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Abstract: Indoor location has become the core part in the large-scale location-

aware services, especially in the extendable/scalable applications. Fingerprint 

location by using the signal strength indicator (RSSI) of the received WiFi sig-

nal has the advantages of full coverage and strong expansibility. It also has the 

disadvantages of requiring data calibration and lacking samples under the dy-

namic environment. This paper describes a deep neural network method used 

for indoor positioning (DNNIP) based on stacked auto-encoder and data strati-

fication. The experimental results show that this DNNIP has better classifica-

tion accuracy than the machine learning algorithms that are based on 

UJIIndoorLoc dataset. 

Keywords: Indoor Location, Deep Neural Network, Machine Learning Algo-

rithm. 

1 Introduction 

The application of indoor location involves the integration of multiple interdiscipli-

nary works. This location information meets the users' needs with convenient naviga-

tions in large indoor situations. In the e-commerce application, specific recommenda-

tions with accurate location information can be presented to users. In the emergency 

rescue, fast effective actions can be taken with the obtained exact location of the res-

cued target. Also in hospitals, doctors can manage patients and medical supplies 

through location tracking. And in social activities, groups can be easily built based on 

the people’s indoor locations, thus enriching the interactions among peoples [1].  

In an indoor environment, the traditional GPS positioning is generally not suitable 

due to its large signal attenuation. Thus the indoor positioning introduces a variety of 

sensors and equipments. In the coverage of one wireless heterogeneous network, the 

fingerprint location is implemented with the received signal strength indicator (RSSI) 

values from at least three wireless transmitters. The use of WiFi signal is a popular 

solution, which complies with IEEE 802.11 standard and has high bandwidth and 

transmit rate. The advantage of using WiFi for positioning is its full WiFi signal cov-

erage in most cities, providing the readiness of the infrastructure. In order to improve 

the positioning accuracy, the acoustic ranging and WiFi are combined to test the rela-
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tive distance information between reference nodes. Accelerometers and compasses 

are also used to help obtain accurate maps with large indoor areas [2].  

The choice of the location of an access point is the key to improving the accuracy 

of positioning when applying the fingerprint matching for the location. Some litera-

tures have analyzed the impact of the number of reference nodes on the accuracy, and 

proposed appropriate selection strategies. Some select reference nodes via gradient 

descent search during the training phase, RSSI surface fitting, and hierarchical clus-

tering [3-4]. Even some publishes propose a goal-driven model by combining multi-

target reference node deployment with genetic algorithm [5]. After the selection of 

RSSI signals, the process algorithm is another factor that affects the accuracy of posi-

tioning. There are two types of intelligent location algorithms: neighbor selection and 

machine learning. K-Nearest Neighbor (KNN) is a common fingerprint matching 

algorithm. The accuracy can be improved through the minimum circle clustering and 

the adaptive weighted KNN matching [6]. Artificial neural network (ANN) is also 

introduced to support indoor and outdoor positioning with its particle swarm optimi-

zation to be used to optimize the neurons [7].  

In large indoor stereo positioning scenarios, the problem becomes more complex 

due to the existence of multiple floors and multiple buildings. How to deal with the 

random fluctuation of the signal, the noise of the multipath effect, and the dependence 

on the equipment to be used are the main challenges. This paper [8] proposes a fin-

gerprint based pipeline processing method, which firstly identifies the user's building, 

and then establishes the association among access points. Through the voting of these 

various networks, the buildings and their floors are correctly calculated [8]. The KNN 

algorithm mentioned above would make proper adjustment to the building specifical-

ly selected via grid search [9]. In addition, with the popularity of mobile devices, big 

data has become accessible. Due to the improvement of GPU performance and rich 

algorithm libraries, the deep learning can address these challenges effectively. Deep 

neural network (DNN) simply needs to be for the comparisons of location precisions 

within larger positioning areas. It needs fewer parameter adjustments but provides 

greater scalability [10-12].  

In this research, the UJIIndoorLoc dataset was selected as the original records [13-

14]. Taken into the consideration of the cases like the possible classification errors of 

the buildings or the floors, the loss happening in the training stage will be the same as 

in the validation stage. Thus the dataset was segmented as layers based on the RSSI 

values from 520 wireless access points (WAP) and the three attributes as buildingID, 

floorID, and SpaceID.  This paper proposes the use of deep neural network for indoor 

positioning (DNNIP) after the comparisons with the support vector machine (SVM), 

random forest and gradient boosting decision tree. The DNNIP approach ensures the 

accuracy and reduces the adjustment of parameters.  

