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Abstract. Extracting scientific facts from unstructured text is difficult
due to challenges specific to the complexity of the scientific named enti-
ties and relations to be extracted. This problem is well illustrated through
the extraction of polymer names and their properties. Even in the cases
where the property is a temperature, identifying the polymer name asso-
ciated with the temperature may require expertise due to the use of com-
plicated naming conventions and by the fact that new polymer names are
being “introduced” into the lexicon as polymer science advances. While
domain-specific machine learning toolkits exist that address these chal-
lenges, perhaps the greatest challenge is the lack of—time-consuming,
error-prone and costly—labeled data to train these machine learning
models. This work repurposes Snorkel, a data programming tool, in a
novel approach as a way to identify sentences that contain the relation
of interest in order to generate training data, and as a first step towards
extracting the entities themselves. By achieving 94% recall and an F1
score of 0.92, compared to human experts who achieve 77% recall and an
F1 score of 0.87, we show that our system captures sentences missed by
both a state-of-the-art domain-aware natural language processing toolkit
and human expert labelers. We also demonstrate the importance of iden-
tifying the complex sentences prior to extraction by comparing our ap-
plication to the natural language processing toolkit.

Keywords: Information Extraction · Data Labeling · Relations Extrac-
tion · Snorkel · Data Programming · Polymers.

1 Introduction

Extracting scientific facts from esoteric articles remains an important natural
language processing (NLP) research topic due to the particularity of the entities
and relations to be extracted. The challenges involved include the fact that
entities can be described by multiple referents (synonymy), one word can refer
to different concepts depending on context (polysemy), and other domain-specific
nuances. These issues arise in many fields as evidenced by NLP tools that rely
on domain-specific grammar and ontologies.

Perhaps the most significant challenge in scientific Information Extraction
(IE) is the lack of readily available labeled training data. The process of creating
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well-balanced, manually-labeled datasets of scientific facts is difficult due in part
to the aforementioned challenges, but also due to the scarcity of entities and
relations in scientific articles. For instance, it is not uncommon for scientists to
write an article about a single newly synthesized material. To annotate sentences
in such publications not only requires time and attention, but is also costly as
it requires time from domain experts and cannot be easily crowdsourced.

Our ultimate goal is to alleviate the burden of expert annotators and fa-
cilitate extraction of scientific facts. Towards achieving this goal, we repurpose
a data programming software [14] to identify sentences that contain scientific
entities and relations automatically. Typically, data programming relies on ex-
isting entity taggers in order to identify and label relations. The key novelty of
our approach lies in the identification of sentences containing the target entities
and relations without identifying the entities through the use of dictionaries nor
through complicated hard-coded rules. Instead, we use data programming to
describe and combine approximate descriptions of the relations and the entities
involved. Not only are we able to identify sentences of interest accurately (94%
recall), but our combination of weak, programmed rules retrieves sentences that
were missed by human experts and state-of-the-art domain-specific software.

The rest of this paper is organized as follows. In Section 2, we briefly discuss
the application motivation for this work. Section 3 discusses related work. Sec-
tion 4 presents the architecture of our system. Section 5 presents the results or
our approach, followed by a conclusion in Section 6.

2 Motivation

The initial motivation for this work is polymer science. Polymers are large
molecules composed of many repeating units, referred to as monomers. Partly
due to their large molecular masses, polymers have a variety of useful properties
(elasticity, resistance to corrosion and more). Given such properties, polymers
are ubiquitous and gathering information about their properties is an essential
part of materials design [1]. One specific property with a profound impact on
their application, and what this work specifically targets, is the glass transition
temperature (Tg): the temperature at which a polymer transitions from a solid,
amorphous, glassy state to a rubbery state as the temperature is increased. As
the properties between the two states are drastically different, it is crucial to
identify polymers with the appropriate Tg for different applications. For exam-
ple, plexiglass (poly(methyl methacrylate)), a lightweight substitute for glass,
has a high Tg of roughly 110 °C, while neoprene (polychloroprene), used for
laptop sleeves, has a low Tg of roughly -50 °C [2].

3 Related Work

The medical community has long been invested in applying information extrac-
tion methods to medical publications [5,6,9,16]. These tools are designed to ex-
tract clinical information from text documents and translate entities and terms
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to controlled ontologies and vocabularies. Other communities have followed, such
as biology, where MedLEE, a tool used to extract clinical information from med-
ical documents [5,6], led to the development of GENIES [7] and BioMedLEE [3]
which extract biomolecular substances and phenotypic data from text. However,
developing NLP tools for such specialized ontologies can be error-prone, time
consuming and hard to maintain, and requires a knowledge of the domain.

