
Error estimation and correction using the
forward CENA method

Paul D. Hovland1[0000−0002−0907−2567] and Jan
Hückelheim1[0000−0003−3479−6361]

Mathematics and Computer Science Division
Argonne National Laboratory

Lemont, IL, USA
jhueckelheim@anl.gov | hovland@mcs.anl.gov

Abstract. The increasing use of heterogeneous and more energy-efficient
computing systems has led to a renewed demand for reduced- or mixed-
precision floating-point arithmetic. In light of this, we present the forward
CENA method as an efficient roundoff error estimator and corrector. Un-
like the previously published CENA method, our forward variant can be
easily used in parallel high-performance computing applications. Just
like the original variant, its error estimation capabilities can point out
code regions where reduced or mixed precision still achieves sufficient
accuracy, while the error correction capabilities can increase precision
over what is natively supported on a given hardware platform, whenever
higher accuracy is needed. CENA methods can also be used to increase
the reproducibility of parallel sum reductions.

Keywords: CENA method · Roundoff error · Mixed-precision arith-
metic · Reproducibility

1 Introduction

Roundoff error is inevitable in floating-point arithmetic; but rigorous error anal-
ysis is difficult even for numerical analysis experts, and such experts are in short
supply. This situation leads to two main strategies: perform computations in the
highest-available precision, possibly sacrificing time and energy savings available
at lower precision, or perform computations in low precision and hope for the
best. A third strategy is to employ roundoff error estimation in order to charac-
terize and possibly correct roundoff errors. The correction des erreurs numériques
d’arrondi method of Langlois [16] (hereafter, original CENA or reverse CENA) is
one method for roundoff error estimation and correction but suffers from mem-
ory requirements proportional to the number of floating-point operations and an
operations count that grows linearly with the number of output variables. We
introduce a forward variant of the CENA method (hereafter, forward CENA or
CENA) that suffers neither of these deficiencies.

CENA computes local roundoff errors from individual operations and uses
automatic, or algorithmic, differentiation (AD) to estimate their cumulative ef-
fect on the final output. This estimate is often precise enough to be used as an

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

2 P. Hovland and J. Hückelheim

effective error correction, by subtracting the estimated error from the computed
result. The corrected results are not only more accurate than results obtained
without the CENA method, but also more reproducible, since they are less af-
fected by the non-associativity of floating-point operators. CENA can easily be
implemented and deployed in an existing program by using operator overload-
ing, for example as offered by C++. We believe that CENA can be most useful
during the development of numerical software. For example, the error estimates
can be used to choose error bounds for regression tests, or the error corrections
can be used during the regression tests themselves to remove the nondetermin-
istic effects of parallel sum reductions. Furthermore, CENA could be used to
increase the precision of results compared with the best-available precision that
is natively supported on a given platform.

The next section summarizes previous work on roundoff error estimation and
correction, followed by a brief introduction to AD in Section 3. Then, in Section 4
we provide a description of the forward CENA and its relationship to reverse
CENA, and in Section 5 we discuss implementation details. In Section 6 we
present experimental results, and we conclude in Section 7 with a brief summary
and discussion of future work.

2 Related work

Many techniques for estimating or reducing the effects of roundoff error have
been developed [4,6,11–13,16–19,21–24]. The forward CENA method builds on
the reverse CENA method of Langlois [16]. In contrast to this and related tech-
niques, forward CENA has an operations overhead independent of the number
of output variables and a memory overhead independent of the number of oper-
ations; it is also much easier to parallelize. Like reverse CENA and in contrast
to many other techniques, forward CENA computes deterministic local error
estimates and combines them with derivatives to compute a global error cor-
rection. Forward CENA requires no source code analysis or transformation and
can therefore be implemented as a drop-in replacement numeric type requiring
no external tool support. We note that forward CENA can be seen as a way to
generalize certain algorithms for accurate summation [1,7,14,20] to other types
of computation, and in Section 6.1 we compare forward CENA with Kahan’s
compensated summation algorithm.