The rest of this paper is organized as follows: Section 2 introduces the hierarchical 

method for the dataset. Section 3 describes the DNNIP network structure and training 

algorithm. Then the experimental results are represented. The last section has the 

conclusion.  
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2 Fingerprint Localization and Datasets Stratification 

Indoor fingerprint positioning consists of two stages as shown in Fig. 1. During the 

offline stage, the wireless map is created by measuring the RSSI values of different 

access points or reference nodes. The map includes not only the RSSI values, but also 

the details of the reference nodes placed: the building number, the specific floor, and 

the space details. While at the online stage, the location of the user is obtained by 

matching the RSSI value of the user with the wireless map through a location algo-

rithm. 

 

Fig. 1. Fingerprint positioning stages 

2.1 Open Dataset of UJIIndoorLoc 

The dataset of UJIIndoorLoc was collected from three buildings of Jaume I Universi-

ty, with four, four and five floors respectively. Data from 933 different reference 

points was measured against 20+ users who are using 25 different types of mobile 

terminals. The whole data set is divided into training subset and test subset with 

19,937 records used for training and 1,111 records for testing. Each record contains 

529 dimensions, including 520 RSSI values and 9 additional attributes, like 

BuildingID, FloorID, and SpaceID.    

2.2 Dataset Stratification 

The data preparation is based on the location stratification. Each sub-dataset is con-

structed by the building number, floor number and space number. The format of each 

sample is BuildingID, FloorID, SpaceID, WAP001, , WAP520. 90% of the whole 

training dataset of UJIIndoorLoc are classified as training dataset and test dataset, 

represented as DNNIP_Train and DNNIP_Test. The test dataset is used for testing, 

while the data of the original test set are transformed as validation set. Each dataset is 

then divided into three sub-datasets based on the BuildingID. And each sub-dataset is 
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further divided according to the FloorID. Finally, the spaceID is added. The final 

bottom sub-dataset reflects the minimum positioning range. The hierarchical sub-

datasets are illustrated in Fig. 2. From these sub-datasets, the building information is 

firstly discovered and predicted, and then the floors are classified. then each sample 

will be further classified by SpaceID.  

 

Fig. 2. Dataset preparation 
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3 DNNIP with Auto-Encoders  

3.1 Network Structure of DNNIP  

DNNIP has multiple auto-encoders (AE) to learn features from large samples. The 

Stacked AE (SAE) makes the output vector value as close as possible to the input 

vector value. The output of the hidden-layer neurons is of the most research interest as 

these post-encoding parameters carry all of the input information in a compact feature 

form. When the number of AE increases, the feature representation becomes more 

abstract. Therefore, DNNIP is more suitable for the complex classification tasks.  

The reason for applying SAE into DNNIP is that if a DNN is directly trained to per-

form the classification task through random initialization, the underlying error is al-

most zero and the error gradient can easily disappear. When using the AE structure for 

the unsupervised learning from the training data, the pre-trained network can make 

the training data to a certain extent such that the initial value of the whole network is 

within an appropriate state. Therefore, through the supervised learning the classifica-

tion of the second stage can be made easier and the convergence speed can be accel-

erated. Also the activation function of a rectified linear unit (ReLu) is applied to the 

SAE neurons, i.e.,                It is well known that in order to use the tradi-

tional backward-propagation learning algorithm, the activation function of neurons  

normally uses a sigmoid function. In DNN, however, the sigmoid function would 

appear soft saturated, and the error gradient would disappear easily.   

As shown in Fig. 3, at the top of the DNNIP network, the classifier consists of a 

dropout layer. For strengthening the learning of redundancy, the dropout layer ran-

domly deletes the connections between layers during the training process to achieve 

better generalization and avoid over-fitting. The final output layer is the Softmax 

layer that outputs the probability of classifications.  
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Fig. 3. The network structure of DNNIP  

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_3

https://dx.doi.org/10.1007/978-3-030-77964-1_3


6 

3.2 Auto-Encoder and Training Algorithm 

Every AE is a fully connected multi-layer forward network, and it maps the input 

to the hidden layer and then maps to the output. Basically the AE reconstructs the 

input with which the hidden layer maps the input to become low dimensional 

vectors. When the number of AEs increases, the number of hidden-layer neurons 

would decrease. The hidden layer can learn the features of        , where   

represents the connection parameters, in which the weight  , the threshold   and 

the activation functions are included. Moreover, the input of the next AE is the 

output of the previous AE from its hidden layer.  

Fig. 4 shows the first two AEs of a DNNIP. The input layer of the first AE has 

523 neurons to accept 523 dimensional RSSI values plus the three attributes - 

BuildingID, FloorID and SpaceID. The output layer also has 523 neurons, repre-

senting the reconstructed input to the next AE.  

