A Model for Predicting *n*-gram Frequency Distribution in Large *Corpora*

Joaquim F. Silva^{1[0000-0002-5223-1180]} and Jose C. Cunha^{1[0000-0001-6729-8348]}

NOVA Laboratory for Computer Science and Informatics {jfs,jcc}@fct.unl.pt**

Abstract. The statistical extraction of multiwords (*n*-grams) from natural language *corpora* is challenged by computationally heavy searching and indexing, which can be improved by low error prediction of the *n*gram frequency distributions. For different *n*-gram sizes $(n \ge 1)$, we model the sizes of groups of equal-frequency *n*-grams, for the low frequencies, $k = 1, 2, \ldots$, by predicting the influence of the *corpus* size upon the Zipf's law exponent and the *n*-gram group size. The average relative errors of the model predictions, from 1-grams up to 6-grams, are near 4%, for English and French *corpora* from 62 Million to 8.6 Billion words.

Keywords: n-gram frequency distribution · large corpora.

1 Introduction

Relevant Expressions (RE) are semantically meaningful *n*-grams $(n \ge 1)$, as "oceanography", "oil crisis", useful in document classification [15] and *n*-gram applications. However, most word sequences are not relevant in a *corpus*. Statistical RE extraction from texts, e.g [18, 7], measures the cohesion among the *n*-grams within each distinct multiword; its performance benefits from predicting the *n*-gram frequency distributions. Low frequency *n*-grams are significant proportions of the number of distinct *n*-grams in a text, as well as of the RE. Assuming, for language *L* and *n*-gram size *n*, a finite vocabulary V(L, n) in each temporal epoch [17, 9, 16], we model the influence of the corpus size upon the sizes W(k) of equal-frequency (k) *n*-gram groups, for $n \ge 1$, especially for low frequencies. We present results (and compare to a Poisson-based model), for English and French Wikipedia *corpora* (up to 8.6 Gw), for $1 \le n \le 6$. We discuss background, the model, results and conclusions.

2 Background

Zipf's law [20] is a good approximation to word frequency distribution, deviating from real data in high and low frequencies. More accurate approximations pose open issues [12, 19, 2, 1, 11, 8, 6, 13, 14]. Low frequency words are often ignored,

^{**} Acknowledgements to FCT MCTES, NOVA LINCS UIDB/04516/2020 and Carlos Gonçalves.

as well as multiwords. Most studies use truncated *corpora* data [5,8], with some exceptions [17]. In models as [2,3] the probability of a word occurring k times is given by a power law $k^{-\gamma}$ corrected by the *corpus* size influence, but they do not consider other n-gram sizes, unlike e.g. [16].

3 The Model

Successive model refinements are shown: $W_z(k)$, from Zipf's Law; $W_{\alpha_d}(k,C)$ for *corpus* size dependence; and $W^*(k,C)$ for scaling adjustments.

3.1 $W_z(k)$: The Size of the Frequency Levels from Zipf's Law

By Zipf's Law [20], the number of occurrences of the r^{th} most frequent word in a *corpus* with a number of distinct words given by D, is

$$f(r) = f(1) \cdot r^{-\alpha} \quad , \tag{1}$$

 α is a constant ~ 1; r is the word rank $(1 \leq r \leq D)$. (1) also applies to n-grams of sizes n > 1, with α dependent on n (for simplicity α replaces $\alpha(n)$). The relative frequency of the most frequent n-gram (r = 1) for each n shows small fluctuations around a value, taken as an approximation to its occurrence probability, p_1 . The absolute frequency $f(1) \approx p_1 \cdot C$. So, $\ln(f(r))$ would decrease linearly with slope α as $\ln(r)$ increases. Real distributions deviate from straight lines and show, for their higher ranks, groups of equal-frequency k, with its lowest (r_{l_k}) and highest (r_{h_k}) n-gram ranks: $f(r_{l_k}) = f(r_{h_k}) = k$; $W_z(k) = r_{h_k} - r_{l_k} + 1$. The model assumes a minimum observed frequency of 1: $f(r_{l_1}) = f(r_{h_1}) = 1$; $r_{h_1} = D$; and only applies to the higher ranks / lower frequencies: where adjacent levels $(r_{l_k} = r_{h_{k+1}} + 1)$ have consecutive integer frequencies: $f(r_{h_{k+1}}) = f(r_{h_k}) + 1$. Then, (2) is obtained, with constant α_z .

