
Data Augmentation for Copy-Mechanism
in Dialogue State Tracking

Xiaohui Song1,2, Liangjun Zang1,2(�), and Songlin Hu1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3 {songxiaohui,zangliangjun,husonglin}@iie.ac.cn

Abstract. Traditional dialogue state tracking (DST) approaches need a
predefined ontology to provide candidate values for each slot. To handle
unseen slot values, the copy-mechanism has been widely used in DST
models recently, which copies slot values from user utterance directly.
Even though the state-of-the-art approaches have shown a promising per-
formance on several benchmarks, there is still a significant gap between
seen slot values (values that occur in both training set and test set) and
unseen ones (values that only occur in the test set). In this paper, we
aim to find out the factors that influence the generalization capability of
the copy-mechanism based DST model. Our key observations include two
points: 1) performance on unseen values is positively related to the diver-
sity of slot values in the training set; 2) randomly generated strings can
enhance the diversity of slot values as well as real values. Based on these
observations, an interactive data augmentation algorithm is proposed to
train copy-mechanism models, which augments the input dataset by du-
plicating user utterances and replacing the real slot values with randomly
generated strings. Experimental results on three widely used datasets:
WoZ 2.0, DSTC2 and Multi-WoZ demonstrate the effectiveness of our
approach.

Keywords: Data Augmentation · Dialogue State Tracking · Copy-
Mechanism.

1 Introduction

A task-oriented dialogue system interacts with users in natural language to ac-
complish tasks such as restaurant reservation or flight booking. The goal of
dialogue state tracking is to provide a compact representation of the conversa-
tion at each dialogue turn, called dialogue state, for the system to decide the
next action to take. A typical dialogue state consists of goal of user, action of
the current user utterance (inform, request etc.) and dialogue history [19]. All
of them are defined in a particularly designed ontology that restricts which slots
the system can handle, and the range of values each slot can take. Tracking the
goal of user is the focus of this task. To accomplish the tracking task, most DST
models take the user’s utterance at the current turn, a slot to track and dialogue

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


2 X.H. Song et al.

history as input, and then output the corresponding value if the user triggers
the input slot. Considering an example of restaurant reservation, users can in-
form the system some restrictions of their goals (e.g., inform(food = thai))
or request further information (e.g., request(phone number)) at each turn.

USER:I’m looking for a restaurant that serves thai food.
state:{inform(food=thai)}
SYSTEM:There are two, one in the west end and one in the centre of town.
USER:The one on the west end, please. Can I have the phone number?
state:{inform(food=thai, area=west),request(phone number)}

Having access to an ontology that contains all possible values simplifies the
tracking problem in many ways. However, in a real-world dialogue system, it is
often impossible to enumerate all possible values for each slot. To reduce the de-
pendence on the ontology, PtrNet[18] uses the Pointer Network[14] to handle the
unknown values that are not defined in the ontology. Since then, the attention-
based copy-mechanism inspired by Pointer Network have been widely used
in state-of-the-art DST approaches[12, 17, 4]. The copy-mechanism based DST
models directly copy slot values from the dialogue history, thus reducing the
need to pre-define all slot values in the ontology.

Nonetheless, there is still a significant performance gap between seen slot
values and unseen ones(i.e., the values that occur in test set but not in train
set), we assume the insufficient diversity of values (i.e., the number of unique slot
values) is the primary reason for poor generalization capability. We conduct two
experiments to prove our assumption and illustrate our observations. In the first
experiment, we construct synthetic test sets that only contain unseen values. For
WoZ and DSTC2, we replace all values of slot food with food names collected
from Wikipedia4. For Multi-WoZ dataset, we use 13 slots that contain non-
enumerable values. Since it is costly to collect enough values for each slot, we use
random strings to construct synthetic test set. After training the baseline model
on the original training sets, we observed a huge performance gap between the
original test set and the synthetic test set. In the second experiment, we augment
the WoZ training sets by duplicating user utterances 10 times and replacing all
slot values with collected food names. Results on the synthetic test sets show
that the generalization performance is positively related to the diversity of slot
values, which further confirms our conjecture.