3 Brief introduction to AD

Automatic, or algorithmic, differentiation (AD) is a technique for computing the
derivatives of functions defined by algorithms [8]. It computes partial derivatives
for each elementary operator and combines them according to the chain rule of
differential calculus, based on the control flow of the program used to compute
the function. In the so-called forward mode of AD, the derivatives are combined
in an order that follows the control flow of the function. In the so-called reverse
mode, the derivatives are combined in an order that reverses the control flow

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

Error estimation and correction using the forward CENA method 3

of the function. The forward mode computes a Jacobian-matrix product, JS =
∂y
∂xS, at a cost proportional to the number of columns in the so-called seed matrix,
S, while the reverse mode computes a matrix-Jacobian product, WJ , at a cost
proportional to the number of rows in W . The forward mode is therefore efficient
for computing Jacobian-vector products, Jv, and the reverse mode is efficient
for computing transposed-Jacobian-vector products, JT v and the gradients of
scalar functions.

4 Forward CENA method

The forward and reverse CENA methods approximate the error ∆y in a result
y using the formula

∆y ≈ Ey =
∑
i

∂y

∂xi
δi, (1)

where xi is the result of each instruction i used in computing y and δi is the
local round-off error in computing xi. In the reverse CENA method [16], one
computes the derivatives using reverse mode AD. The number of operations is
proportional to the number of operations in the function evaluation. Unfortu-
nately, employing the reverse mode also incurs a storage cost proportional to the
number of operations in the function evaluation.

Instead of reverse mode AD, we can employ forward mode AD, using a
seed matrix (vector) δ = [δ1δ2 . . . δn]T to directly compute the inner product
∂y
∂x

T
δ =

∑n
i

∂y
∂xi

δi. This is most easily comprehended by using the buddy vari-
able approach [3]:

xibuddy = 0.0

xi = fi(xj,xk) + xibuddy

which, after differentiating and initializing the seed matrix for xibuddy, yields

xibuddy = 0.0

ad_xibuddy = deltai

xi = fi(xj,xk) + xibuddy

ad_xi = (dfidxj*ad_xj + dfidxk*ad_xk) + ad_xibuddy .

We note that deltai (the roundoff error in computing xi) may not in general
be available until after the computation of xi; however, one can easily simplify
the derivative computation to

xi = fi(xj,xk)

ad_xi = (dfidxj*ad_xj + dfidxk*ad_xk) + deltai.

Theorem If for each statement xi = φi(x1, x2, . . . , xi−1) we compute

Ei = δi +

i−1∑
j=1

∂φi
∂xj

Ej ,

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

4 P. Hovland and J. Hückelheim

then Ei satisfies Equation 1. That is,

Ei =

i∑
j=1

∂y

∂xj
δj .

Proof By induction. E1 = δ1. Assume that

Ei = δi +

i−1∑
j=1

∂φi
∂xj

Ej =

i∑
j=1

∂xi
∂xj

δj

for all i ≤ n. Then,

En+1 = δn+1 +

n∑
j=1

∂φn+1

∂xj
Ej = δn+1 +

n∑
j=1

∂φn+1

∂xj

j∑
k=1

∂xj
∂xk

δk

= δn+1 +

n∑
j=1

∂φn+1

∂xj

n∑
k=1

∂xj
∂xk

δk = δn+1 +

n∑
j=1

n∑
k=1

∂φn+1

∂xj

∂xj
∂xk

δk

= δn+1 +

n∑
k=1

n∑
j=1

∂φn+1

∂xj

∂xj
∂xk

δk = δn+1 +

n∑
k=1

n∑
j=k

∂φn+1

∂xj

∂xj
∂xk

δk

= δn+1 +

n∑
k=1

∂φn+1

∂xk
δk =

∂φn+1

∂φn+1
δn+1 +

n∑
k=1

∂φn+1

∂xk
δk =

n+1∑
k=1

∂φn+1

∂xk
δk.

We note that the proof ignores roundoff errors in the computation of Ei and
therefore holds only if the Ei and partial derivatives are computed in real arith-
metic. This is sufficient to fulfill our goal of demonstrating equivalence between
forward and reverse CENA, which both ignore roundoff errors in the computa-
tion of the derivatives.

