
Fast Click-Through Rate Estimation
using Data Aggregates

Roman Wiatr1, Renata G. Słota1, and Jacek Kitowski1,2

1 AGH University of Science and Technology, Faculty of Computer Science, Electronics
and Telecommunication, Institute of Computer Science,

Mickiewicza 30, 30-059 Krakow, Poland
2 AGH University of Science and Technology, Academic Computer Centre

CYFRONET AGH,
Nawojki 11, 30-950 Krakow, Poland

rwiatr@gmail.com, {rena,kito}@agh.edu.pl

Abstract. Click-Through Rate estimation is a crucial prediction task in
Real-Time Bidding environments prevalent in display advertising. The
estimation provides information on how to trade user visits in various
systems. Logistic Regression is a popular choice as the model for this task.
Due to the amount, dimensionality and sparsity of data, it is challenging to
train and evaluate the model. One of the techniques to reduce the training
and evaluation cost is dimensionality reduction. In this work, we present
Aggregate Encoding, a technique for dimensionality reduction using data
aggregates. Our approach is to build aggregate-based estimators and
use them as an ensemble of models weighted by logistic regression. The
novelty of our work is the separation of feature values according to the
value frequency, to better utilise regularization. For our experiments,
we use the iPinYou data set, but this approach is universal and can be
applied to other problems requiring dimensionality reduction of sparse
categorical data.

Keywords: Real-Time Bidding, RTB · Click-Through Rate, CTR · dimension-
ality reduction · logistic regression

1 Introduction

Online advertising is a ubiquitous form of advertisement that uses the internet
to display ads to the users. Y. Yuan et al. [9] define Real-Time Bidding (RTB)
as a business model for automated online advertising with transaction time
constraint between 10 and 100 milliseconds. There are three key players in
the RTB setup: publishers - offering the internet traffic, generated by sites or
applications, aggregated on Supply Side Platform (SSP); advertisers - running
campaigns configured on a Demand Side Platform (DSP), offering ads to display
on sites or applications provided by the SSPs; Ad Exchanges (AdEx) - platforms
for facilitating the trade between multiple SSPs and DSPs. When a user visits a
site with a display advertisement placement, the visit is being offered on AdEx,

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

2 R. Wiatr et al.

where DSP can bid on behalf of the advertiser for that particular visit (Fig. 1).
The winning advertiser displays the advertisement to the website visitor. On
the DSP side, the advertiser configures one or more campaigns. Each campaign
consists of preferred targets like age, country, operating system etc. and creatives
i.e. images or videos.

Several event types can be tracked in the RTB environment. Each display
of the advertisement generates an impression event. This event tells nothing
about the user real interest in the advertisement. The next event is a click event
where the user clicks on the displayed advertisement. The relation of clicks to
impressions is called Click Through Rate (CTR). As reported in [1] CTR can be
lower than 1% making the data very unbalanced. The final event is a conversion
event. It is generated when the user takes further actions (like filling out a form or
purchasing a product). The relation of conversions to clicks is called Conversion
Rate (CVR). Typically conversions are very rare and can occur hours after the
click.

Ad ExchangeSite or
Application Campaign

Ad ExchangeSite or
Application Campaign

DSPSSP

Fig. 1. RTB environment

User Site
RTB

environment
Tracking

tool
site visit

content

ad request

ads

impression recorded

click recorded

redirect to landing page

ad displayed

ad clicked

Fig. 2. Tracking events in RTB environ-
ment.

RTB environments are highly automated. Because of the number of trans-
actions and time constraints, each transaction has to be made without human
interaction. This forces every entity in the chain to monitor the state of the traded
traffic. Fig. 2 shows a typical event chain for sites and how a tracking tool may be
used by an advertiser to monitor the performance of the displayed ads. When a
user visits a site that has a connection to an RTB environment (in this case SSP),
a script is loaded that makes an ad request to the RTB environment. An offer is
made on an AdEx and the winners are enabled to present their advertisements to
the user. On advertisement load time an impression event is generated, indicating
an advertisement was presented to the user. A subsequent click and conversion
event can be generated by the user actions. All of these events are tracked using a
tracking tool. A similar tool may be used on SSP, AdEx and DSP sides depending

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

Fast Click-Through Rate Estimation using Data Aggregates 3

on the business model. The traffic buyer is charged by click or by impression.
Since the amount of ingested data is huge [1] it is crucial to store the data as an
aggregated time series [8] for manual and automated decision making. Raw data
are also stored for audit purposes and model building but tend to have a shorter
lifespan due to space requirements.

