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Abstract. This article proposes an approach to the problem of computational
capacities analysis of the computing continuum via theoretical framework of equi-
librium phase-transitions and numerical simulations. We introduce the concept
of phase transitions in computing continuum and show how this phenomena can
be explored in the context of workflow makespan, which we treat as an order
parameter. We simulate the behavior of the computational network in the equilib-
rium regime within the framework of the XY-model defined over complex agent
network with Barabasi-Albert topology. More specifically, we define Hamilto-
nian over complex network topology and sample the resulting spin-orientation
distribution with the Metropolis-Hastings technique. The key aspect of the paper
is derivation of the bandwidth matrix, as the emergent effect of the ”low-level”
collective spin interaction. This allows us to study the first order approximation to
the makespan of the ”high-level” system-wide workflow model in the presence
of data-flow anisotropy and phase transitions of the bandwidth matrix controlled
by the means of ”noise regime” parameter η. For this purpose, we have built
a simulation engine in Python 3.6. Simulation results confirm existence of the
phase transition, revealing complex transformations in the computational abilities
of the agents. Notable feature is that bandwidth distribution undergoes a critical
transition from single to multi-mode case. Our simulations generally open new
perspectives for reproducible comparative performance analysis of the novel and
classic scheduling algorithms.

Keywords: Complex Networks· Computing Continuum· Phase Transitions· Com-
putational Model· MCMC· Metropolis-Hastings· XY-model· Equilibrium Model

1 Introduction

Recent advancements [3, 30] in the field of parallel and distributed computing led to
the definition of the computing continuum [6] as the environment comprising highly
heterogeneous systems with dynamic spatio-temporal organizational structures, varying
in-nature workloads [14], complex control hierarchies [8], governing computational
clusters with multiple scales of the processing latencies, and diverse sets of the manage-
ment policies [17, 31]. The emergence of these systems is the natural response to the
ever-growing variability of computational demands.
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This paper investigates how to approach the problem of modeling the computing
continuum, considering it as an active part of evolving multi-agent networks, similar to
Internet, with complex emergent properties. This problem remains still mostly uncovered
in the literature of the scheduling problems. Moreover, since emergence of the concept in
2020 [6], there is a lack of a reproducible model of the computing continuum, especially
for better understanding scheduling heuristics, as real systems do not preserve this quality
and hinder the comparative performance analysis of the novel scheduling approaches.

Our paper aims to fill these gaps through simulation, allowing to study the computing
continuum with the preferential attachment topology [1] and given workload, based on a
theoretical framework with some initial conditions. We implement our theoretical model
as module of a simulator called Modular Architecture for Complex Computing Systems
Analysis (MACS) [16]. We introduced a parameter related to the noise regime in the
system that allows us to study different congested states of the computational network,
considered as a graph cut from a global self-organizing network.

The contribution of this paper is as follows:

1. We analyse the definition [6] of the computing continuum and provide a theoretical
model of how high-order computational properties emerge from elementary pairwise
interactions;

2. We study the behavior of the fully observable agent computational network, simu-
lated in the equilibrium regime within the framework of the modified XY-model [15]
defined over complex network with Barabasi-Albert topology [1]. We define the
Hamiltonian, which encodes dynamical properties of the system over a complex
network topology, and sample the resulting Gibbs distribution of spin-orientations
with the Metropolis-Hastings technique [15].

3. We derive the bandwidth matrix, as the emergent effect of the “low-level” col-
lective spin interaction, which allows us to study the first order approximation to
the behavior of the “high-level” system-wide workflow model in the presence of
emergent data-flow anisotropy. We obtained the DAG network structure from the
PSLIB project scheduling library [21], namely the state-of-the-art j60-60 benchmark
instance consisting of 60 tasks.

The remainder of the paper is structured as follows. Section 2 discusses the related
work. Section 2.1 describes the background definitions and introduces reader to our
vision of the computing continuum concept, meanwhile Section 2.2 and 2.3 devoted to
the specific structural aspects. Sections 3 describes proposed model. Section 4 presents
an experimental evaluation and Section 5 concludes the paper.