Scientific IE models remedy the above challenges by learning from data.
Statistical models include Conditional Random Field (CRF), which are graph-
based models used in NLP to capture context by learning from sequences of
words; long short-term memory (LSTM) networks, which are recurrent neural
networks that also capture context by learning relationships between a word and
its preceding word; and bidirectional LSTM (Bi-LSTM) networks, which exploit
information about the words that come before and after a given word. These
models have shown great promise when applied to scientific IE [3, 8, 10, 15, 17].
Another example, ChemDataExtractor (CDE)—to which we compare our work
and refer to as the state-of-the-art tool—implements an extensible end-to-end
text-mining pipeline that can process common publication formats and produces
machine-readable structured output data (chemicals and their properties) [17].
While machine learning techniques do not require the implementation of rich
domain ontologies and grammars, they do rely heavily on labeled training data to
achieve high accuracy, especially when focusing on specialized entities/relations.

While tagging entities and identifying relations between them may be crowd-
sourced to the general public for general IE, labeling esoteric scientific articles
requires domain knowledge [18–20] and can be costly. Distant supervision [11]
circumvents the need for expensive annotation by leveraging available databases
or semi-structured text. Deep learning tools like PaleoDeepDive1 use advanced
statistical inference approaches to extract paleontological data from text, tables,
and figures in scientific texts by mapping entities and their relations from a large
database to text [4, 12]. Unfortunately, many fields do not have access to large
databases of entities and relations, especially if new data is constantly added.

Snorkel, for example, uses weak programmed rules called labeling functions
(LFs) to describe relations between known entities; it can learn and model ac-
curacies and conflicts between LFs to approximately and quickly create labels
on unlabeled data [13, 14]. However, as mentioned, scientific entities and rela-
tions are complex and difficult to extract automatically; while many relations
extraction work focuses on relations between two entities, scientific relations may
consist of multiple entities and relations or include additional metadata [18,20].

Our work uses Snorkel in a novel manner to address these crucial scientific IE
challenges: 1) many NLP tools assume access to costly carefully labeled, balanced
datasets, while scientific entities can be scarce in publications; 2) our entities are
not always known a priori and are continuously being created or discovered; 3)
relations identification is not dependent on first identifying the entities; and 4)
our relations are complex and may contain entities with multiple relations, hence
requiring further expert scrutiny to be extracted.

1
PaleoDB at http://paleodb.org
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4 Architecture

Databases that contain information about polymers and their properties are
not readily and freely available, thereby creating a need to be able to extract
polymers and their properties without relying on external databases to supply
known information. A tool is needed to not only extract polymer names from
text without knowing them a priori, but can also extract information about the
polymer’s properties. The particular property this work targets is a polymer’s
Tg. We have therefore built a tool which aims to identify the three entities of a
polymer’s Tg, or a polymer-Tg pair: 1) polymers and/or their abbreviations, 2)
temperatures and 3) glass transition-mentions.

4.1 Input Dataset

The input dataset was made up of 9,518 unique text sentences (data points)
from 31 journal articles containing “Tg” from a keyword search from the journal,
Macromolecules, a prominent journal in polymer science, during the years 2006-
2016 [19]. The full text version of each article was downloaded in HTML format,
and split into sentences (Fig. 1) so that each data point was tied to a document
(journal article) identifier [19]. The sentences were not preprocessed nor altered
in any way prior to this work.

Fig. 1. Example of Input database 2

4.2 The Snorkel System and Its Built-In Functionalities

Snorkel is a system developed at Stanford University with the objective to
“...programmatically [build] and [manage] training datasets without manual la-
beling” [13]. It applies user-defined programmed rules as weak learners to label
data points in a dataset and avoids having to manually assign each data point.
The weak learners, or rules programmed in a computer language such as Python,
in the Snorkel system are known as labeling functions (LFs). Multiple LFs can
be created, and their logic can often be in opposition to each other. After ap-
plying LFs to the input data, Snorkel can determine if a data point should be

2
Extracted from: Mohanty, Angela D., Chang Y. Ryu, Yu Seung Kim, and Chulsung Bae. "Stable Elastomeric

Anion Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-B-Poly (Ethylene-Co-Butylene)-
B-Polystyrene Triblock Copolymers." Macromolecules 48, no. 19 (2015): 7085-95.
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labeled or not. Part of the motivation to use Snorkel was to leverage its speed and
ease-of-use of the LFs rather than rely on hard-to-maintain hard-coded rules.