Each time an ad request is done to the RTB environment, an AdEx makes
an offer to multiple DSPs (or other AdEx), meaning a single site visit may
trigger several DSP queries. Each time a DSP gets an offer, it has to evaluate
the CTR/CVR model to decide on how to bid. The DSP does so by evaluating
hand written rules as well as various models (fig. 3) in real time. The amount of
bid requests combined with the volatility of traffic and campaigns [1] means the
model has to be efficient in both training and evaluation.

In this work, we show how to exploit data aggregates to reduce resources and
time required to train and execute the model. We evaluate the model performance
on well-known iPinYou data set in a CTR prediction task. The bidding process is
complicated and is beyond the scope of this paper. The process can be optimized
by several components as stated in [2].

Section 2 presents the state of the art on which this work is based on. Section
3 describes our approach and proposed improvements. In Section 4 we compare
three types of encodings: Dummy Encoding, Hashing Trick as the baseline
and Aggregate Encoding as the proposed improvement. Section 5 describes the
experimental setup using iPinYou data set and contains the results of experiments
comparing Hashing Trick and Aggregate Encoding. In Section 6 we present the
conclusions and proposals for future work.

2 State of the Art

A detail statistical analysis of the iPinYou data set as well as a benchmark for
predicting CTR are provided by the authors in [11]. The iPinYou data set is
available at [10].

In [4] authors present logistic regression as being widely referred to as the
state-of-the-art and the most widely used algorithm for CTR prediction. They
compare Area under the Receiver Operating Characteristic curve (AuROC) of
several methods previously presented in the literature, including [11] on the
iPinYou data set. Furthermore, the authors present the impact of certain features,
feature generalization and training process parameters. The authors show the high
importance of feature generalization and conclude that L2-regularized logistic
regression with cross-entropy loss function is the state-of-the-art in RTB CTR
estimation. The authors do not consider dimensionality reduction for sparse
data that can be useful when feature conjunctions are introduced, leading to an
exponential growth of feature vector size.

A scalable and easy to implement framework based on logistic regression
is proposed in [1]. The model inputs are categorical variables and categorical
variable conjunctions. The dimensionality problem is addressed by the use of
hashing trick [6]. Authors present arguments for training one model for multiple

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

4 R. Wiatr et al.

campaigns (multi-task learning) instead of separate models for each campaign.
Due to class imbalance (positive class is lower than 1%) and huge amounts of
data (9 billion events daily), negative class sampling is proposed to reduce the
computational cost. Multiple dimensionality reduction techniques are considered
in this work and Hashing Trick is considered to be the best one. The authors
present practical implications of selecting such a model and propose a feature
selection algorithm based on conditional mutual information. The algorithm
allows assigning a score to features without retraining the model with each
feature. The algorithm is used to select the best conjunction feature and only
then the model is retrained. The authors show how fast the model gets outdated
and they explain the degradation with the influx of new advertisements. Finally,
the authors present an algorithm for large scale model training. This work is a
comprehensive guide to build a CTR prediction system and as such it does not
attempt to focus on novel techniques for feature encoding.

In [3] the authors focus on predicting Conversion Rate (CVR), a problem
similar to CTR prediction with the difference that conversions are much rarer
than clicks. The authors model three separate data hierarchies for user, advertiser
and publisher. They build a conversion probability estimator for each of these
hierarchies and combine the output of these estimators using logistic regression.
They reduce the input of the logistic regression to three dimensions which are
the success probability based on these estimators. This technique addresses data
sparsity but does not address the problem of overfitting due to modelling rare
and frequent features together.