2 Related Work and Definitions

2.1 Computing Continuum

To better understand the case of computing continuum, we should recall to complex multi-
layer computational networks, that are operated by large corporations and governments.
Examples of such networked systems are:
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– social platforms that analyse concurrently various motion patterns and opinion
dynamics [4, 5] related to human behaviour at various spatio-temporal scales;

– self-organizing vehicle fleets and drone swarms [9,24] that receive information from
a large group of spatial sensors and need to make decisions accordingly.

Such networks consist of a large number of locally interacting agents that form stable
emergent flows of data and execute arbitrary workloads. It is important to highlight that
we are no longer dealing with machines in the case of computing continuum, but with
agents [4] capable of consensus formation of various kind.

A key property typical to all sufficiently complex ecosystems is their tendency to
grasp the sub-systems, provide uniformity over heterogeneity and optimize the end-
point workload execution in the presence of target criteria with system-wide constraints.
Haken [12] introduced the concept of ”order parameter”, as lower-dimension projection,
governing large-scale dynamics of the complex system as whole, emerged from local
interactions. He noted the role of natural language of any kind to synchronize all the
individuals, reduce/compress the complexity of mind and maintain the synchronous
state across the society, similarly to the order parameter of the social network. The same
logic can be seen in the computing systems with the introduction of formal grammars,
programming languages and interfaces [13].

Computing continuum can be defined as a convolution hierarchy of interacting order
parameters from inherently local, associated with tasks to global which are structurally
prescribed by the workload network. In our work we interpret global order parameter of
whole convolution hierarchy as Makespan.

Finally, we can characterize computing continuum as transfusion of the three compo-
nents, namely:

– Computational network, which provides structural knowledge via statistics about
the possible information flows within the system and possible interactions of agents
via adjacency matrix;

– Recursive network which forms a multi-layer DAG and provides knowledge about
non-equilibrium dynamic processes in the computational network. This component
is optional and only required if behaviour of the network is considered far from
equilibrium. Examples include: Dynamic Bayesian Networks (DBN) and Hidden
Markov Models (HMM);

– Workload network is the set of tasks, represented as the DAG that governs computa-
tional process in the computing continuum, prescribing arrow of the time.

Computational and workload networks are inherently complex networks, described in
terms of random graphs with corresponding statistical properties [5]. In the computational
network, data transfer and local performance rates are emerging at various noise regimes.
Tasks are interconnected by a precedence relation and have different data volumes to
transmit between each other and computation time, as well as transmission rate, will
depend on matching with computational agents. Together tasks form a global collective
order parameter called Makespan, which does not exist when each task is considered
individually. The order parameter for a computational network is the degree of consensus
of the agents. As a result, we obtain a hierarchy, which at its highest level characterized
by single parameter - Makespan, and at its lowest level is described by the local behavior
of the computing agents.
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2.2 Computational Network with Scale-Free Topology

In our study, we decided to model computational network topology as a scale-free
network, as many of the networks under study fall into the class. This means that
they have a power-law distribution with respect to the degree of a node. Scale-free
networks are important phenomena in natural networks and human networks (Internet,
citation networks, social networks) [1]. Barabasi-Albert theoretical model of scale-free
network incorporates two important general concepts: network growth mechanism and
preferential attachment principle (PA). Both concepts are widely represented in real-
world networks. Growth means that the number of nodes in a network increases over time.
Preferential attachment principle prescribes, that the more links a node has, the more
likely it is to create new links. Nodes with the highest degree have more opportunities
to take over the links added to the network. Intuitively, the principle of preferential
attachment can be understood if we think in terms of social networks that connect people
together. Strongly connected nodes are represented by known people with a large number
of connections. When a newcomer enters a community, it is more preferable to connect
with one of the known people than with a relatively unknown person. Similarly, on the
World Wide Web, pages link to hubs, for example, well known sites with high Page Rank
(PR) [28], than to pages that are not well known. If you choose a new page to link to
randomly, then the probability of choosing a particular page will be proportional to its
degree. This explains the preferential attachment principle.

The PA principle is an example of positive feedback, where initially random vari-
ations in the node number of node links are automatically amplified, thereby greatly
increasing the gap and allowing hub formation.

