

RAE 0.91 1.74 4.65
4 RAES 0.89 1.57 3.81

RAESC 0.97 1.85 4.75

RAE 1.75 4.63 13.22
8 RAES 1.56 3.80 10.07

RAESC 1.85 4.74 13.47

Table 1: Epoch time [s] (median) for different number of features (mX) and
context size (σ).

the median of epoch time for a different number of features and context size. The
table confirms that the RAES is faster than RAE by about 5% for univariate
data and about 31% faster for mX = 8. The training process (the epoch) of
RAESC algorithm takes a slightly more time than RAE, which is marginal (less
than 2%) for mX = 8.
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Fig. 6: Loss and validation loss as function of time [s] for mX = {1, 2} and
σ = {25%, 100%} respectively.

To confirm that the presented architectures do not tend to overfit, we com-
pared a loss and validation loss functions. Figure 6 illustrates the loss and val-
idation loss of RAE and RAESC (to make the chart more readable, RAES is
excluded) in the function of time (in seconds). We can clearly see on both charts
(Figure 6a and Figure 6b) that the validation loss goes approximately along with
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loss function (except for a few bounces). We observed similar behaviour for all
the experiments performed.
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Fig. 7: Loss as function of time [s] for mX = {1, 8} and σ = {25%, 100%}.

To make it transparent and clear, we compared all the algorithms, including
the training time for different σ. Figure 7 presents a loss in a function of time
(in seconds) for mX = {1, 8} features. As expected, we can clearly see that pro-
posed architecture dominates for univariate data disqualifying RAE (Figure 7a).
Interestingly, the RAE with larger context size (σ = 100%) converges faster than
the one with smaller context size (σ = 25%). The fastest are RAES and RAESC
(σ = 100% both), achieving almost the same results (the loss functions of both
overlap on the chart). For the multivariate data (in Figure 7b) on the contrary
to univariate we can see that the RAE with smaller context size converges much
faster than with a larger one. The most striking fact to emerge from these results
is that the RAE 100% does not drop in the whole period. The training of RAE
25% is slower at the begining than proposed architecture but speeds up after 40
seconds achieving very similar result after 100 seconds.

In most of the charts presented it can be noticed that the training process of
RAE fluctuates significantly on the contrary to the proposed solution where it is
relatively stable. It is also worth mentioning that all the experiments were per-
formed with a fixed filter size for both convolutional and max-pooling layers, and
it is likely that we could achieve better results by tuning these hyperparameters.

4 Conclusions and future work

In this work, we proposed an autoencoder with sequence-aware encoding. We
proved that this solution outperforms the RAE in terms of training speed in
most cases.

The experiments confirmed that the training of proposed architecture takes
less time than the standard RAE. It is a critical factor if the training time is
limited, for example, in Automated Machine Learning (AutoML) tools or in
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a hyperparameter optimization. The context size and the number of features
in the input sequence have a high impact on training performance. Only for
a relatively large number of features and small size of the context the RAE
achieves comparable results to the proposed solution. In other cases our solution
dominates and the training time is an order of magnitude shorter.

In our view, these results constitute a good initial step toward further re-
search. The implementation of proposed architecture was simplified, and the use
of different layers and hyperparameter tunning seems to offer great opportunities
to tune it achieving even better results.

The latent space produced by proposed architecture is still underexplored yet
but seems to be an interesting point to be addressed in future research. These
findings suggest an application of this architecture to different recurrent models
such as variational recurrent autoencoder, which could significantly improve the
training performance of generative models.

We believe that the proposed solution has a wide range of practical applica-
tions and is worth confirming.
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