An approach focusing on feature engineering is proposed in [5]. The authors
present a novel Deep & Cross Network. The architecture consists of two modules:
a deep neural network modelling feature interact and a novel cross-network that
is better suited to learn cross product of features. This model achieves the state
of the art performance and reduction in parameters compared to a deep neural
network. Due to input sparsity, a learnable embedding layer is used and no other
dimensionality reduction techniques are considered.

3 Research Goals and Approach

Our research focus on CTR prediction, which is a part of a DSP pipeline [2]
described by Fig. 3. In our previous work [8] we point out that the marketer
has access to aggregated impressions, clicks and conversions via a time series
interface. In this work, we show how to reuse the aggregated data stored in a
fast database to speed up the training process while preserving the quality of the
produced models.

Our approach is to build aggregate-based estimators and use them as an
ensemble of models weighted by logistic regression. The novelty of our approach is
the separation of feature values of each estimator, to better utilise regularization.

We use the iPinYou data set [10] to conduct our experiments. All features are
transformed into categorical variables. In our approach first, we create simple
models based on aggregated features and then we use these aggregates to train

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

Fast Click-Through Rate Estimation using Data Aggregates 5

Historical Data Statistical Model Decision Making

CTR/CVR prediction
Bid landscape modeling
Impression arrival modeling

Profit/goal optimization
Budged pacing
Ad quality optimization

Fig. 3. DSP data pipeline [2]

a logistic regression model. We compare the baseline to our model in terms of
AuROC and parameters used by the model. The code used in the experiments
can be accessed via GitHub (see [7]).

4 Modelling Overview

One of the uses of raw data is to train models for CTR (or CVR) prediction. In
CTR each impression ends in one of two events: an advertisement can be either
clicked or not clicked making it a binary classification problem. The purpose of
the model is to support the decision making process by providing it with the
probability estimate that a particular user will click the advertisement (see Fig.
3).

The iPinYou data set is divided into test and train sets. The train set contains
over 15 million impressions and over 11 thousand clicks. The test set contains over
4 million impressions and over 3 thousand clicks. The data is divided amongst
nine advertisers from different industry sectors. For each advertiser, the test data
contains events from a later period than the training data. In the iPinYou data
set the majority of features are categorical. Meaning that each feature can take
one of a predefined set of values. In our model we use the following features:
’weekday’, ’hour’, ’useragent’, ’IP’, ’region’, ’city’, ’adexchange’, ’domain’, ’url’,
’urlid’, ’slotid’, ’slotwidth’, ’slotheight’, ’slotvisibility’, ’slotformat’, ’slotprice’,
’creative’, ’keypage’, ’advertiser’. Feature ’slotprice’ is first transformed into a
categorical variable and then transformed accordingly.

A simple and efficient way to train a model is described in [1]. The raw data
can be encoded using Hashing Trick [6]. Using the encoded feature vectors a
logistic regression model is trained. While the model can be improved a new
conjunction feature is selected based on conditional mutual information and the
model is retrained. We argue that the process can be improved by exploiting
existing data aggregate to boost the prediction accuracy of the model as well as
reduce the size of feature vectors thus reducing overall training time.

4.1 Feature Encoding

The data set consists of N entries. Each entry has the form of E = [F1, F2, ...]
where Fk is a distinct categorical feature that can take value fi where i ∈ {1, 2, ...}.
Two features Fi and Fj might have different cardinality.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

6 R. Wiatr et al.

Dummy Encoding in statistics is a standard technique used in regression tasks.
The feature Fk is encoded as a |Fk|-dimensional vector k. When feature Fk = fi
then it is encoded as ki = 1, e.g. if |Fk| = 4 and Fk = f2 then k = [0, 1, 0, 0].
Every categorical feature Fk has to be encoded into its corresponding vector
and resulting vectors are concatenated into single vector x. Continuous variables
should be first divided into bins and then each bin should be treated as category
value. Multi-value categorical variables may be treated as standard categorical
variables, with one exception: they may produce vector k with more than one fi
for which ki = 1. Dummy Encoding produces sparse vectors for each feature. If
there are |E| features and k-th feature has |Fk| possible values, then eq. 1 is the
dimensionality of x. The dimensionality, ddummy, can get very large if there is a
lot of features with high cardinality.