2.3 Modelling Congested States of the Computing Continuum through Phase
Transitions

Natural phase transitions refer to the change between various states of matter, such as the
solid, liquid, and gaseous states. The transition from one state to the other depends upon
the value of a set of external parameters such as temperature, pressure, and density char-
acterizing the thermodynamic state of the system. In the context of complex networks,
various Monte Carlo simulations of Ising model on small-world networks confirmed
the existence of a phase transition of mean-field character [5]. Specifically, the critical
behavior of the XY-model in small-world networks was studied in [26].

The research on phase transitions of various kinds has a long tradition in physical
sciences. Due to the lack of space, we refer to [5, 15, 18] for general and specific aspects
of the problem. For further reading, it is only important to relate “order parameters”
with small changes induced by the noise regime. A remarkable connection of the phase
transitions and NP-hard problems [27] shows the important influence of the input data
distribution on the sensitivity of optimization algorithms. Namely, it is interesting to
identify how these small changes will result in dramatic changes in the convolution
hierarchy of interacting order parameters due to non-linear effects, from local associated
with tasks, to global measures such as Makespan.
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3 Mathematical Model

3.1 Workload Model

We define a workload as a directed acyclic graph (DAG) where V is the set of tasks
and E is the set of edges between them: G = (V,E). Each edge (i, j) ∈ E represents a
precedence constraint indicating that the task i must complete its execution before the
task j starts. Preemption is not allowed.

3.2 Agent Model

We consider a set of independent agents A with different processing speeds and synchro-
nized clocks. Computational properties of the agents are expressed with a non-symmetric
positive matrix B. Precisely speaking, off-diagonal entries model bandwidth between
agents m and q and diagonal elements correspond to the agent self-performance. All
entries in the matrix are normalized and dimensionless.

3.3 Network Model

We model the computational network as a random graph with Barabasi-Albert scale-
free topology that provides structural knowledge about its topological properties: N =
(A,Q), where A is the set of the agents and Q ⊂ A× A is the set of interconnections
(m, q) ∈ Q between them.

For an analytical insight into simulation and phase transitions, we rely on the equi-
librium statistical physics framework, which considers that the network N can be in
any possible microscopic configuration. Considering XY-model [5, 15] defined over the
network N we map the two-dimensional unit vector ~Sm:

~Sm = (cos(θm), sin(θm)) (1)

to each vertice in A with angle θm ∈ [0; 2π]. Spin vector is inherently local property and
has no significant impact in our model when considered separately. In the context of our
problem, it accounts on how the noise η numerically impacts the ability of the network
to perform computations.

Direct interpretation consists in considering the existence of a centralized policy-
maker in the computing continuum. A spin vector θm then represents the dynamic
scalar degree of agent’s belief [5, pp. 216–241] to the “center”, prescribing mechanism
of the consensus formation. In this scenario, agents assumed to have a continuous
opinion amplitude from 0 to 2π. However, this interpretation may not be important, for
example when simulating a comparative study of the various scheduling heuristics. The
information about the connection between agents is encoded in the adjacency matrix J
of the graph N , considering local interaction of the adjacent agents. The Hamiltonian
then associates an energyH to each configuration:

H(θ) =
∑
m∈A

∑
q 6=m

Jmq · [1− cos(θm − θq)]. (2)
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Further, the configuration probability is given by the Boltzmann distribution with noise
regime η ≥ 0:

P (θ) = Z−1 · e−
H(θ)
η ; Z =

∫
[0,2π]Λ

∏
m∈A

dθm e−
H(θ)
η . (3)

where Z is the normalization factor.It is important to highlight that we operate with a
fully observable computational network.

3.4 Order Parameter of the Computational Network

The distribution P (θ) provides important knowledge about network behaviour and
importantly, order formation at low noise regime limit. The first important characteristic
is the average orientation θ̂m computed via the following integral:

θ̂m =

∫
θm · f(θm) dθm. (4)

Further, we require a two-point co-variation function Rmq given by the following
two-dimensional integral [18]:

Rmq =

∫∫
(θm − θ̂m) · (θq − θ̂q) · f(θm · θq) dθm dθq. (5)

Averaging across all spins in the network N leads to the synchronization degree
M∈ [0; 1], also known as mean magnetization in the conventional physics literature on
the d-dimensional lattices:

M =
1

|A|2
·

〈 |A|∑
i=1

cos θi

2

+

 |A|∑
i=1

sin θi

2〉
. (6)

This is zero above a critical temperature in many lattice magnetic systems and becomes
non-zero spontaneously at low temperatures. Likewise, there is no conventional phase
transition present that would be associated with symmetry breaking. However, it is well-
known, that system does show signs of a transition from a disordered high-temperature
state to a quasi-ordered state below some critical temperature, called the Kosterlitz-
Thouless [22] transition.