In a real-world dialogue system, it is impractical to obtain lots of real values
for each slot when attempting to improve the diversity. In order to find a more
convenient way, we design the third experiment. We first use randomly generated
strings as values to enhance the diversity of slot values in the WoZ training set,
then train the copy-mechanism based model and test on the test set that contains
real slot values. Experimental results illustrate that random strings work as

4 https://en.m.wikipedia.org/wiki/Lists_of_prepared_foods

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


Data Augmentation for Copy-Mechanism in Dialogue State Tracking 3

well as collected real values and they help a lot to get a better generalization
performance.

To design a data augmentation algorithm based on the above observations, a
question remains to answer: ”How many values we need to generate to obtain a
cost efficient result?”. It is hard to answer this question in the data pre-processing
phase before training (as what traditional data augmentation algorithms do), so
we design our algorithm to work in the training phase. The algorithm samples
user utterances iteratively from the input dataset, then replaces the real slot
values with random strings, and stop training with early-stop mechanism. Ex-
perimental results show that our algorithm produces a satisfactory result at a
low cost.

The rest of this paper is organized as follows: we first review the recent
advances in both DST and the copy mechanism in Section 2. Then, we describe
the datasets we used and the baseline model in Section 3. In Section 4, our
data analysis process and key observations are described. We propose our data
augmentation approach to DST task and evaluate its performance in Section 5.
Finally, we conclude our work and discuss the future directions.

2 Related Works

2.1 Dialogue State Tracking

Recently, deep-learning has shown its power to the dialogue state tracking chal-
lenges [16, 5, 6]. Some approaches rely on the value set provided by ontology:
Neural Belief Tracker (NBT) [9] applied representation learning to learn fea-
tures as opposed to hand-crafting features; GLAD [20] addressed the problem
of extraction of rare slot-value pairs; [10] tried to share parameters across slots,
but the model had to iterate all slots and values defined in the ontology at each
dialogue turn; [11] generated a fixed set of candidate values using a separate
SLU module but suffered from error accumulation. As for those models with
generalization capabilities, PtrNet [18] aimed to handle unknown values, which
is the first attempt to introduce the copy mechanism into DST; TRADE[17] was
a simple copy-augmented generative model that tracked dialogue states without
ontology and enabled zero-shot and few-shot DST in a new domain; [4] used the
pretrained language model BERT [3] and copy-mechanism to predict explicitly
expressed values. But the generalization performance of these models still has
much room for improvement.

2.2 Copy-Mechanism

Copy-mechanism in deep learning is a generic concept, which means an out-
put is copied from an input sequence. This idea was first proposed in Pointer
Network[14]. The Pointer Network is designed to learn the conditional probabil-
ity of an output sequence with elements that are discrete tokens corresponding
to positions in an input sequence. It can address the problems such as sorting

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


4 X.H. Song et al.

variable sized sequences and various combinatorial optimization. As mentioned
in the introduction, [18] first reformulated DST problem to take advantage of
the flexibility enabled by Pointer Network. Then, the copy-mechanism become
a common sub-structure of the DST models, which is used in several state-of-
the-art DST models such as TRADE[17], COMER[12], etc. DSTRead[4] used a
span prediction method proposed in DrQA[2] for machine reading task, which
is also an application of the copy mechanism.

3 Datasets, Baseline Model and Evaluation
In this section, we first describe the datasets we used, then present a baseline
model that implements the copy mechanism widely used in DST models, and
finally present the evaluation metrics.

3.1 Datasets
Our datasets are extracted from three datasets widely used in DST tasks, i.e.,
WoZ 2.0[15], DSTC2[5] and Multi-WoZ 2.0[1]. To evaluate the performance of
copy mechanism on unseen slot values, we focus on the slots of which the values
are non-enumerable. Table 1 lists the slots, the number of slot values, and the
number of samples in the following experiments.

datasets slots values in train(total) data samples in train(test)

WoZ-sub food 73(75) 2536(1646)
DSTC2-sub food 72(73) 11677(9890)

Multi-WoZ-sub

hotel-name 35(37)

60027(73720)

train-destination 19(20)
train-departure 23(25)
attraction-name 88(95)
taxi-destination 198(214)
taxi-departure 188(210)
restaurant-name 131(139)
restaurant-food 94(95)
bus-departure 1(1)
bus-destination 1(1)

Table 1. Slots we use in experiments in WoZ 2.0, DSTC2 and Multi-WoZ datasets.
Samples include negative samples for the slot gate (a binary classifier).