5 Implementation

We created a C++ type that overloads the standard operators to compute er-
ror estimates and corrections using the forward CENA method. They can be
used just like any other number type as long as no unsupported operators are
used. Currently, our library supports the usual operators, such as +, -, *, and
/ (in addition to their compound operators, such as +=); comparison operators,
including <, <=, and ==; assignment operators, cast to and from native types,
and so on. In addition, we support the sqrt, sin, and cos functions and the
<< streaming operator to output a textual representation of the number, error
estimate, and error correction. One example operator is shown in Fig. 1. Fur-
thermore, we used the OpenMP declare reduction pragma to allow parallel
reductions over CENA types.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

Error estimation and correction using the forward CENA method 5

template<typename T>
class freal{

private:
T val, err;
static T addition_error(T a, T b, T x) {

T corr = x - a;
return ((x-corr)-a)+(corr-b);

}

public:
freal<T>(T value, T error) : val(value), err(error) { }

void operator+=(const freal<T> rhs) {
T value = this->val + rhs.val;
T localerror = addition_error(this->val,rhs.val,value);
this->val = value;
this->err += rhs.err + localerror;

}
};

Fig. 1. Part of the CENA class, showing only the compound addition operator and the
internal helper function to compute the local error produced by that operation. The
actual implementation used in this work supports many more operators.

In our experiments we use the GNU MPFR library [5] to test the CENA
method at arbitrary floating-point precision, in addition to the natively sup-
ported single, double, extended double precision, and quad precision as sup-
ported by the GNU libquadmath library. All MPFR operations are guaranteed
to use the exact precision that was specified, which allows us not only to perform
tests at high precision and obtain accurate reference results but also to simulate
half, quarter, or more esoteric low-precision number types.

6 Test cases and experimental results

In this section we show the effectiveness of the CENA method on three test
cases. The first, shown in Section 6.1, uses CENA to obtain reproducible results
in parallel sum reductions. Then, in Section 6.2 we use CENA to obtain er-
ror estimates within an OpenMP-parallel benchmark derived from a cosmology
code. Next, in Section 6.3 we use CENA to reduce roundoff errors in various
implementations of the matrix-matrix-product. Finally, in Section 6.4 we apply
CENA to a pathological example, the Muller recurrence. All test cases were
compiled by GCC 9.2 with flags -O3 -std=c++11 -fopenmp and executed on a
28-core/56-thread Intel® Xeon® Platinum 8180 Processor (“Skylake”).

6.1 Sum reduction

Sum reductions are ubiquitous in numerical programs, for example during the
computation of a dot-product, matrix-vector or matrix-matrix product, or nu-
merical quadrature. In this test case we look at reductions in isolation, but two
of the subsequent larger test cases also contain sum reductions.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

6 P. Hovland and J. Hückelheim

One often wishes to compute large sum reductions in parallel, for example
when forming the dot product of two large vectors. This is typically done by
accumulating partial sums on each thread in parallel, followed by some strategy
to combine these into one overall result. A common problem with parallel sum
reductions is the lack of reproducibility because of the non-associativity of the
+ operator for floating-point numbers. This can result in the same correctly
implemented and data-race-free program producing different results every time
it is executed, because of the nondeterministic scheduling of the summation.
This causes problems, for example, in regression testing, where distinguishing
floating-point roundoff from other small errors or race conditions can be difficult.

In this test case we demonstrate how CENA can help reduce nondeterminism
caused by a change in summation order. To this end, we initialize an array of 1
million pseudorandom numbers. The same hard-coded seed is always used for the
pseudorandom number generator, to ensure that the set of generated numbers
remains the same between runs. However, the vector of numbers is then shuffled
randomly, using a different seed and thus ensuring a different summation order
each time. Any resulting changes are therefore due to roundoff.

10−25 10−20 10−15 10−10 10−5 100

Error

sin
gle

double

longdouble

quad

Naive

CENA

Kahan

Fig. 2. The result of the sum reduction fluctuates because of the non-associativity of
floating-point summations. The CENA-corrected results (and to a slightly lesser extent
the Kahan results) are consistent across runs, and more accurate than the uncorrected
results. Increasing the working precision has a larger benefit than using Kahan or
CENA for accuracy, but not for reproducibility.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

Error estimation and correction using the forward CENA method 7

sin
gle

double

longdouble
quad

0

200

400

600

800

1000

1200

1400 1 Thread

sin
gle

double

longdouble
quad

0

10

20

30

40
56 Threads

R
u

n
T

im
e

[m
s]

Naive CENA Kahan

Fig. 3. Run time of conventional, CENA, and Kahan summation on 1 (left) or 56
(right) threads. CENA types are slightly slower than built-in number types but do not
affect parallel scaling significantly and still work well on higher thread counts.