The SAE part is reconstructed as follows: Given the required input data   

              . Let the number of AEs be     By feeding   to train the first AE, 

the network parameters                               along with the output of the hid-

den layer        are obtained, as shown in Fig 5(a). Afterwards, this        is then used 

as the input of the second AE, as shown in Fig 5(b). Another group of parameters 

                              and        can be obtained. Repeat this procedure until the 

   number of AE trainings are reached. At this point, multiple groups of network 

parameters                                   are available. 
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Fig. 4. Stacked AEs 

The training of the AE network uses the backward propagation algorithm. This 

training is to find parameters                                     by minimiz-

ing the loss function,  
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(1)  

where      is the mean squared error (MSE) between the input and the output, 

which is further formulated as in (2). In (1),             and     denote the input 

and output of the ith sample, respectively;  ,    and    represent the number of 

training samples, the number of network layers and the number of neurons in 

layer  , respectively;    
     

 denotes the connection weight between the ith neuron 

on the layer l and the jth neuron on the l+1 layer of the kth AE;       represents 

the sparseness constraint formulated in (3);  ,   and   represent the weight coef-

ficients, respectively. 

                     
 

 
       

          
 
 ,                          (2) 

where       
     is the SAE output vector,  

       
                                  ,                      (3) 

where        and        represent the offset vector and output vector of the kth AE, 

respectively, 
                                  ,                                  (4) 

and  

                  
 

   
        

   

     
.                                (5) 

where     is the average output of the jth neuron,     
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 is the output of the jth hidden neuron. 

For the sample            , the error gradient on the neuron n of the output lay-

er is 
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The gradient residual of the neuron n on the hidden layer k is 

     
     

      
     

        
       

       
        

 

   
 

   

     
  ,         (7) 

In (6) and (7), the vector                                   ;   
     

 is the nth 

element of       . 

To find the partial derivatives of the cost function yields  

                              
                    

                         ,        (8) 

                               
                    

                .           (9) 

After obtaining the loss function and the partial derivative of the parameters, 

the gradient descent algorithm is to get the optimal parameters of the AE network. 

The training process is as follows. 

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77964-1_3

https://dx.doi.org/10.1007/978-3-030-77964-1_3


8 

1) For     to   ,  let the matrix          , the vector          , ini-

tialize the learning step  ,      . 

2) For     to  , calculate 

                                                                  , 

                                                                  . 

3) Update the parameters 

                                         
 

 
                 , 

                                        
 

 
        . 

4) Repeat 2) until the algorithm converges or reaches the maximum num-

ber of iterations and output                                  .  
 

In the training process, the value of the cost function is determined by all the 

training samples. It has irrelevance with the training sequence. Inside the SAE, 

the output of the hidden layer        is the feature of the whole training dataset.  

3.3 Classification 

After the SAE’s unsupervised training process is completed, the decoder layer of each 

layer, i.e., the output layer is disconnected. The trained SAE is then connected to the 

classifier, as can be seen in Fig. 3. Generally the number of buildings is denoted by  , 

the number of floors in building   by   , and the number of spaces in floor   by   . 

Then the outputs of the classifiers are separated into     
  
   

 
    classes. 

4 Experimental Results Comparison 

During the experiments, the Pandas library is selected for data processing, Keras li-

brary for DNN, TensorFlow for numerical computation, and Scikit-learn library for 

the typical machine learning algorithm computations. The relevant parameters of 

simulation are shown in Table 1. 

Table 1. The DNNIP related parameters. 

DNNIP Parameters Values 

SAE hidden layers 64,128,256 

SAE activation function ReLu 

SAE optimizer ADAM 

SAE loss MSE 

Classifier hidden layers 128-128 

Classifier optimizer ADAM 

Classifier loss Categorical Cross Entropy  

Classifier dropout rate 0.18 
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Ratio of training data to overall data 0.90 

Number of epochs 20 

Batch size 10 

To evaluate the performance of the DNNIP against other indoor positioning algo-

rithms that include SVM, random forest algorithm and gradient-promotion decision 

tree, we calculate the accuracy according to (10) based on the definition of accuracy 

for classification problems used in statistical learning, and then select the true positive 

(TP), false positive (FP), false negative (FN) as well as true negative (TN) to ulti-

mately measure the correct rate (CR). 

         
     

           
.                             (10) 

 In fact, TP and TN represent the correct classification numbers, while FP and FN 

indicate the wrong classification numbers. 

Several distinct DNN structures are shown in Fig. 5. These networks are represent-

ed by having the numbers in parentheses, which indicate the number of neurons used 

in the hidden layer. The first DNN is a fully connected network with no SAE compo-

nents, and it uses a dropout layer to prevent over-fitting. For each chosen structure, a 

variety of optimization strategies are used by starting with constant tuning and testing 

the dropout value to be within the range of 5% to 20%, The final settling is set on 

18% as shown in Table 1. Meanwhile, the different values of the learning rate of the 

ADAM optimizer are tried and compared with the best value achieved through re-

peated adjustments. 