Each sample corresponds to one dialogue turn, along with a slot, its active
state, and the corresponding value. An example is as follows:

utterance:I’m looking for a restaurant that serves thai food.
slot: food, active:True, value: thai

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


Data Augmentation for Copy-Mechanism in Dialogue State Tracking 5

Linear Linear

Linear

Contextual
RepresentationAttention

Linear Attention Attention

start endYes or No

RNN

slot	gate utterance	encoder copy-mechanism

Fig. 1. The architecture of the baseline model. The inputs are embedding of slot,
word embeddings of user and system utterance(W1,W2, · · · ,Wn). It is a common sub-
structure in several SOTA DST models.

The active attribute of a slot will be set to True (corresponding to a positive
sample) if the user triggers the slot, otherwise it will be set to False (corre-
sponding to a negative sample). In the test set, each turn of dialogue will be
paired with each slot to reach the convincing results.

As shown in Table 1, there are a lot of overlapping values over slots between
the training set and test set. To observe the performance on unseen slot values,
we construct new develop datasets D′

woz and D′
dstc2, and new tests set T ′

woz and
T ′
dstc2 by replacing all values with collected real values, and guarantee that these

values will not appear in any training set in this paper. As for the Multi-WoZ
dataset, it is hard to collect so many values for each slots, so the synthetic develop
set D′

multi and test set T ′
multi for Multi-WoZ are constructed using random

strings.

3.2 Baseline Model

Without loss of generality, we implement a basic copy-mechanism based model.
The model takes an utterance U and a slot s as input, and output whether s is
active and the positions of its corresponding value if s is active. The model con-
sists of three important components: utterance encoder, attention-based
copy-mechanism, and slot gate. The architecture of the baseline model is
shown in Figure 1.

Utterance Encoder For utterance U , we simply concatenate user and system
utterance (Uusr and Usys) by a particular symbol <usr>.

U = Usys ⊕<usr>⊕ Uusr, (1)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


6 X.H. Song et al.

We use a bidirectional LSTM [7] to get the contextual representation HP of U .

HP = BiLSIMP (Uemb) ∈ Rn×dh . (2)

where n denotes the total number of words in U , Uemb ∈ Rn×demb is the word
embeddings of U , demb is the dimension of embeddings, and dh the dimension
of LSTM hidden states.

Attention-based Copy-Mechanism We define an attention function Attn(Q,V )
to calculate attention scores between query feature Q ∈ Rdemb and context fea-
ture V ∈ Rn×dh . The computing process is as follows: 1) do a linear transform
for both Q and V , 2) use the dot product result as attention scores, 3) normalize
through softmax function.

Q′ = QWq, V
′ = VWv, αi = Q′V ′

i , (3)

scoresi = expαi/

n∑
j

expαj , (4)

contexts =

n∑
i

scoresiV
′
i . (5)

We use a single linear layer (Linear(X) = WX+b) to encode slots embeddings
semb into senc, and then use the attention function defined above to calculate
both start and end positions of its value.

senc = Linearslot(semb), (6)
penc = Linearp(senc), (7)

contextsp, scoresp = Attnspan(penc,H
P ), (8)

qenc = Linearq(senc ⊕ contextsp), (9)
contextsq, scoresq = Attnspan(qenc,H

P ), (10)
start = argmax

j
scorespj , (11)

end = argmax
j

scoresqj . (12)

Slot Gate A binary classifier is used to determine whether a slot is triggered
by a user or not, where the single linear layer Linearcls2 produces a probability
over [0, 1] based on attention contexts. A slot is triggered if clsresult > 0.5.