3.5 Network Bandwidth Model

We propose in our model the definition of bandwidth Bmq between two agents m and q
as a non-symmetric positive matrix, based on the following assumptions:

– Mutual spin correlation at a finite noise regime, as stronger correlation results in the
better bandwidth;

– Average spin orientation of a agent m projected to the mean-field orientationM
given by the γ-factor, which reflects the synchrony of the agent to the network;
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– Inter-node degree relation Ω(m, q), obtained from the graph structure, which reflects
asymmetry in the traffic handling. A larger amount of links forces an agent to split
its bandwidth;

– Non-symmetric structure of the matrix, handling the realistic scenario of non-
identical bandwidth (m, q) and (q,m) permutation.

Accounting these assumptions results in a bandwidth Bmq defined by the following
S-curve equation:

Bmq = Ω(m, q) · γm ·
min(Bm, Bq)

1 + e−Rmq
> 0 , ∀ (m, q), (7)

where the inter-node degree relation is given by:

Ω(m, q) = 1− deg(m)

deg(m) + deg(q)
, (8)

and deg(m) is the degree of the vertex m and γ-factor is given by vector product:

γm = 1− 1

4 · π2
· M · (φ̂− θ̂m)2

1 + e−µ
; φ =

1

|A|
·
|A|∑
m

θm (9)

The random variable φ expresses the collective field φ averaged across the all graph
nodes, and µ-factor is the co-variance:

µ =

∫
(φ− φ̂) · (θm − θ̂m) · P (θ) dθ1 ... dθn, (10)

which accounts how strong collective field φ is “feeling” arbitrary spin vector θm
orientation. Finally, min (Bm, Bq) assumed as amplitude of the S-curve function, shows
that the channel bandwidth saturates to the minimum of the two possible nominal values
defined for each agent. Hats are indicating sample average.

The special case of diagonal elements Bmm corresponding to the dimensionless
self-bandwidth of the given agent:

Bmm = γm ·
Fm

e·
√
Rmm

, (11)

where Fm ∈ (0; 1] is the nominal normalized dimensionless self-bandwidth, and
√
Rmm

is the variance of the local spin orientation, which prescribes decrease of the computa-
tional capacity with growing variance.

3.6 Communication and Computation in the Network

We further define a data matrix Dij that indicates the amount of data transmitted from
a task i to a task j. Consequently, we obtain the delay tensor D∗ for transferring data
from task i to task j assigned to the agents m and q:

d∗ijmq =

Connection Delay︷︸︸︷
Tmq +

Data Transfer Latency︷ ︸︸ ︷
Dij · B−1

mq .
(12)
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The first term Tmq in Eq. 12 represents a connection estimation delay, assumed as a small
constant. This approach models realistic scenarios of synchronized routing information,
leading to the fast connection estimation with low delay. The second term results from
the time required to transfer the data from task i to j residing on the agents m and q,
obtained by dividing the components of data matrix by the corresponding bandwidth.
We compute the execution time of the given task i ∈ V with the following formula:

τ1
im = max

j
{d∗ijmq; ∀j ∈ Pi}+ τ0

im · B−1
mm, (13)

where Pi is the set of predecessors of task i, the upper indices give the order of the
approximation, and the term τ1

im corresponds to the execution time perturbed by the
transfer times, meanwhile τ0

im corresponds to the execution time measured in the per-
fect conditions when there is no noise and data transfer delays. We assume first-order
approximation reasonable, when we consider a bandwidth independent of the number of
simultaneously transferring agents.