$$W_z(k) = \left(\frac{1}{D^{\alpha_z}} + \frac{k-1}{f(1)}\right)^{-\frac{1}{\alpha_z}} - \left(\frac{1}{D^{\alpha_z}} + \frac{k}{f(1)}\right)^{-\frac{1}{\alpha_z}} \quad . \tag{2}$$

$$D(C; L, n) = \frac{V(L, n)}{1 + (K_2 \cdot C)^{-K_1}} .$$
(3)

For predicting D in a *corpus* of size C, we use (3), following [16] with good agreement with real *corpora*. For language L and n-gram size n, V(L,n) is the finite vocabulary size; K_1 , K_2 are positive constants. If V is assumed infinite, (3) equals Heap's law.

3.2 An Analytical Model for the Dependence of α on Corpus Size

Empirically, α_z is shown to depend on *corpus* size. So, we consider α in (1) as a function $\alpha(C, r)$ of the *corpus* size and the *n*-gram rank *r*:

$$\alpha(C, r) = \frac{\ln(f_c(1)) - \ln(f_c(r))}{\ln(r)} , \qquad (4)$$

where $1 \leq r \leq D$, and $f_c(1)$ and $f_c(r)$ are the frequencies, respectively, of the most frequent *n*-gram and the rth ranked *n*-gram, in a *corpus* of size *C*. In (2) α is obtained, for each *corpus* size, by fitting $W_z(1)$ to the empirical level size $W_{obs}(1)$ (for k = 1). For that level, $r_{h_1} = D(C, L, n)$ (denoted *D* or D_c), and $f_c(D_c) = 1$, so $\ln(f_c(r)) = 0$ in (4) for $r = D_c$. Let $\alpha(C, D_c)$ (denoted $\alpha_d(C)$), be the α value at rank *D*. Let C_1 be the size of a reference *corpus*:

$$\alpha_d(C) - \alpha_d(C_1) = \frac{\ln(f_c(1))}{\ln(D_c)} - Ref_{c_1} \quad .$$
(5)

The 2nd term in the right-hand side of (5) (denoted Ref_{c_1}) becomes fixed. It only depends on $f_c(1) = C_1 \cdot p_1$ (p_1 is the occurrence probability of the most frequent *n*-gram) and D_{c_1} from (3). Using Table 1 (Section 4.2) and tuning $\alpha_d(C_1)$ by fitting, for C_1 , the $W_z(1)$ from (2) to the observed $W_{obs}(1)$, we find $\alpha_d(C_1)$ and D_{c_1} . Given $\alpha_d(C_1)$ and Ref_{c_1} , then (5) predicts $\alpha_d(C)$ for a size *C* corpus, and $W_z(k)$ (2) leads to $W_{\alpha_d}(k,C)$ (6), where $\alpha_d(C)$ replaces α_z :

$$W_{\alpha_d}(k,C) = \left(\frac{1}{D_c^{\alpha_d(C)}} + \frac{k-1}{f_c(1)}\right)^{-\frac{1}{\alpha_d(C)}} - \left(\frac{1}{D_c^{\alpha_d(C)}} + \frac{k}{f_c(1)}\right)^{-\frac{1}{\alpha_d(C)}} \quad . \tag{6}$$

3.3 $W^*(k, C)$: The Dependence of Level Size on Corpus Size

The frequency level size depends on frequency k and *corpus* size C. Firstly, for a *corpus* size C, α_z in (2) is tuned to best fitting $W_z(1)$ to $W_{obs}(1)$. Except for the $W_{obs}(k)$ fluctuations (Fig. 1a), the deviation, closely proportional to $\ln(k)$, between $W_{obs}(k)$ and $W_z(k)$, suggests the improvements due to (7) (Fig. 1a).