Snorkel Preprocessors and the Uniqueness of Polymer Data The Snorkel
preprocessor [13] allows for each data point to be preprocessed in a user-defined
manner. This is important because polymer names do not always follow the same
textual rules. For example, it is common for polymer names to be represented
throughout polymer texts by abbreviations, consisting largely of uppercase alpha
character strings. Applying a preprocessing function to make all text lowercase
before applying the LFs would result in missing many abbreviations. On the
other hand, there are times when the same sentence containing an abbreviation
needs to be made lowercase in order to look for a different entity (i.e. a glass
transition-mention). Consider the following sentence:

Bacterial polyhydroxy alkanoates such as poly(3-hydroxybutyrate) (P3HB), poly(3-hydroxyvalerate)
(P3HV), or higher hydroxy acids and their copolymers display decreasing melting points from about
180 °C (Tg = 1−4 °C) for P3HB to 112 °C (Tg = –12 °C) for P3HV.3

To find a glass transition-mention, a conversion to lowercase and a search
for “tg” (a transformation of “TG” or “Tg” or “tg”) can be performed. If this
conversion were permanent, then polymer abbreviations like P3HB and P3HV
in the above sentence would never be identified. Finding different entities may
require numerous, impermanent preprocessing applications on the same data
point, which are easily accommodated by Snorkel preprocessor functions.

Three preprocessors are built for this work: makeTextLower(), makeCharUni-
form() and removeSpacesInParentheses(). makeTextLower() is self-explanatory:
it converts input sentences into lowercase text. makeCharUniform() converts
special characters, such as dashes and apostrophes (which can appear through-
out polymer texts as different characters) to a uniform character. For example,
a dash can be represented by the following characters: - – − —. Uniformizing
these characters is important, especially if they are used in LF logic. Polymer
names can often contain multiple character tokens within parentheses. Con-
sider the polymer name: poly(tetrafluoroethylene). Although this is the com-
mon spelling for this polymer, it is possible the polymer could be referred to
as: poly(tetrafluoro ethylene). If so, it would be important that a computer pro-
gram knows that both poly(tetrafluoroethylene) and poly(tetrafluoro ethylene)
are the same polymer. Therefore, removeSpacesInParentheses() was built to re-
move spaces only within parentheses.

Labeling Functions (TRUE, JUNK, ABSTAIN) When Snorkel LFs are
applied to data points, each LF returns a value of 1, 0 and -1 indicating a TRUE,
FALSE (JUNK) or ABSTAIN label, respectively. Attention must be paid to what
value is returned since it can greatly impact labeling a data point as TRUE or
FALSE. For example, if three LFs are applied to a sentence and their output

3
Extracted from: Petrovic, Zoran S, Jelena Milic, Yijin Xu, and Ivana Cvetkovic. "A Chemical Route to High

Molecular Weight Vegetable Oil-Based Polyhydroxyalkanoate." Macromolecules 43, no. 9 (2010): 4120-25.
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renders [1, 0, 1], 2 of 3 LFs deemed the sentence to be TRUE (1), if using a
majority voting system. If the LF outputs are [1, 0, 0], the sentence would be
deemed FALSE (0) since 2 of 3 LFs returned 0. If the LF outputs are [1, 0, -1],
this is equivalent to saying that only two LFs voted (1 and 0) and one abstained
(-1), resulting in a 50% chance the data point is TRUE or FALSE, and a majority
does not exist.

Labeling Functions to Identify Different Entities For a sentence to be
labeled TRUE, it must contain three different entity types: a polymer name or
abbreviation, a temperature and a glass transition-mention. Snorkel combines
the output of all LFs to label an entire datapoint with a value of 1, 0 or -1.
Our work modifies this functionality by first having each LF look for (or lack
thereof) one of the three entities within a sentence, where multiple LFs, though
expressing different logic, can look for the same type of entity. As a result,
each LF is designed to either identify a polymer name or abbreviation entity, a
temperature entity or a glass transition-mention entity, thereby grouping LFs by
the type of entity for which they are looking. After the LF group determines if the
respective entity is present, an ensemble labeler applies a label of 1 (TRUE) or
0 (FALSE) the sentence; if all three entities are present in a sentence, it receives
a 1, else it receives a 0. This ensemble labeler will be discussed in section 4.3.