scls = Linearcls1(semb), (13)
contextscls, scorescls = Attncls(scls,H

P ), (14)
αcls = Linearcls2(contexts

cls), (15)
clsresult = sigmoid(αcls). (16)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


Data Augmentation for Copy-Mechanism in Dialogue State Tracking 7

Implementation Details To enhance the effectiveness of the experiments, all
experiments in this paper share the same settings. We use randomly initialized
word embeddings of dimension 300 with dropout[13] rate 0.5. The model is
trained with Adam[8] optimizer and the learning rate is 1e-4. We evaluate the
model on the dev set and save the checkpoint and select the best to get the final
result on the test set when the training process completes. All experiments are
conducted on a single NVIDIA RTX 2080Ti GPU.

3.3 Evaluation Metric

We use F1 scores as the primary metric in all experiments in this paper. Specifi-
cally, if a slot is determined to be active by the slot gate and the model predicts
the correct value (both the start and end positions) for the slot, then it is a true
positive sample. If the slot gate outputs False, then the extracted value will be
ignored.

4 Data Analysis and Observations

In this Section, we will analyze the factors that influence the generalization
performance of the baseline model.

4.1 Original datasets may mislead the model

As shown in TRADE [17], the slots that share similar values or have correlated
values have similar embeddings. We suppose that the original datasets incline the
attention based copy-mechanism model to memorize values that appear in the
train set rather than infer them from contexts, which may lead to a significant
performance gap between seen and unseen values. To verify our argument, we
train the baseline model and test on original test set and synthetic test set
mentioned in Section 3.1, which contains all unseen values. The results are shown
in Table 2.

datasets original test set synthetic test set
WoZ-sub 0.9153 0.0820
DSTC2-sub 0.9850 0.0328
Multi-WoZ-sub 0.9297 0.3607

Table 2. F1 scores on two datasets. The synthetic test sets of WoZ and DSTC2 contains
all unseen values collected from Wikipedia, and that of Multi-WoZ is constructed using
random strings.

As shown in Table 2, the model performs well on original test sets but poorly
on synthetic test sets. The only difference between two kinds of test sets is the
values set: slot values in the original test sets and the training sets have a great

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


8 X.H. Song et al.

overlap but the synthetic test sets do not. The low diversity of slot values and
strong correlation with the outputs might mislead the model. The model might
mistakenly think that the values are the crucial feature and overfits on them, so
the model fails when it comes to an unobserved value.

4.2 Greater diversity of values brings better generalization

We have argued that the model overfits on the values when there are few values
in the training set. In other words, the model pays little attention to context
information of slot values, which is a very useful feature for the model to recog-
nize the correct value for a slot. Our goal is to obtain an excellent performance
on unseen values. Intuitively, high diversity of slot values make the model more
difficult to learn from slot values. Consequently, an interesting question is:

If we greatly increase the diversity of slot values in the train set, will the model
prefer inferring slot values from slot contexts?

Besides the diversity of slot values, we also notice that slot values in the
training set obey a power-law distribution, a few values occupy more data sam-
ples, which may have a negative effect on the generalization performance of the
model.

To clarify the impact of distribution and diversity on generalization perfor-
mance, we contact experiments as follows. First, duplicate the WoZ training set
10 times to accommodate a large set of values. Second, we adjust the diversity
of slot values by controlling the number of unique slot values in the training set.
We set the numbers of unique values with [70, 70× α1, · · · , 70× α29 = N ] (i.e.,
totally 30 numbers), where 70 and N = 3000 is the minimum and maximum
number of unique slot values respectively. We sample the values in this way
to present a clear trend for increasing number of values. For each number, we
replace the values in the training set with collected food names to obtain two
constructed training sets, obeying power law distribution and uniform distribu-
tion respectively. Third, we train the baseline model using the two constructed
training sets and test on the synthetic test set.