$$W_{adjusted}(k) = W_z(k) \cdot k^{\beta} \quad . \tag{7}$$

 β is a constant for each n, obtained from the best fit of W(k) to $W_{obs}(k)$, for a given *corpus*. Secondly, for different *corpus* sizes, Fig. 1b shows $W_{obs}(k)$ curves as a function of k, seeming parallel, but a detailed analysis shows otherwise. If, for each $\ln(W_{obs}(k, C^*))$ for the three smaller *corpora* C^* , an offset equal to $\ln(W_{obs}(1, C)) - \ln(W_{obs}(1, C^*))$ is added (C = 8.6 Gw being the largest *corpus*), the resulting curves (omitted due to lack of space) do not coincide, as they should if they were parallel in Fig. 1b. The gap between the curves is proportional to $\ln(k)$. And, for each $\ln(k)$ value, the distance in $\ln(W_{obs}(k))$ for *corpora* of sizes C and C_1 is proportional to $\log_2(C/C_1)$. The distance between the $\ln(W(k))$ curves of any two *corpora* C and C_1 is approximated by (8), with δ constant for each n. Joining (6), (7), (8) leads to the final model, $W^*(k, C)$, (9):

$$\Delta = \delta \cdot \ln(\frac{C}{C_1}) \cdot \ln(k) \tag{8}$$

$$W^*(k,C) = W_{\alpha_d}(k,C) \cdot k^{\beta + \delta \cdot \ln(\frac{C}{C_1})} \quad . \tag{9}$$

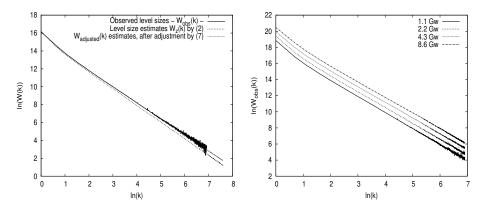


Fig. 1: a) 1-gram equal-frequency level size W(k) vs k (log-log scale) – observed and estimates by (2) and (7) from a 1.1 Gw English corpus; b) Observed 3-gram level size values, $W_{obs}(k)$ vs k (log-log scale), for different English corpora sizes.

4 Results and Discussion

4.1 The Poisson-Zipf Model

In the $W_P(k, C)$ model of [17] given by (10), an *n*-gram ranked *r* occurs, in a size *C* corpus, a number of times following Poisson distribution [10] with $\lambda_r = f(r)$ by Zipf's Law. $W(0) = W_P(0, C)$ is the estimated number of unseen *n*-grams in the corpus. D = V - W(0), for *n*-gram vocabulary size *V*.

$$W_{P}(k,C) = \sum_{r=1}^{r=V} \frac{(p_{1} \cdot C \cdot r^{-\alpha})^{k} \cdot e^{-p_{1} \cdot C \cdot r^{-\alpha}}}{k!} \approx \int_{1}^{V} \frac{(p_{1} \cdot C \cdot r^{-\alpha})^{k} \cdot e^{-p_{1} \cdot C \cdot r^{-\alpha}}}{k!} dr$$
$$\approx \frac{(p_{1} \cdot C)^{1/\alpha}}{\alpha \cdot k!} \cdot \left[\Gamma(k - \frac{1}{\alpha}, \frac{p_{1} \cdot C}{V^{\alpha}}) - \Gamma(k - \frac{1}{\alpha}, p_{1} \cdot C) \right]$$
(10)

4.2 Comparison of Results

Complete *corpora* were built from documents randomly extracted from English and French Wikipedia. For evaluating size dependence, they were doubled successively (Table 2). A space was added between the words and each of the following characters: $\{!, ?, :, ;, ,, (,), [,], <, >, "\}$. All inflected word forms were kept.

The Model Calculations. (I) To calculate D(C; L, n) in (3), parameters K_1 , K_2 and V(L, n) were found for each language L and n-gram size n (Table 1, also showing the β and δ values used in (9)). The V(L, n) value is an estimate of the vocabulary size, such that further increasing it, does not significantly reduce the relative error $((E - O)/O) \cdot 100\%$, between an estimated value (E) and the corresponding observed value (O). Pairs (K_1, K_2) were found leading