The following code examples illustrate the logic for two different LFs that
target temperature entities: tempUnits() and JUNKnoNumbers(). The ratio-
nale for their logic will be discussed in the following sections, but for now we
shall illustrate the architecture of LFs.

1 @labe l ing_funct ion ( )
2 de f tempUnits ( x ) :
3 re turn TG i f " ° " in x . t ext e l s e JUNK

Listing 1.1. tempUnits() Labeling Function

1 @labe l ing_funct ion ( pre=[makeTextLower ] )
2 de f JUNKnoNumbers(x ) :
3 regexp = re . compile ( r " [0−9] " )
4 re turn ABSTAIN i f regexp . search (x . t ext ) e l s e JUNK

Listing 1.2. JUNKnoNumbers() Labeling Function

In the above examples, @labeling_function() signals to Snorkel that a LF is
to be defined [13], x refers to the input datapoint which consists of a document
ID (docid) and a sentence (text) (see Fig. 1), while the variables TG, JUNK
and ABSTAIN are assigned values of 1, 0 and -1, respectively. In Listing 1.1,
a 1 is returned if a degree sign (°) is found within text indicating the LF found
a temperature entity within x.text, otherwise a 0 is returned indicating that a
temperature entity was not found. In Listing 1.2, the regular expressions (re)
module [21] allows for a regular expression search to be performed on x.text in
that if any numeric digits exist, a -1 is returned, otherwise a 0 is returned. It
should also be noted that the preprocessor, makeTextLower(), is also applied
to x.text prior to applying JUNKnoNumbers().

The following sections describe the three groupings of LFs, lists the individual
LFs for the group, and describes their logic.
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Labeling Polymer Entities Only four LFs are required to identify sentences
with polymer entities without a priori knowledge, external reference dictionaries,
or writing rules which use extensive REGEX functions.

1. abbreviation_in_sentence: This LF looks for a token that consists only of uppercase alpha
characters, numbers and special characters. Only 40% or less of the token can consist of special
and numeric characters. For example, P3HB is considered an abbreviation, whereas 270°C is not
since 100% of characters in the latter token are numbers and special characters. If the criteria
is met, the LF returns 1, otherwise it returns a -1. It would not be appropriate to return a 0 if
the logic is not met because polymers do not always have abbreviations, and a sentence should
not be penalized for not containing an abbreviation.

2. keyword_poly: This LF looks for the character string, “poly” in a sentence. If it exists, a 1 is
returned, otherwise a -1 is returned.

3. keyword_polyParen: Similar to keyword_poly(), if a sentence contains, “poly(”, then a 1 is
returned, otherwise a -1 is returned.

4. keyword_copolymer: There are naming conventions applied to certain types of polymers
known as copolymers. This LF accounts for those rules in that if any of these character strings
are found in a sentence, a 1 is returned, else a -1 is returned. Examples of character strings
found in copolymers are: “-co-”, “-stat-”, “-per-”, “-ran-”, “-grafted-”, “-trans-”, and “-alt-”.

Labeling Temperature Entities It is simple to identify numbers in a sen-
tence, but it is more difficult to discern what those numbers represent. The below
lists the LFs used to identify sentences with and without temperature entities.

5. tempUnits: This LF simply looks for a degree (°) symbol. If found, it returns 1, otherwise it
returns −1.

6. tempUnitsAfterNumber: If a number is followed by a unit of temperature such as C (Celsius),
F (Farenheit) or K (Kelvin), then a 1 is returned, otherwise a −1 is returned.

7. tempUnitsAfterDegree: If a degree (°) symbol is followed by a C, F, or K, then a 1 is returned,
otherwise a −1 is returned.

8. equalSignBeforeNumber: If an equal (=) sign exists before numbers (with or without special
characters like − or ∼), then a 1 is returned, otherwise a −1 is returned.

9. circaSignBeforeNumberDegree: If the tokens “circa” or “ca” or “about” precede a number
(with or without special characters like − or ∼), then a 1 is returned, otherwise a −1 is returned.

10. tempRange: Glass transition temperatures can be reported as a temperature range. This LF
returns a 1 if more than 40% of a token’s characters consists of numbers, such as in the case of
“−2-1” which could read, “negative 2 to negative 1.” Otherwise a −1 is returned.