4 Experimental Study

4.1 Monte Carlo Simulation of the Computational Network

We obtain the distribution P (θ) via Monte Carlo simulation using the Metropolis
algorithm [5, pp. 108–111], [23]. At each time step, we induce a random walk on the
graph N , choose one random spin and rotate its angle by some random increment,
keeping it in a range [0; 2π]. States are accepted with the probability:

p(θn+1| θn) = min
{

1, e−∆H} , (14)

where ∆H = Hn+1 −Hn, where n defines number of the step in a random walk. The
transitions to the lower energies are certainly accepted, while the transitions to slightly
higher energies are accepted with the probability e−∆H.

4.2 Implementation Details

We implemented the simulation [16] model in Python 3.6 with network processing
performed by the graph-tool [29] library. We implemented the scheduler using the SCIP
6.0.2 optimization suite [11] with the default configuration and SoPlex 4.0.2 LP solver.
FB-SGS Heuristic [19,20] is implemented as stand alone callable application via Python
integration wrapper, that we have developed. We compiled the source files for the model
and SCIP using gcc version 4.8.5 and handled the experimental data using the BASH
4.2.46, MariaDB 5.5.64 and native NumPy (.npy) format.

4.3 Numerical Results and Discussion

We considered nominal capacities Bm, Fm of the computing agents equal to 1 without
loss of generality. While this brings homogeneity across agents, the heterogeneity is
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Fig. 1: (a) Snapshot after 1.5 · 103 iterations of the Metropolis-Hastings dynamics of the
model defined over Barabasi-Albert network (n = 256, η = 0.1) with triangular initial
graph; darker colors correspond to values of θm close to 0. Visualized with Fruchterman-
Reingold layout algorithm and Cairo library. (b) Order parameters φ andM as functions
of the noise regime η.
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Fig. 2: (a) Auto-correlation of the global state-transition of the network graph N , with
respect to the 0th step. (b) Makespan of the DAG obtained with a variant of the classical
local descent with monotonic improvement in the objective function. Single and several
(i = 20) iterations agent selection vs noise regime variation. Both cases use Forward-
Backward SGS (RCPSP/max) for minimum makespan derivation. Task times obtained
by scaling normalized execution and transfer times to seconds.

encoded in the network structure and its stochastic behaviour, which depends on the
noise regime.

During the first stage of the experiment, we focused on the analysis of the computa-
tional network. The topology visualization of the computational network N is depicted
on the Fig. 1a. For layout generation we have used force-directed Fruchterman-Reingold
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(a) η = 0.50 (b) η = 0.20

(c) η = 0.10 (d) η = 0.05

Fig. 3: Distribution of the emergent topological excitations Bmq ∈ (0; 1] on the 20× 20
sub-matrix of 256 × 256 bandwidth matrix, where darker colours correspond to the
higher rates of the bandwidth. From left to right, the system evolves from high to low
noise influence, exhibiting various computational capabilities of the network N .

algorithm [10] with 2000 iterations. We generated the network structure an from initial
triangle graph with three nodes, by selecting one node with probability proportional to
the number of its links. We observe heavily linked hubs that tend to quickly accumulate
even more links, while nodes with only a few links are unlikely to be chosen and stay
peripheral. The new nodes have a ”preference” to attach themselves to the already heav-
ily linked nodes. We stopped growth of the network at 256 nodes, since this scales are
sufficient [5, pp. 92 – 115] to study emergent properties. We performed a Monte Carlo
simulation with 1500 random walks for each of 100 “statistical snapshots” of N with
η ∈ [0; 1], taking 14 minutes on average. Figure 1b illustrates the existence of the critical
transition around η ∼ 0.21. For further reduction of η ≤ 0.20, one can readily see a
rapid growth of theM order parameter to 1, which indicates that the network achieves
a synchronous consensus state. At the same time, the average angle demonstrates a
bifurcation-like behaviour. Figures 3 and 4 demonstrate a significant difference in the
network operation regimes. Even in a relatively simple homogeneous configuration,
we are able to achieve a non-trivial transition of the network bandwidth behaviour. As
the noise regime η approaches zero, some agents loose ability to transmit the data and
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(a) η = 0.90 (b) η = 0.05

Fig. 4: Histogram of the bandwidth matrix with non-parametric kernel density estimation
before (a) and after (b) phase transition.