4.1 Effect of the SAE Structure 

Fig. 5 displays the accuracy performances of different DNN networks. It clearly 

shows that the higher the number of hidden-layer neurons, the higher the accuracy. 

The accuracy degree of the classifications of the buildings and floors coming out of 

the test set can achieve 94.2%, while the accuracy against the validation dataset can 

only be close to 83.8%. The reason is because of the characteristics of the validation 

dataset - only part of the samples contains valid RSSI values, while other samples 

lack RSSI values, and the default value is 0. The results demonstrate that the SAE’s 

network structure can effectively reduce the dimensioning of the input vector from 

523 to 256, 128, and 64. The simplified results can then be linked to classifiers. 

Fig. 5 indicates that the SAE’s identification accuracy with 256 and 128 hidden 

neurons superimposed on the validation data set can reach up to 98%, and the accura-

cy on the test set can be improved up to 89%. This proves that the SAE can learn even 

from a simplified representation of the input information and get better results than 

the DNN that does not have an AE network. The comparison of SAE (256-128) vs. 

SAE (128-64) would lead to a conclusion that the more neurons are put on the hidden-

layer, the higher accuracy can be obtained. The SAE (256-128-64), however, achieves 

the similar performance as the SAE (256-128) does. This is mainly due to the fact that 

the more number of AEs the more complex the network would be, and thus consum-

ing more time to adjust parameters, and causing the performance to improve slowly. 
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Fig. 5. Impact on the accuracy of Classifications of different DNN structures 

Fig. 6 shows the changes of the accuracy of the classifications of the buildings and 

the floors on both the test-set and the validation-set along with a training duration by 

SAE (256-128). The degree of the correct recognitions by the SAE achieves up 95% 

or higher after the 11th iteration.  

 

Fig. 6. Accuracy of test and validation dataset using DNNIP 

4.2 Accuracy Comparison of Different Algorithms  

The SAE that does not partition the dataset is labeled as DNLIP. And the algorithm of 

the experiment used for the building level and the floor level in the training and simu-

lation in [11] is labeled as SVM, i.e., the random forest and decision tree algorithms. 

As shown in Fig. 7, DNNIP presents the highest accuracy of 88.9%, while SVM has 

the lowest accuracy of 82.5%. Compared with the DNLIP algorithm, the DNNIP al-
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gorithm has some improvement. This is because that when the DNLIP algorithm clas-

sifies the buildings and floors, it gets the same loss value in the training phase and 

cannot obtain the correct high recognition rate. 

 

Fig. 7. Accuracy comparison of building and floor positioning 

The first step of using the DNNIP method for the indoor positioning is the classifi-

cation of the buildings, and the accuracy of the algorithm is shown in Fig. 8. It can be 

seen that the algorithms above can achieve very good accuracies. And the accuracy of 

the decision tree algorithm can be up to 99.2%, which is better than all other machine 

learning algorithms. 

 

Fig. 8. Accuracy comparison of building positioning  
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The second step is to classify the floors of each building using the floor attributes. 

The resultant outcome is shown in Fig. 9. It indicates that when the data set is divided 

by the numbering of the buildings, the obtained accuracy of the proposed DNNIP is 

better than other machine learning algorithms in most cases. The averaged positioning 

accuracy of this DNNIP algorithm is 93.8%, which suggests that DNNIP has a certain 

capability in accuracy.  

 

Fig. 9. Accuracy comparison of floor positioning 

Finally, the accuracies of the classifications against the space among these algo-

rithms are compared with results shown in Fig. 10. It shows that the DNNIP has the 

highest average positioning accuracy in some classifications. It can also be found that 

all the algorithms would get worse results when classifying the ground and top floors 

than classifying the middle floors for the same building. 
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Fig. 10. Accuracy comparison of space positioning 

5 Conclusion 

In this paper, the DNNIP method is proposed to locate the user's position in large 

indoor buildings, and further used to segment and layer the original UJIIndoorLoc 

dataset. The DNNIP takes the network structure of the stacked auto-encoders and 

ReLu activation function so as to avoid the gradient disappearance in the training 

processes. The obtained classifying accuracy of the proposed DNNIP algorithm is the 

highest among all other machine learning algorithms. And after the training, this algo-

rithm does not need to find the best match of samples within the database, which 

saves the time of manually adjusting the parameters. One disadvantage of the pro-

posed DNNIP algorithm is that when being used against the hierarchical datasets for 

the training, the computation is much higher than that of the traditional machine 

learning algorithms, and more computing resources are needed when the training set 

is updated and adjusted.  
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