11. JUNKtempUnitsAfterNumber: If a number exists and is not followed by a degree (°) sym-
bol, C, F, or K, the number is assumed to not be a temperature and a 0 is returned, otherwise
a −1 is returned.

12. JUNKtempUnitsAfterDegree: If a degree (°) symbol exists and is not followed by a C, F,
or K, it is assumed the sentence does not contain a temperature and a 0 is returned, otherwise
a −1 is returned.

13. JUNKnoNumbers: If there are no numbers in a sentence, a 0 is returned, otherwise a −1 is
returned. A 1 is not returned because that assumes a temperature exists. Since not all numbers
represent temperatures, it can only be assumed that a sentence containing numbers is at, best,
not a JUNK sentence.

Labeling Glass Transition-Mentions There are a discrete number of ways
that a glass transition mention can be expressed through text, which is either by
spelling out “glass transition” (with varying forms of capitalization), shortening
it to “glass trans” or “glass-trans,” or abbreviating it to simply “tg.” Ultimately,
this search can be streamlined to searching for: “glass t” or “glass-t” or “tg.”

In polymer texts there is a technique called thermogravimetric analysis, which
is sometimes abbreviated as, “TGA.” Therefore, additional LFs are needed to to
distinguish sentences that contain “TGA” vs just “TG” to avoid labeling sen-
tences that only refer to TGA as containing a glass transition-mention entity.
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14. keyword_tg: If the (lowercase) character strings “glass t” or “glass-t” or “tg” are found in a
sentence a 1 is returned, otherwise a −1 is returned.

15. JUNK_tga: If the character string “TGA” is found in a sentence a 0 is returned, otherwise a
−1 is returned.

16. JUNK_tgAndTGA: This is considered a “tie-breaker” LF for sentences containing “TGA.” If
this LF did not exist, sentences with “TGA” would return LF output arrays as [1, 0] and would
need to be resolved with a tie-breaker (i.e. randomly assigning the glass transition mention entity
as 1 or 0). Therefore, if “TG” is found in a sentence with no other alpha characters following
it, a 1 is returned; if the character string “TGA” is found, then a 0 is returned; otherwise a −1
is returned.

4.3 Majority Ensemble Labeler and ELSIE

There are a total of 16 LFs used in this work. The first four LFs, highlighted
below in yellow, aim to identify polymer names and abbreviations, the next nine
LFs, highlighted in green, aim to identify temperatures, and the last three, in
blue, aim to identify glass transition-mentions. Applying LFs is demonstrated in
the below sentences and respective output arrays, where characters and/or words
are color-coded to indicate the entity identified by a particular LF group, and
the LF output values are listed in the corresponding order in the output array
as outlined below. The values of the output arrays correspond to the LFs as enu-
merated in Sec. 4.2—Labeling Polymer Entities, Labeling Temperature Entities
and Labeling Glass Transition-Mentions, such that the output array values are
designated by the following LFs: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].

Sentence 1 Bacterial polyhydroxy alkanoates such as poly(3-hydroxybutyrate) (P3HB), poly(3-
hydroxyvalerate) (P3HV), or higher hydroxy acids and their copolymers display decreasing melting
points from about 180 °C (Tg = 1−4 °C) for P3HB to 112 °C (Tg = -12 °C) for P3HV.4

Output array: [1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, -1, 1] → [3/3, 5/5, 2/2]

Of the LFs that did not abstain in Sentence 1 (where the output was either
a 1 or 0, but not a -1), all three entities of interest were identified; 3 of 3 LFs
found a polymer name or abbreviation (yellow), 5 of 5 LFs found a temperature
(green), and 2 of 2 LFs found a glass transition-mention (blue).

Sentence 2 Although the corresponding copolymers were afforded with perfectly alternating na-
ture and excellent regiochemistry control, only glass-transition temperatures of around 8.5 °C were
observed in the differential scanning calorimetry (DSC) curve, demonstrating that the polymers are
completely amorphous (see Supporting Information Figure S3).5

Output array: [1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1] → [2/2, 3/3, 1/1]

Similar to sentence 1, LFs applied to Sentence 2 also identified all three en-
tities of interest, however, more LFs abstained in this sentence than in Sentence 1.