As shown in Figure 2 (left), the F1-scores of the synthetic test set (i.e., all
unseen values) increase rapidly with the increasing number of unique slot values
and gradually converge. When the number of unique values is relatively small, the
performance of the model is slightly worse when the slot values with the power-
law distribution than the uniform distribution. But when there are enough slot
values in the training set, the difference between the two distributions can be
ignored. Hence, we conclude that the generalization capability of the model is
positively correlated to the diversity of values, and the uniform distribution is a
better choice when constructing a new training set.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


Data Augmentation for Copy-Mechanism in Dialogue State Tracking 9

0 500 1000 1500 2000 2500 3000
n

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
Sc

or
e

collected values

power-law distribution
uniform distribution

0 500 1000 1500 2000 2500 3000
n

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
Sc

or
e

random strings

power-law distribution
uniform distribution

Fig. 2. Performance on T ′
woz when using the synthetic WoZ training set with different

size of value set. In the left part, the datasets are constructed by duplicating the original
training set 10 times and replacing slot values with collected food names; in the right
part values are replaced with randomly generated strings. The blue lines and points in
the figure mean values obey a uniform distribution, and the red lines and points mean
values obey a power-law distribution.

4.3 Random strings also work well

We have known that increasing the diversity of slot values can help the copy-
mechanism based DST model to obtain a better generalization capability. But
in a real-world task-oriented dialogue system, the ontology often contains many
slots that have non-enumerable values. As shown in Figure 2, the model needs
lots of unique values to produce a satisfactory generalization performance, but
collecting so many values for each slot cost a lot. Therefore, we wonder if the
randomly generated strings can substitute the real slot values.

We design a simple function randstr(strlen) to generate random strings.
The function takes string length as input and output a randomly generated
string, it samples chars from a fix char sequence, we define the char sequence
as 26 lowercase letters and 3 spaces5. Spaces are used to generate multi-words
values, for example, when strlen is 10, the probability of generating multi-words
values is about 1− (26/29)10 ≈ 0.66.

We use the same experimental setup as that in Section 4.2, but use random
strings generated by randstr function to control the diversity of slot values,
the results are shown in Figure 2 (right). What can be clearly seen in Figure 2
is that the random strings work well as the collected real slot values. Now we
reach a new conclusion: randomly generated strings can be used to enhance the
generalization performance of copy-mechanism based DST model.

5 in this paper we use 3 spaces and strlen=10 to generate more natural multi-words
values

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


10 X.H. Song et al.

5 Interactive Data Augmentation for DST

We have shown in Section 4 that it is a favorable strategy to employ uniformly
distributed random strings to increase the diversity of slot values. In the previous
experiments, we duplicate the training set 10 times and set the maximum number
of unique slot values to 3000, but we have no idea about whether we have reached
the best performance. So how many data do we need to duplicate and how many
random values do we need to generate? To answer these questions, we propose
a simple data augmentation algorithm and then evaluate it experimentally.

Algorithm 1 Data Augmentation Algorithm
Input: training set U , synthetic dev set D′ and test set T ′, randomly initialized
Tracker.
Hyperparameters: sampling bag size sbag, training epochs r at each turn and the
patience of early stop mechanism p.
Output: the Tracker and its performance on T ′

1: Replace all slot values in U with a string ′[token]′;
2: best_round=0, round=0, best_F1=0;
3: while round− best_round < p do
4: Sample sbag data samples from U ;
5: Replace all ′[token]′ with random strings generated by randstr, get Ubag;
6: Train the Tracker on Ubag for r epochs;
7: Test the Tracker on D′, get the F1score F1;
8: if F1 > best_F1 then
9: best_F1 = F1;
10: best_round = round;
11: end if
12: round = round+ 1;
13: end while
14: Test the Tracker on T ′, get the final generalization performance P ;
15: return Tracker, P

5.1 Approach

Traditional data augmentation approaches usually work in the data preprocess-
ing phase, while it is hard in our case to determine how many data we need to
duplicate and how many random values we need to generate. Thus, we design a
data augmentation algorithm that works in the training phase, as shown in Al-
gorithm 1. Firstly, we replace all slot values in the training set U with a unique
token [token]. Secondly, we sample from the training set repeatedly. At each
sampling process, we sample sbag data samples and replace all [token] with dif-
ferent random strings to increase the diversity obeying the uniform distribution;
re-calculate the start and end positions of random values to update the labels,
so we get a smaller training set Ubag. We train the model several epochs on Ubag

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


Data Augmentation for Copy-Mechanism in Dialogue State Tracking 11

and test it on synthetic develop set D′. The entire training process is controlled
by an early stop mechanism, after p rounds sampling that fail to produce a better
performance, the algorithm will be terminated and report the final performance
on synthetic test set T ′.