We perform this test 1,000 times in IEEE754 single, double, and quadruple
precision, as well as 80-bit extended precision, using “naive” summation (adding
numbers one by one to an accumulator), Kahan summation, and summation
using CENA types. We note that because all of the derivatives in summation
are equal to 1, the CENA method (forward or reverse) reduces to Algorithm 4.1
in [20], a form of compensated summation based on Knuth’s two-sum algorithm,
but without needing to modify the implementation of summation, beyond using
our CENA type. The input numbers are generated with a quad-precision man-
tissa consisting of a uniformly sampled random bit pattern, a random sign bit,
and an exponent from a uniform distribution in [2−16...216] (≈ [10−5...105]). The
inputs for the lower-precision tests are obtained by type casting. Reference re-
sults are computed by using the aforementioned MPFR library with a mantissa
length of 200 bits, well above the 113-bit mantissa of quad precision and almost
four times that of double-precision numbers.

Figure 2 shows the errors for each of these settings. CENA and Kahan sum-
mation have comparable effects on the mean errors, although CENA is often
slightly superior and reduces the variability of errors by many orders of magni-
tude. In Figure 3 we show the run times of our tested summation approaches, for
sequential or parallel summation on 56 threads. Using CENA instead of built-in
number types increases the time by a small factor, typically below 2. Kahan sum-
mation is slower, but this is probably a deficiency in our implementation, since
Kahan requires fewer operations than CENA. Because of the lack of hardware
support, the quad precision summation is very slow.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

8 P. Hovland and J. Hückelheim

6.2 HACCmk

The Hardware Accelerated Cosmology Code (HACC) [9] helps in understanding
the evolution of the Universe, by simulating the formation of structure and the
behavior of collision-less fluids under gravity.

1 8 16 28 56

threads

1

8

16

28

56

sp
ee

d
u

p

single

1 8 16 28 56

threads

double

1 8 16 28 56

threads

longdouble

Original CENA Ideal

Fig. 4. HACCmk scalability is excellent with and without CENA. The absolute run
time between CENA and normal execution differs by a factor of ca. 10 (see Fig. 5).

HACCmk is a compute-intensive kernel routine extracted from HACC that
calculates force values for each particle in an OpenMP parallel for loop. Our
forward CENA method can be used simply by changing the number type through
a typedef. The only other modification is to replace the pow(·) function by
1/·*sqrt(·), since pow is currently not supported by our implementation.

The HACCmk code scales well on our system with and without CENA, as
shown in Figure 4. Absolute run times in Figure 5 show that CENA increases
run time by a factor of ca. 10× (slightly less for single/double and slightly more
for long double precision). CENA estimates the actual error well enough to be
able to improve the result by an order of magnitude. Correction is again slightly
more effective for even-length mantissas, see Figure 6.

6.3 Classic and Strassen matrix multiplication

In this section we investigate CENA in the context of matrix-matrix multipli-
cations using either Strassen’s algorithm or classic multiplication using a triple-
nested loop. We briefly summarize results from previous literature showing that
Strassen’s algorithm produces higher roundoff errors but is faster than classic
multiplication for large matrices. We then present numerical experiments.

Strassen’s algorithm was the first published way of computing the product

C = AB A,B,C ∈ Rn×n

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

Error estimation and correction using the forward CENA method 9

sin
gle

double

longdouble
quad

0

250

500

750

1000

1250

1500

9.67× 7.61×

14.50×

1 Thread

sin
gle

double

longdouble
quad

0

5

10

15

20

25

30

35

9.20× 7.51×

13.86×

56 Threads

R
u

n
T

im
e

[m
s]

Original CENA

Fig. 5. Absolute run times for HACCmk with and without using CENA. The CENA
type slows down execution by one order of magnitude.

0 10 20 30 40 50 60 70 80 90 100 110

mantissa length [bits]

10−25

10−20

10−15

10−10

10−5

100

105

1010

ab
so

lu
te

er
ro

r

si
n

gl
e

(2
4)

d
ou

b
le

(5
3)

lo
n

gd
ou

b
le

(6
4)

q
u

ad
(1

13
)

35.97×

6.21×
9.07×

18.72×

actual

after correction

predicted

Fig. 6. Errors for HACCmk with and without CENA correction, and CENA error
estimate, for various mantissa lengths, compared to a 200-bit mantissa reference. CENA
correctly computes the exponent and some mantissa bits of the actual errors.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

10 P. Hovland and J. Hückelheim

0 10 20 30 40 50 60 70 80 90 100 110

mantissa length [bits]