Sentence 3 (repeated to show how Snorkel can correctly label tricky sentences):
– The TGA scans indicated that APNSi has 5% decomposition in air of 340 °C and in argon of

450 °C (Figure 1).
– The TGA scans indicated that APNSi has 5% decomposition in air of 340 °C and in argon of

450 °C (Figure 1).

4
Extracted from: Petrovic, Zoran S, Jelena Milic, Yijin Xu, and Ivana Cvetkovic. "A Chemical Route to High

Molecular Weight Vegetable Oil-Based Polyhydroxyalkanoate." Macromolecules 43, no. 9 (2010): 4120-25.
5
Extracted from: Yue, Tian-Jun, Wei-Min Ren, Ye Liu, Zhao-Qian Wan, and Xiao-Bing Lu. "Crystalline Poly-

thiocarbonate from Stereoregular Copolymerization of Carbonyl Sulfide and Epichlorohydrin." Macromolecules 49,
no. 8 (2016): 2971-76.
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– The TGA scans indicated that APNSi has 5% decomposition in air of 340 °C and in argon of
450 °C (Figure 1).6

Output array: [1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 0, -1, -1, 1, 0, 0] → [1/1, 3/4, 1/3]

An abbreviation of “TGA” was identified in sentence 3, and polymer LFs
cannot determine if the abbreviation represents a polymer or not. The LFs also
found the string, “TG” in the sentence. The LFs are able to determine that a
glass transition-mention is not present (refer to 4.2 Labeling Glass Transition-
Mentions for further clarification), and that only abbreviation and temperature
entities were found. As a result, the sentence was labeled as 0. This final example
demonstrates the power of LFs and how the combination of weak learners allow
the system to carve out entities of interest while ignoring entities not of interest
from the sentence by picking up on nuances to discern which sentences to label,
even tricky ones.

Once the output arrays of the LFs are generated, the majority ensemble la-
beler determines which entities exist in a sentences by using a simple majority
of LF outputs per entity group; polymer (yellow), temperature (green) and glass
transition-mention (blue). The majority ensemble labeler will label a sentence
as 1 if and only if all three entities are present in a sentence. This process of
considering the output of all LFs per entity group and determining if all enti-
ties are present is being called, ensemble labeling toward scientific information
extraction, or ELSIE.

5 Results and Analysis

First, we discuss how the initial gold standard dataset—determined by human
experts and the state-of-the-art tool—was generated in order to be compared
to sentences labeled by ELSIE. Next, we discuss how the initial gold standard
dataset was updated after ELSIE identified true positive sentences that were
missed by human experts and the state-of-the-art tool. Finally, the state-of-the-
art tool’s and ELSIE’s outputs are both compared to the updated gold standard
(hereafter referred to as the “gold standard”) dataset. The state-of-the-art tool’s
performance against the gold standard is discussed as a matter of comparison
to ELSIE’s performance and labeling abilities.

5.1 Training Dataset and its Labels

The intention of the initial gold standard dataset was to label extracted polymer
entities and their Tg; this differs from the current intention of ELSIE which aims
to label sentences containing the three entities of interest. The motivation behind
our approach of labeling sentences before extracting entities is that scientific
entities and relations can be too complex to be immediately extracted and may
require additional human attention or additional passthroughs of the data. To

6
Extracted from: Finkelshtein, E Sh, KL Makovetskii, ML Gringolts, Yu V Rogan, TG Golenko, LE Starannikova,

Yu P Yampolskii, VP Shantarovich, and T Suzuki. "Addition-Type Polynorbornenes with Si (Ch3) 3 Side Groups:
Synthesis, Gas Permeability, and Free Volume." Macromolecules 39, no. 20 (2006): 7022-29.
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align the initial gold standard dataset with ELSIE-labeled data, metadata about
sentences and polymer-Tg pairs extracted by experts and the state-of-the-art tool
was used to determine the sentences from which the entities were extracted. Data
extracted by the state-of-the-art tool was previously validated by experts [19].
If the state-of-the-art tool extracted a polymer-Tg pair correctly, the sentence(s)
from which the information was obtained by the state-of-the-art tool were labeled
as 1; if the state-of-the-art tool extracted an incorrect polymer-Tg pair (i.e.
a polymer was paired with an incorrect Tg), sentences containing the correct
polymer name/abbreviation and the Tg were both labeled as 0 [19]. Sentences
identified by the human experts which contained polymer-Tg pairs were labeled
as 1. If a polymer-Tg pair existed in the corpora, and the human experts and/or
the state-of-the-art tool did not extract the pair, the sentence was labeled as 0.