to the lowest possible relative error, for a selected pair of *corpora* with sizes close to the lowest and highest *corpora* sizes in the considered range for each language. (II) To evaluate the relative errors, (9) was applied with k such that the observed level sizes of consecutive frequency levels k and k+1 are monotonic decreasing, $W_{obs}(k, C) > W_{obs}(k+1, C)$. This avoids the non-monotony regions of the observed $\ln(W(k))$ curve (Fig. 1a). We considered a basic set of k values, $K = \{1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128\}$, constrained (to ensure $\ln(W(k))$) monotony) depending on the *corpus* size C: for C < 250 Mw, we used $k \le 16$; for $C < 1 \,\mathrm{Gw}, k \leq 32$; the full K set was used only for $C > 4 \,\mathrm{Gw}$. We selected corpora of sizes (C_1) 1.1 Gw (English) and 808 Mw (French). (III) The $\alpha_d(C_1)$ values for *n*-gram sizes from 1 to 6 are: (English) 1.1595, 1.02029, 0.88825, 0.82532, 0.8117, 0.8027; (French) 1.158825, 1.0203, 0.86605, 0.84275, 0.80818, 0.7569. The empirical values of p_1 for n-gram sizes from 1 to 6: (English) 0.06704, 0.03250, 0.0062557, 0.0023395, 0.0017908, 0.0014424; (French) 0.07818, 0.037976, 0.004685, 0.0036897, 0.001971, 0.00072944. (IV) To run $W_P(K, C), \alpha$ values leading to the lowest relative errors, are, for *n*-gram sizes from 1 to 6: (English) 1.17, 1.02, 0.891, 0.827, 0.814, 0.812; (French) 1.156, 1.01, 0.884, 0.842, 0.806, 0.759.

Table 1: Parameter values K_1 , K_2 and vocabulary sizes (V(L, n)) to be used in D(C; L, n), (3), and β and δ to $W^*(k, C)$, (9).

English										
	1-grams	2-grams	3-grams	4-grams	5-grams	6-grams				
K_1	0.838	0.861	-0.885	0.924	0.938	0.955				
K_2	$3.61\mathrm{e}{-11}$	$5.1\mathrm{e}{-11}$	$2.66\mathrm{e}{-11}$	$1.78\mathrm{e}{-11}$	$4.29\mathrm{e}{-12}$	$6.5\mathrm{e}{-13}$				
V	$2.45\mathrm{e}{+8}$	$9.9\mathrm{e}{+8}$	$4.74\mathrm{e}{+9}$	$1.31\mathrm{e}{+10}$	$6.83\mathrm{e}{+10}$	$5.29\mathrm{e}{+11}$				
$\boldsymbol{\beta}$	0.044	0.113	0.129	0.135	0.122	0.082				
δ	0.0039	0.0118	0.0310	0.0353	0.0339	0.0331				
French										
	1-grams	2-grams	3-grams	4-grams	5-grams	6-grams				
K_1	0.809	0.794	0.838	0.867	0.903	0.907				
K_2	$4.501\mathrm{e}{-11}$	$3.801\mathrm{e}{-11}$	$3.901\mathrm{e}{-11}$	$2.501\mathrm{e}{-11}$	$2.201\mathrm{e}{-11}$	$2.01\mathrm{e}{-12}$				
V	$2.35\mathrm{e}{+8}$	$1.095\mathrm{e}{+9}$	$3.1\mathrm{e}{+9}$	$8.18\mathrm{e}{+9}$	$1.41\mathrm{e}{+10}$	$1.45\mathrm{e}{+11}$				
$oldsymbol{eta}$	0.0812	0.120	0.175	0.140	0.160	0.234				
δ	0.0061	0.0190	0.0354	0.0491	0.0469	0.0384				

Table 2 presents the relative errors for the predictions of the frequency level sizes. For each *n*-gram size, the left column refers to $W^*(k, C)$ and the right one to $W_P(k, C)$. For each pair (corpus size, *n*-gram size), it shows the average relative error for the K set used: $AvgErr(K) = \frac{1}{\|K\|} \sum_{k \in K} Err(k)$, where $Err(k) = |\frac{W(k,C) - W_{obs}(k,C)}{W_{obs}(k,C)}|$. The average relative errors for $W^*(k, C)$ are much lower than for $W_P(k, C)$, which assumes an ideal Zipf's Law. The line **Avg** shows the average value of each column over the full range of corpora sizes, with errors of the same magnitude across the range of *n*-gram sizes for $W^*(k, C)$, but having significant variations in the **Avg** values for $W_P(k, C)$. The global relative error

is the average of the **Avg** values over the range of *n*-gram sizes, being around 4% for $W^*(k, C)$. Thus, $W^*(k, C)$ curves (omitted due to lack of space) closely follow the $W_{obs}(k, C)$ curves forms of Fig. 1.