Our algorithm doesn’t need to generate all data before training, so it doesn’t
need to determine how much data to duplicate and how many values to generate.
It could reach the satisfactory results at a low cost.

5.2 Performance

We evaluate our data augmentation algorithm on three datasets: WoZ-sub,
DSTC2-sub and Multi-WoZ-sub. We focus on slots that have non-enumerable
values (see Table 1) and present experimental results in Table 3.

Dataset Model original test set synthetic test set

WoZ-sub baseline 0.9241* 0.0820
+DA 0.9195(↓0.5%) 0.8819(↑975.5%)

DSTC2-sub baseline 0.9850* 0.0328
+DA 0.9605(↓2.5%) 0.9460(↑2784.1%)

Multi-WoZ-sub baseline 0.9297* 0.3607
+DA 0.9032(↓2.85%) 0.8847(↑145.27%)

Table 3. F1 scores of our data augmentation(DA) approach on three datasets’ test sets
and synthetic test sets. * means in which all values in test set are visible to the model.
Hyper parameters choice are as follows: bag size sbag = 1600 for WoZ-sub, sbag = 3200
for DSTC2-sub and sbag = 8000 for Multi-WoZ-sub, training epochs at each sampling
round r = 10, the patience of early stop mechanism p = 5.

We can observe from Table 3, with our data augmentation algorithm, the
performance of the baseline model on unseen values (synthetic test set) improves
significantly, and the performance on seen values (original test set) decrease
slightly. We use only one slot in the first two datasets, to further demonstrate
the effectiveness of our algorithm on a large-scale data set, we test our algorithm
on Multi-WoZ-sub dataset that contains 13 slots, results show that it performs
well when there are multiple slots.

5.3 Hyperparametric Analysis

Besides the patience p of the early-stop mechanism, there are two key hyper-
parameters in the proposed algorithm, the bag size sbag at each sampling round
and the epochs r trained on Ubag. We analyzed the impact of these two param-
eters on the algorithm, and the results are shown in Figure 3.

From Figure 3 (left) we can find that given a sbag, a larger r gains a higher per-
formance, but with the sbag increased, the performance gains decreases rapidly.
On the other hand, for a certain r, a larger sbag brings a higher performance

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


12 X.H. Song et al.

2000 3000 4000 5000 6000 7000 8000
sbag

0.5

0.6

0.7

0.8

0.9

1.0

F1
sc

or
e@

T d
st

c2

r=1
r=2
r=3
r=4
r=5

2000 3000 4000 5000 6000 7000 8000
sbag

0

500

1000

1500

2000

2500

Tr
ai

ni
ng

 ti
m

e

r=1
r=2
r=3
r=4
r=5

Fig. 3. Performance on T ′
dstc2 of our algorithm. The left part presents the effect of

r and sbag on the generalization ability. The right part provides the training time of
different r and sbag. We use patience p = 5 to produce the results shown in Figure.

but it also decreases rapidly with the increasing r. Our goal is to get the best
generalization performance with the minimal cost, Figure 3 (right) presents the
training time of different r and sbag, Although the time spent on training in-
creases with both r and sbag, we can conclude that a smaller sbag with a larger
r is a suitable choice, which can reach the satisfactory results with lower cost.

6 Conclusion and Future Work

This paper focuses on improving the generalization capability of copy-mechanism
based models for DST task, especially for the slots that have non-enumerable
values. Our conclusions include: Firstly, the copy-mechanism model is easy to
over-fit on visible slot values, especially when there are few values, which is
the crucial reason for unsatisfactory generalization performance. Secondly, the
model’s generalization improves dramatically with the increasing diversity of slot
values. Thirdly, data augmentation for copy-mechanism models using random
strings is feasible and effective in improving the generalization of these models.
The interactive data augmentation approach proposed based on these observa-
tions shows its effectiveness on three widely used datasets.