5.2 Updated Gold Standard Labels

After running ELSIE on unlabeled data, new polymer-Tg pairs that were not
in the initial gold standard dataset (i.e. missed by human experts and/or the
state-of-the-art tool) were discovered. We considered these to be false “false pos-
itives” from the initial gold standard dataset. More details of these sentences
are provided in section 5, but as a result of these findings, the initial gold stan-
dard dataset was updated, and the sentences with previously missed polymer-Tg

were labeled as 1. It is this updated dataset—the gold standard—to which the
state-of-the-art tool and ELSIE are compared.

5.3 Results

The final document corpora contained 9,518 sentences (data points), representing
31 unique scientific journal articles. Overall, the state-of-the-art tool labeled
15 sentences as positive cases, ELSIE labeled 67 sentences, and human experts
identified 49; the gold standard dataset contained 64 positive cases. Positive cases
represent less than 1% of the data, illustrating the highly unbalanced nature of
the dataset, and accuracy alone does not convey each application’s performance.
Precision and recall results, along with accuracy and F1-scores, are reported in
Table 1.

Table 1. Performance Compared to the Gold Standard.

Gold Standard Human
Experts

State-of-the-
Art
Tool

ELSIE

Total Cases 9,518
Total Positive Cases 64 49 15 67
Accuracy 99.84% 99.49% 99.88%
Precision 100% 100% 90%
Recall 77% 23% 94%
F1 score 0.87 0.38 0.92
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The analyses were run on a personal laptop using Python 3.8 in Jupyter Note-
book. The total processing time to process all 9,518 sentences through ELSIE,
including Snorkel preprocessors, was 0:01:03, compared to the state-of-the-art
tool’s processing time which took approximately 0:26:00 to process 31 docu-
ments.

5.4 Analysis

The F1 score of the state-of-the-art’s performance compared to the gold standard
(0.38) versus the F1 score of ELSIE’s performance to the gold standard (0.92)
overall demonstrates that ELSIE is better at labeling sentences correctly.

It is more important to capture all true labels than it is to miss true labels,
and is therefore acceptable for precision to be compromised in order to obtain
high recall. ELSIE identified new polymer-Tg pairs that human experts and the
state-of-the-art tool missed (see Table 2). With recall for the human experts
(77%) being lower than ELSIE (94%), and the need to update the gold stan-
dard dataset to include new polymer-Tg pairs that were previously missed, this
demonstrates that a high level of attention is required by humans (even experts)
when reading texts, otherwise important information can get missed. This finding
also highlights ELSIE’s robustness and reliability in labeling scientific [polymer]
sentences for training data over human experts and state-of-the-art tools aiming
to perform the same function.

Table 2. Sentences Missed by Human Experts, Labeled by ELSIE.

Text Gold
Standard

Human
Experts

State-of-
the-Art
Tool

ELSIE

Upon 10 wt % clay loading, the glass
transition of the PTMO:MDI−BDO PU
nanocomposites shifts slightly from −44.7 to
−46.6 °C.7

1 0 0 1

The functionalized polycarbonate exhibited a
lower Tg of 89 °C compared to its parent (108
°C).8

1 0 0 1

The state-of-the-art tool’s recall (23%) is much lower than ELSIE’s recall
(94%) because the state-of-the-art tool missed labeling more positive cases (n=49)
than ELSIE (n=4). Given the state-of-the-art tool’s objective to extract entities
and not label sentences, when the state-of-the-art tool extracted an incorrect
polymer-Tg pair, it was penalized and the sentences were not labeled. The state-
of-the-art tool would have achieved higher recall (88%) had we focused only on
rules-based extraction of the Tg, as opposed to the polymer-Tg pair. However,
due to the nuances in complex sentences and complicated polymer naming, it
often linked the Tg to an incorrect polymer name [19].

7
Extracted from: James Korley, LaShanda T, Shawna M Liff, Nitin Kumar, Gareth H McKinley, and Paula T

Hammond. "Preferential Association of Segment Blocks in Polyurethane Nanocomposites." Macromolecules 39, no.
20 (2006): 7030-36.