10−30

10−20

10−10

100

1010

ab
so

lu
te

er
ro

r

si
n

gl
e

(2
4)

d
ou

b
le

(5
3)

lo
n

gd
ou

b
le

(6
4)

q
u

ad
(1

13
)

1041.21×

3.17×
1122.15×

4.44×

Strassen

CENA Strassen

Classic

CENA Classic

Fig. 7. Absolute error of classic and Strassen multiplication for the entire range of
mantissa lengths from 1 bit up to 113 bits (IEEE754 quadruple precision), for a 64×64
matrix. Without CENA correction, Strassen multiplication produces an error that is
about 500× larger than that of classic multiplication. CENA reduces the error of classic
multiplication by a factor of ca. 2× and that of Strassen multiplication by a factor of
ca. 3× for odd mantissa lengths and above 1000× for even mantissa lengths.

with a time complexity of less than O(n3). Strassen’s algorithm and other subse-
quently discovered subcubic algorithms have been studied extensively, regarding
both their run time and their numerical stability. Previous studies have found
that Strassen’s and related algorithms are generally stable, although their error
bounds are slightly worse than those of the classic matrix multiplication [2, 10].

We summarize here the error bounds given in [10]. For classic multiplication
C = AB, the error in a computed matrix Ĉ is bounded by∥∥∥Ĉ−C

∥∥∥ ≤ n2ε‖A‖‖B‖+O(ε2), (2)

where ε is the unit roundoff error and ‖ · ‖ is the maximum norm. Note that [10]
also provides a tighter bound for the error in each element in C that is linear
in the matrix size n, while [2] gives an even tighter bound if the summation
is performed by using pairwise summation. The authors also remark that no
such elementwise error bound can exist for fast (subcubic) matrix multiplication
algorithms, whose error is bounded by∥∥∥Ĉ−C

∥∥∥ ≤ [(n

n0

)log2 12

(n2
0 + 5n0)− 5n

]
ε‖A‖‖B‖+O(ε2), (3)

where n0 is the threshold at which the small partition matrices are multiplied
using the classic algorithm (the recursion base case).

We note that log2 12 ≈ 3.58496, resulting in a significantly faster growth
of roundoff errors than the quadratic growth in the classic algorithm. We also

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

Error estimation and correction using the forward CENA method 11

102 104 106

run time [ms]

10−10

10−5

100

105

ab
so

lu
te

er
ro

r single

double

longdouble

1024× 1024

102 104 106

run time [ms]

single

double

longdouble

8192× 8192

Classic Strassen CENA Classic CENA Strassen

Fig. 8. Error vs run time for classic and Strassen multiplication, for various working-
precision settings, with and without CENA (left: 1024×1024, right: 8192×8192 matrix).
CENA enables new trade-offs between accuracy and run time. For example, in the large
test case Strassen with CENA offers better run time and accuracy than does classic
multiplication without CENA.

note that for n0 = n (i.e., a threshold so large that the classic algorithm is used
without previous partitioning) the bounds in Equations (2) and (3) are identical.

Our experiments use input matrices filled by the same number generator as
in Section 6.1. After multiplication with either a classic or Strassen’s algorithm,
we compute the maximum of all elementwise absolute errors by comparing with
a reference result obtained through MPFR with a 200-bit mantissa. Our classic
implementation is accelerated through the use of OpenMP. Our Strassen imple-
mentation supports only matrix sizes that are a power of 2 (a restriction that
could be lifted by a better implementation) and is parallelized through the use
of the parallized classic multiplication as a recursion base case. We use the best-
performing base case size n0 for our experiments, which we determined to be
between 128 and 512 on 56 threads, depending on the working precision and
whether CENA was used. We note that the implementation, parallelization, and
hardware platform do not change the asymptotic trends and merely affect the
break-even point beyond which Strassen’s outperforms classic multiplication.

In our experiments, Strassen multiplication reduces run time and increases
error, while CENA has the opposite effect. CENA more than offsets the accuracy
loss from Strassen multiplication for the tested matrices. For mantissas with even
bit length (e.g. single and long double), but not for those with odd length (e.g.
double or quad), CENA produces equally good results for either multiplication
method. The reason for this even-odd oscillation, shown in Figure 7, is unclear
but can also be observed to a smaller extent in the other test cases.