In future work, we can study the effect of character-level features of the slot
values since the values for the same slot often share somehow similar spelling. In
addition, the effect of the diversity of contexts remains unexplored, which may
help reduce computational cost further.

7 Acknowledgements

This research is supported in part by the National Key Research and Develop-
ment Program of China under Grant 2018YFC0806900 and 2017YFB1010000.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


Data Augmentation for Copy-Mechanism in Dialogue State Tracking 13

References

1. Budzianowski, P., Wen, T.H., Tseng, B.H., Casanueva, I., Ultes, S., Ramadan,
O., Gašić, M.: Multiwoz-a large-scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. arXiv preprint arXiv:1810.00278 (2018)

2. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading wikipedia to answer open-
domain questions. In: Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). pp. 1870–1879 (2017)

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

4. Gao, S., Sethi, A., Agarwal, S., Chung, T., Hakkani-Tur, D.: Dialog state tracking:
A neural reading comprehension approach. In: Proceedings of the 20th Annual
SIGdial Meeting on Discourse and Dialogue. pp. 264–273 (2019)

5. Henderson, M., Thomson, B., Williams, J.D.: The second dialog state tracking
challenge. In: Proceedings of the 15th Annual Meeting of the Special Interest Group
on Discourse and Dialogue (SIGDIAL). pp. 263–272 (2014)

6. Henderson, M., Thomson, B., Williams, J.D.: The third dialog state tracking chal-
lenge. In: 2014 IEEE Spoken Language Technology Workshop (SLT). pp. 324–329.
IEEE (2014)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Mrkšić, N., Séaghdha, D.O., Wen, T.H., Thomson, B., Young, S.: Neural be-
lief tracker: Data-driven dialogue state tracking. arXiv preprint arXiv:1606.03777
(2016)

10. Ramadan, O., Budzianowski, P., Gašić, M.: Large-scale multi-domain belief track-
ing with knowledge sharing. arXiv preprint arXiv:1807.06517 (2018)

11. Rastogi, A., Hakkani-Tür, D., Heck, L.: Scalable multi-domain dialogue state track-
ing. In: 2017 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU). pp. 561–568. IEEE (2017)

12. Ren, L., Ni, J., McAuley, J.: Scalable and accurate dialogue state tracking
via hierarchical sequence generation. In: Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
pp. 1876–1885. Association for Computational Linguistics, Hong Kong, China
(Nov 2019). https://doi.org/10.18653/v1/D19-1196, https://www.aclweb.org/
anthology/D19-1196

13. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15, 1929–1958 (2014), http://jmlr.org/papers/v15/
srivastava14a.html

14. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems. pp. 2692–2700 (2015)

15. Wen, T.H., Vandyke, D., Mrksic, N., Gasic, M., Rojas-Barahona, L.M., Su, P.H.,
Ultes, S., Young, S.: A network-based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562 (2016)

16. Williams, J., Raux, A., Ramachandran, D., Black, A.: The dialog state tracking
challenge. In: Proceedings of the SIGDIAL 2013 Conference. pp. 404–413 (2013)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59


14 X.H. Song et al.

17. Wu, C.S., Madotto, A., Hosseini-Asl, E., Xiong, C., Socher, R., Fung, P.: Transfer-
able multi-domain state generator for task-oriented dialogue systems. In: Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics (2019)

18. Xu, P., Hu, Q.: An end-to-end approach for handling unknown slot values in dia-
logue state tracking. arXiv preprint arXiv:1805.01555 (2018)

19. Young, S., Gašić, M., Thomson, B., Williams, J.D.: Pomdp-based statistical spoken
dialog systems: A review. Proceedings of the IEEE 101(5), 1160–1179 (2013)

20. Zhong, V., Xiong, C., Socher, R.: Global-locally self-attentive encoder for dialogue
state tracking. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). pp. 1458–1467 (2018)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_59

https://dx.doi.org/10.1007/978-3-030-77961-0_59