8
Extracted from: Darensbourg, Donald J, Wan-Chun Chung, Andrew D Yeung, and Mireya Luna. "Dramatic

Behavioral Differences of the Copolymerization Reactions of 1, 4-Cyclohexadiene and 1, 3-Cyclohexadiene Oxides
with Carbon Dioxide." Macromolecules 48, no. 6 (2015): 1679-87.
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Precision for the state-of-the-art tool was higher than ELSIE’s because ELSIE
labeled false positive sentences. ELSIE looks for entities within a sentence (even
if the entities are not related to one another), whereas the state-of-the-art tool
looks for related entities. The number of sentences labeled by the state-of-the-art
tool was much smaller (n=15) than ELSIE (n=67). The state-of-the-art tool did
not label any false positives, whereas ELSIE labeled 7 of the 67 sentences as false
positives. An example of a false positive sentence labeled by ELSIE is shown in
Table 3; polymer name and glass transition-mention entities were identified, but
the temperature entity in the sentence is a melting temperature and not a Tg.
Though it is a false positive, reporting this sentence can be beneficial because it
could contain important metadata either about the entities of interest, or other
polymer characteristics.

Table 3. False Positive Sentence (Labeled as TRUE by ELSIE).

Text9 Gold
Standard

Human
Experts

State-of-
the-Art
Tool

ELSIE

Two or three thermal transitions are expected
for SEBS: (1) a low glass transition temper-
ature (Tg1) corresponding to the ethylene-
co-butylene block, (2) a high glass transition
temperature (Tg2) corresponding to the
styrene block, and (3) a broad endothermic
transition at the melting temperature (Tm)
near 20 °C, depending on the degree of crys-
tallinity of the ethylene-co-butylene block.

0 0 0 1

ELSIE missed labeling sentences that contained entities of a polymer-Tg pair
if all three entities were not contained within a single sentence. This demonstrates
how and why the problem of finding polymers and their respective Tg is hard for
computers and easier for humans. Table 4 shows two consecutive sentences in a
text. The first sentence only contains a polymer entity (which ELSIE identified),
but did not contain temperature nor glass transition-mention entities; the human
identified this sentence and received credit. The other two entities are found in
the next sentence, to which the human experts received credit. The state-of-
the-art tool extracted the Tg mention from the second sentence, but paired it
to the wrong polymer, and did not receive credit for either sentence. Since all
three entities were spread among multiple sentences, ELSIE was not able to label
either sentence with a 1.

6 Conclusion

This work presented ELSIE, a system that leverages data programming to pro-
cess scientific articles—specifically in materials science—and identify sentences
containing target entities such as polymers, temperatures and glass transition-
mentions. We demonstrated that a collection of simple and easy to understand

9
Extracted from: Mohanty, Angela D., Chang Y. Ryu, Yu Seung Kim, and Chulsung Bae. "Stable Elastomeric

Anion Exchange Membranes Based on Quaternary Ammonium-Tethered Polystyrene-B-Poly (Ethylene-Co-Butylene)-
B-Polystyrene Triblock Copolymers." Macromolecules 48, no. 19 (2015): 7085-95.
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Table 4. True Positive Sentences Missed by LFs.

Text10 Gold
Standard

Human
Experts

State-of-
the-Art
Tool

ELSIE

The azo-polymer material, poly[4‘-
[[2-(acryloyloxy)ethyl]ethylamino]-4-
nitroazobenzene], often referred to as
poly(disperse red 1 acrylate) (hereafter
pdr1a), was synthesized as previously
reported.

1 1 0 0

The prepared material was determined to
have a molecular weight of 3700 g/mol, and
a corresponding Tg in the range 95-97 °C.

1 1 0 0

programmed rules are able to detect entity-containing sentences without having
to identify the target entities themselves. ELSIE does not use distant super-
vision—nor a priori known entities—and it does not look for relationship-type
words. Instead it determines whether the entities that form the target relation-
ship are present in a sentence. We achieved a recall of 94% when compared to the
gold standard, mostly due to an assumption that the three entities are related if
they existed in a single sentence. Future work will aim to 1) identify and isolate
sentences of interest with their surrounding sentences (e.g., sentences containing
2 out of 3 target entities), and 2) extract polymer entities and their properties.

ELSIE found sentences missed by a best of breed domain-specific toolkit and
human experts, whether due to sentences being complicated, such as a sentence
containing multiple polymer-Tg pairs, or fatigue/lack of attention paid by human
experts. Since ELSIE outperformed a domain-specific toolkit as well as human
annotators, this work demonstrates the need for software that can reliably and
quickly process polymer texts.
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