Table 2: Average relative error (%) for the predictions of the *n*-gram frequency level sizes obtained by $W^*(k, C)$, (9), (left col.), and $W_P(k, C)$, (10), (right col.). Each cell in the table gives an average relative error over a subset of k values within the set K considered for that cell, as described in the text.

			Eng	glish					
Corpus	1-grams	2-grams	3-grams	4-grams	5-grams	6-grams			
$63\mathrm{Mw}$	$5.1 \ 29.9$	$7.5 \ 42.0$	$3.1 \ 50.1$	$4.4 \ 53.7$	$6.3 \ 54.5$	5.8 64.7			
$128\mathrm{Mw}$	$2.2 \ \ 23.7$	$2.8 \ \ 32.4$	$4.4 \ 42.5$	$6.6 \ 45.9$	$5.7 \ 49.5$	7.1 60.3			
$255\mathrm{Mw}$	$3.1 \ 22.1$	$2.0 \ 28.4$	$2.6 \ 36.3$	$5.9 \ 37.6$	$3.7 \ 40.0$	5.4 49.8			
$509\mathrm{Mw}$	$4.9 \ 15.8$	$4.7 \ 22.2$	$3.7 \ 29.4$	$4.6 \ \ 30.1$	$4.7 \ 31.9$	6.6 40.3			
$1.1\mathrm{Gw}$	$3.1 \ 13.3$	2.6 19.8	$3.4 \ 26.4$	$3.9 \ 26.8$	$5.4 \ 27.9$	5.2 32.9			
$2.2\mathrm{Gw}$	5.1 9.5	$6.2 \ 23.2$	$3.9 \ 26.7$	$3.3 \ 28.5$	$4.9 \ \ 31.5$	3.7 28.7			
$4.3\mathrm{Gw}$	$2.8 \ 10.7$	$2.7 \ 28.5$	$2.3 \ 34.8$	$3.1 \ 37.4$	$4.2 \ 39.3$	4.8 31.4			
$8.6\mathrm{Gw}$	$6.1 \ 13.4$	6.7 37.6	$4.4 \ 47.2$	$6.0 \ 51.7$	$5.9 \ 52.4$	6.5 40.4			
\mathbf{Avg}	4.1 17.3	4.4 29.3	3.5 36.7	4.7 39.0	5.1 40.9	5.6 43.6			
	French								
Corpus	1-grams	2-grams	3-grams	4-grams	5-grams	6-grams			
$108\mathrm{Mw}$	$2.8 \ 22.6$	$2.4 \ \ 30.9$	$2.6 \ 54.9$	$4.2 \ 40.8$	$4.9 \ 42.3$	$5.5 \ 65.4$			
$201\mathrm{Mw}$	$1.5 \ 18.6$	$2.0 \ 25.7$	$2.1 \ 49.8$	$2.9 \ \ 33.0$	$3.2 \ \ 33.9$	3.5 57.7			
$404\mathrm{Mw}$	$2.7 \ 15.5$	$2.9 \ \ 23.5$	$4.0 \ 44.4$	$4.6 \ 28.4$	$4.9 \ 29.4$	5.0 51.6			
$808\mathrm{Mw}$	$2.9 \ 12.6$	$3.0\ 26.7$	$3.2 \ 34.8$	$3.4 \ 23.6$	$3.6 \ 24.3$	3.7 43.8			
$1.61\mathrm{Gw}$	$4.6 \ 16.9$	$3.5 \ 37.2$	$3.0 \ 29.0$	$2.9 \ 28.7$	$3.3 \ 29.6$	$3.4 \ 41.9$			
$3.2\mathrm{Gw}$	$4.0 \ 19.2$	$3.2 \ 48.6$	$4.2 \ 22.8$	$5.3 \ 39.5$	$3.3 \ 41.1$	6.6 49.7			
Avg	3.1 17.6	2.8 32.1	3.7 39.3	3.9 32.3	3.9 33.4	4.6 51.7			

5 Conclusions

Estimating *n*-gram frequency distributions is useful in statistical-based *n*-gram applications. The proposed model estimates the sizes W(k, C) of equal-frequency (k) *n*-gram groups in a *corpus* of size *C*, for the low frequency *n*-grams. It applies uniformly to different *n*-gram sizes $n \ge 1$ and languages, assuming a finite language *n*-gram vocabulary. It models the dependences of Zipf's Law exponent and W(k, C) on *C*, agreeing well with *n*-gram frequency data from unigrams up to hexagrams, from real un-truncated English and French *corpora* with million to billion words. Larger *corpora* evaluation is planned.