Since CENA increases run time by a constant factor and Strassen instead
reduces the run time complexity class, there is necessarily a break-even point at

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

12 P. Hovland and J. Hückelheim

which Strassen combined with CENA outperforms classic multiplication without
CENA. The result is a method that is faster, but at the same time more accurate,
than classic non-CENA multiplication. Figure 8 illustrates this effect by showing
run time and accuracy for two different problem sizes, one that is smaller and
one that is larger than this break-even point.

6.4 Muller Recurrence

Error estimation and correction are not a panacea. We applied CENA to a
pathological example from [15], the Muller recurrence

xn+1 = 108− (815− 1500/xn−1)/xn

using initial values x0 = 4.0 and x1 = 4.25. This recurrence is carefully designed
so that the solution is of the form

xn = (α3n+1 + β5n+1 + γ100n+1)/(α3n + β5n + γ100n)

where the specific values of α, β, and γ depend on x0 and x1. Our initial con-
ditions correspond to α = 1, β = 1, and γ = 0, Therefore, the recurrence has
the solution xn = (3n+1 + 5n+1)/(3n + 5n) and ought to converge to 5 in the
limit. However, the slightest roundoff error causes the recurrence to match the
solution for a nonzero γ and the recurrence converges to 100 in the limit.

Figure 9 shows the actual errors as well as the CENA estimate for a num-
ber of precisions, for each iteration, compared with the correct value at that
iteration. When the sequence first diverges from the true solution with γ = 0,
CENA estimates large roundoff errors up to O(100). However, eventually the
nonzero γ terms in the recurrence come to dominate and CENA estimates a
very small roundoff error. Thus, consistent with the title of [15], mindless appli-
cation of the CENA correction would leave roundoff error in the computation of
x30 undetected. However, monitoring error estimates at each iteration would al-
low detection of a significant roundoff problem. While real computational science
applications are unlikely to exhibit such extreme behavior as the Muller recur-
rence, it may nonetheless be advisable to monitor error estimates throughout
the computation rather than relying exclusively on the final terms.

7 Conclusions

We introduced the forward CENA method and an efficient implementation. Us-
ing CENA to estimate and to some extent correct roundoff errors in numerical
programs can be as easy as replacing the number types with our overloaded
CENA number type. We showed that forward CENA does not negatively af-
fect the scalability of parallel codes but has an overhead factor of 2–15. Future
work includes analyzing the reasons for the observed superior error correction
for even mantissa lengths compared with odd mantissa lengths. We also plan to
investigate whether forward-mode AD can be employed in other error estimation
methods that have historically relied on reverse-mode AD.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

Error estimation and correction using the forward CENA method 13

0 10 20 30

iteration number

10−25

10−20

10−15

10−10

10−5

100

105

er
ro

r
single

predicted single

double

predicted double

longdouble

predicted longdouble

quad

predicted quad

Fig. 9. CENA accurately estimates the roundoff errors up to the point where the
recurrence starts to converge to the “wrong” fixed point. Using more precise number
types only delays, but does not prevent this problem.

Acknowledgments

We thank Vincent Baudoui for introducing us to the CENA method and con-
structive conversations about roundoff error. This work was supported by the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Com-
puting Research, Applied Mathematics program under contract number DE-
AC02-06CH11357. We gratefully acknowledge the computing resources provided
and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne
National Laboratory.

References

1. Ahrens, P., Demmel, J., Nguyen, H.D.: Algorithms for efficient reproducible float-
ing point summation. ACM Trans. Math. Softw. 46(3) (Jul 2020)

2. Ballard, G., Benson, A.R., Druinsky, A., Lipshitz, B., Schwartz, O.: Improving the
numerical stability of fast matrix multiplication. SIAM Journal on Matrix Analysis
and Applications 37(4), 1382–1418 (Jan 2016)

3. Bischof, C.H., Carle, A., Hovland, P.D., Khademi, P., Mauer, A.: ADIFOR 2.0
user’s guide (Revision D). Argonne Technical Memorandum 192 (1998)

4. Christianson, B.: Reverse accumulation and accurate rounding error estimates for
Taylor series coefficient. Optimization Methods and Software 1(1), 81–94 (1992)

5. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM Trans.
Math. Softw. 33(2) (June 2007)

6. Garcia, R., Michel, C., Rueher, M.: A branch-and-bound algorithm to rigorously
enclose the round-off errors. In: Simonis, H. (ed.) Principles and Practice of Con-
straint Programming. pp. 637–653. Springer International Publishing, Cham (2020)