become more “computationally” efficient, as reflected by the bright diagonal in Fig. 3d
indicating high computational abilities of the agents. Fig. 4b shows the distribution of
the overall bandwidth in the computational network before and after phase transitions,
augmented with non-parametric kernel density estimations. It is remarkable how the
bandwidth distribution undergoes a critical transition from single to multi-mode case.
These important features allow us to simulate complex behaviour of contemporary com-
putational environments, such as computing continuum. Fig. 2a shows an exponential
decay of the auto-correlation function. Such ergodic behaviour is natural for Metropolis
and Glauber dynamics [5] and indicates that the computational network rapidly looses
memory on its initial conditions. The advantage of the ergodic description is that such
networks can be described by statistical methods given a sufficient observation time.
Depending on the number of transitions in time, this actually rises a question of er-
godic hypothesis fairness and suitability for the particular computational network. The
discussion of this old issue goes far beyond the scope of this article, however, this
approximation is suitable in the low-traffic scenario. We keep the holistic analysis of the
more general non-equilibrium scenario for future works in frames of Kinetic schemes
and Bayesian’s framework.

We further evaluated the behaviour of the DAG network depicted in Fig. 5 for
different values of η. It consists of 60 tasks with high inter-dependency and node degrees
ranging from 1 to 3. To compute makespan of the DAG network, we use a variant of
the classical local descent with monotonic improvements by trying different matching
of tasks and agents. Fig. 2b depicts a single (i = 1) and multiple (i = 20) iterations of
the random matching. Once the agents are matched with tasks, both cases use Forward-
Backward SGS (RCPSP/max) for minimum makespan derivation, with a complexity of
O
(
J2 ·K

)
, where J ⊆ V and K ⊆ N are the number of tasks and resources required

for execution. We obtain the task times by setting Dij = 1, scaling the normalized
execution and transfer times to seconds and Tmq = 0, according to the Eq. 13. This
evaluation demonstrates how complex precedence networks of the tasks can be analysed
in the framework of our simulator. Makespan values from Fig. 2b demonstrate high
sensitivity in relation to critical transition at η ≤ 0.20, as the computational efficiency
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Fig. 5: Directed acyclic graph from PSLIB j60 dataset. Transformed to .dot format and
Visualized with GraphViz DOT render engine.

grows. When the amplitude of the noise regime increases, the optimized allocation
shows higher makespan values due to the increase in the network disorder. Interestingly,
optimized allocation gives not only smaller values of the makespan, but also smaller
variance, leading to the more robust estimations of the makespan when the noise regime
changes.

5 Discussion and Future Work

In this paper, we analysed the definition of the computing continuum and provided a the-
oretical model of how high-order computational properties can emerge from elementary
pairwise interactions in the context of a topology with preferential attachment policy. We
studied the behavior of the computational network by simulating it in the equilibrium
regime within the framework of the modified XY-model defined over a complex network
with Barabasi-Albert topology. We developed the simulation engine in Python 3.6, which
allowed us to study the first order approximation to the behavior of the “high-level”
system-wide workflow model in the presence of emergent data-flow anisotropy.

It is important to note that the DAG and scheduling heuristic is non-exhaustive and
mainly used for test purposes. We expect to carry out more detailed comparative study
of the several heuristics, including Heterogeneous Earliest Finish Time (HEFT), The
Dynamic Scaling Consolidation Scheduling (DSCS) [25], Partitioned Balanced Time
Scheduling (PBTS) [7] Deadline Constrained Critical Path (DCCP) [2], and Partition
Problem-based Dynamic Provisioning and Scheduling (PPDPS) [32]. We hypothesize
that Forward-Backward SGS (RCPSP/max) will outperform the aforementioned heuris-
tics in the quality of schedules for a relatively small amount of tasks |G| ∼ 200− 300.
Particularly interesting is to research this question at a larger scale, where possibly non of
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these schemes provide satisfactory outcome in terms of convergence speed and quality of
the solutions. The only applicable scenario will evolve around multi-agent mapping.We
will also continue to work on kinetic schemes and Bayesian’s framework to incorporate
non-equlibrium phenomena and partial-observations of the network. Integration of the
MPI stack to speed up the computations on larger scales and expand our work on new
types of network topologies with specific statistics is an important research direction too.
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