References

1. Ausloos, M., Cerqueti, R.: A universal rank-size law. PLoS ONE 11(11) (2016)

A Model for Predicting *n*-gram Frequency Distribution in Large Corpora

- Balasubrahmanyan, V.K., Naranan, S.: Algorithmic information, complexity and zipf's law. Glottometrics 4, 1–26 (2002)
- 3. Bernhardsson, S., da Rocha, L.E.C., Minnhagen, P.: The meta book and sizedependent properties of written language. New Journal of Physics **11**(12) (2009)
- Booth, A.D.: A law of occurrences for words of low frequency. "Inform. & Control" 10(4), 386–393 (1967)
- Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J.: Large language models in machine translation. In: Joint Conf. on Empirical Methods in NLP and Computational Natural Language Learning. pp. 858–867. ACL (2007)
- Cancho, R.F., Solé, R.V.: Two regimes in the frequency of words and the origins of complex lexicons: Zipf's law revisited*. Journal of Quantitative Linguistics 8(3), 165–173 (2001)
- Dias, G.: Multiword unit hybrid extraction. In: ACL Workshop on Multiword Expressions, Vol. 18. pp. 41–48. ACL (2003)
- Gerlach, M., Altmann, E.G.: Stochastic model for the vocabulary growth in natural languages. Phys. Rev. X 3, 021006 (May 2013)
- Goncalves, C., Silva, J., Cunha, J.C.: n-gram cache performance in statistical extraction of relevant terms in large corpora. In: et al., J.R. (ed.) Proceedings of the ICCS 2019. LNCS, vol. 11537, pp. 75–88. ICCS, Springer, Algarve, Portugal (2019)
- 10. Haight, F.A.: Handbook of the Poisson Distribution. John Wiley & Sons, New York (1967)
- Lü, L., Zhang, Z.K., Zhou, T.: Deviation of zipf's and heaps' laws in human languages with limited dictionary sizes. Scientific Reports 3(1082) (2013)
- 12. Mandelbrot, B.: On the theory of word frequencies and on related markovian models of discourse. In: Struct. of Language and its Mathematical Aspects (1953)
- Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Math. 1(2), 226–251 (2003)
- 14. Piantadosi, S.T.: Zipf's word frequency law in natural language: A critical review and future directions. Psychonomic Bulletin & Review **21**, 1112–1130 (2014)
- Silva, J., Mexia, J., Coelho, A., Lopes, G.: Document clustering and cluster topic extraction in multilingual corpora. In: Proceedings 2001 IEEE International Conference on Data Mining. pp. 513–520 (2001)
- 16. Silva, J.F., Cunha, J.C.: An empirical model for n-gram frequency distribution in large corpora. In: Lauw, H.W., Wong, R.C.W., Ntoulas, A., Lim, E.P., Ng, S.K., Pan, S.J. (eds.) Advances in Knowledge Discovery and Data Mining, 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11-14, 2020, Proceedings, Part II. Springer International Publishing (2020)
- 17. Silva, J.F., Gonçalves, C., Cunha, J.C.: A theoretical model for n-gram distribution in big data corpora. In: 2016 IEEE Intl. Conf. on Big Data. pp. 134–141 (2016)
- Silva, J.F., Dias, G., Guilloré, S., Pereira Lopes, J.G.: Using localmaxs algorithm for the extraction of contiguous and non-contiguous multiword lexical units. In: Barahona, P., Alferes, J.J. (eds.) Progress in Artificial Intelligence. pp. 113–132. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)
- 19. Simon, H.: On a class of skew distribution functions. Biometrika $42(3/4),\,425-\!\!\!-440$ (1955)
- 20. Zipf, G.K.: Human Behavior and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA (1949)