7. Graillat, S., Ménissier-Morain, V.: Accurate summation, dot product and polyno-
mial evaluation in complex floating point arithmetic. Information and Computation
216, 57–71 (2012)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://dx.doi.org/10.1007/978-3-030-77961-0_61

14 P. Hovland and J. Hückelheim

8. Griewank, A., Walther, A.: Evaluating Derivatives. Society for Industrial and Ap-
plied Mathematics (Jan 2008). https://doi.org/10.1137/1.9780898717761

9. Habib, S., Pope, A., Finkel, H., Frontiere, N., Heitmann, K., Daniel, D., Fasel,
P., Morozov, V., Zagaris, G., Peterka, T., Vishwanath, V., Lukić, Z., Sehrish, S.,
keng Liao, W.: HACC: Simulating sky surveys on state-of-the-art supercomputing
architectures. New Astronomy 42, 49–65 (Jan 2016)

10. Higham, N.J.: Exploiting fast matrix multiplication within the Level 3 BLAS. ACM
Trans. Math. Softw. 16(4), 352–368 (Dec 1990)

11. Iri, M., Tsuchiya, T., Hoshi, M.: Automatic computation of partial derivatives
and rounding error estimates with applications to large-scale systems of nonlinear
equations. J. Computational and Applied Mathematics 24(3), 365–392 (Dec 1988)

12. Jézéquel, F., Graillat, S., Mukunoki, D., Imamura, T., Iakymchuk, R.: Can we
avoid rounding-error estimation in hpc codes and still get trustworthy results? In:
Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P. (eds.) Software
Verification. pp. 163–177. Springer International Publishing, Cham (2020)

13. Jézéquel, F., Chesneaux, J.M.: CADNA: a library for estimating round-off error
propagation. Computer Physics Communications 178(12), 933–955 (2008)

14. Kahan, W.: Pracniques: Further remarks on reducing truncation errors. Commun.
ACM 8(1), 40 (Jan 1965). https://doi.org/10.1145/363707.363723

15. Kahan, W.: How futile are mindless assessments of roundoff in floating-point com-
putation? (2006), http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

16. Langlois, P.: Automatic linear correction of rounding errors. BIT Numerical Math-
ematics 41(3), 515–539 (June 2001)

17. Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numer-
ical Mathematics 16(2), 146–160 (June 1976)

18. Martel, M.: Semantics of roundoff error propagation in finite precision calculations.
Higher-Order and Symbolic Computation 19(1), 7–30 (March 2006)

19. Menon, H., Lam, M.O., Osei-Kuffuor, D., Schordan, M., Lloyd, S., Mohror, K.,
Hittinger, J.: ADAPT: Algorithmic differentiation applied to floating-point preci-
sion tuning. In: Proceedings of SC ’18. pp. 48:1–13. IEEE Press, Piscataway, NJ
(2018)

20. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM Journal
on Scientific Computing 26(6), 1955–1988 (Jan 2005)

21. Solovyev, A., Baranowski, M.S., Briggs, I., Jacobsen, C., Rakamarić, Z., Gopalakr-
ishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic
Taylor expansions. ACM Trans. Program. Lang. Syst. 41(1), 2:1–39 (Dec 2018)

22. Tienari, M.: A statistical model of roundoff error for varying length floating-point
arithmetic. BIT Numerical Mathematics 10(3), 355–365 (Sep 1970)

23. Vassiliadis, V., Riehme, J., Deussen, J., Parasyris, K., Antonopoulos, C.D., Bellas,
N., Lalis, S., Naumann, U.: Towards automatic significance analysis for approxi-
mate computing. In: 2016 IEEE/ACM International Symposium on Code Gener-
ation and Optimization (CGO). pp. 182–193 (March 2016)

24. Vignes, J.: Discrete stochastic arithmetic for validating results of numerical soft-
ware. Numerical Algorithms 37(1-4), 377–390 (Dec 2004)

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne
National Laboratory (‘Argonne’). Argonne, a U.S. Department of Energy Office of Science lab-
oratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains
for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works, distribute copies to the public, and per-
form publicly and display publicly, by or on behalf of the Government. The Department of
Energy will provide public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_61

https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1145/363707.363723
http://www.cs.berkeley.edu/~ wkahan/Mindless.pdf
http://energy.gov/downloads/doe-public-access-plan
https://dx.doi.org/10.1007/978-3-030-77961-0_61