ddummy =

|E|∑
i=1

|Fi| (1)

Hashing Trick addresses the problem of high dimensionality produced by
Dummy Encoding. In [6] the authors outline significant compression of vectors
while avoiding costly matrix-vector multiplication amongst the advantages of
Hashing Trick. In [1] the authors further state that Hashing Trick is straightfor-
ward to implement and effective in terms of resource consumption when used for
CTR prediction. They compare the Hashing Trick performance to other methods
of parameter reduction stating that the Hashing Trick is slightly better in terms
of model performance while being much more effective for real-time computation.
Instead of encoding fi value of Fk as ki Hashing Trick calculates a hash h(fi)
(eq. 2).

h : fi → {1, 2, ..., zmax} (2)

dhash = zmax (3)

If each feature Fk has its own hash space, hash function maps feature value fi
element kh(fi). If all features share the same space, each feature value is mapped
to xh(fi). Consider h(Fa = fa) = 2 then the encoded vector of the i-th example is
x(i) = [0, 1, 0, ...]. In case a collision occurs h(Fb = fb) = h(Fa = fa) = 2 for x(i)

the second feature may be ignored meaning x(i) = [0, 1, 0, ...] or increased by 1
meaning x(i) = [0, 2, 0, ...].

A variation of this method exists. Instead of adding 1, value of sgn(h2(fi))
is added, where h2 is an independent hash function. In this case when
h(Fa = fa) = 2 the encoded vector is x(i) = [0, sgn(h2(Fa = fa)), 0, ...], and in
case of a collision, when h(Fb = fb) = h(Fa = fa) = 2, the resulting vector is
x(i) = [0, sgn(h2(Fa = fa)) + sgn(h2(Fb = fb)), 0, ...].

There is a second type of collisions when feature values occupy the same index
but for different events. Consider h(fi) = h(fj) = 2, fi is a feature value of x(i)

and fj is a feature value of x(j). In this case x(i) = x(j) = [0, 1, 0, ...] effectively
meaning that two features will share regression parameters. As we show later,
this can diminish the effect of regularization, and thus may cause overfitting.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

Fast Click-Through Rate Estimation using Data Aggregates 7

It is easy to control the maximum dimensionality of the produced vector by
changing the hashing function limit zmax (eq. 2). This causes the dimensionality
to be equal to eq. 3 when the features share the hash space. One of the arguments
for Hashing Trick is that it is straight forward to implement and the usage of a
hashing function indicates O(|E|) complexity as it does not require any additional
data structures. This is true for offline systems however for online environments
such as DSP it may be probed and abused by exploiting hash collisions. In this
case, an additional data structure with training set feature values has to be used
to prevent unknown values from entering the system, meaning an additional
O(ddummy) memory complexity.

4.2 Aggregate Encoding

We propose Aggregate Encoding for dimensionality reduction. It is designed
as a set of probability estimators as first suggested in [3]. We propose the use
of a single feature estimator but with the possibility of extending to feature
conjunctions [1]. The conditional probability of success given that Fk = fi is
given by eq. 4, where successi is the amount of successes and attemptsi is the
amount of attempts. We encode feature Fk from all events in the training set as
vector k. Each element of k corresponds to the conditional probability (eq. 4) of
that particular event. In our case, the probabilities are very low so we normalize
k to the range [0..1]. Each feature is encoded on a different position of x making
it a |F |-dimensional vector.

P (success|fi) =
successi
attemptsi

(4)

First Level Aggregate Encoding preserves the dimensionality of the original data
and, as we show later, it behaves better than Hashing Trick with similar dimen-
sionality. This approach, however, causes problems as it contradicts regularization
by grouping features with different counts in a single representation. To address
this issue we introduce quantile bins as the Second Level of Aggregate Encoding.
Each value fi, of Fk is assigned to a single binq where q ∈ {1, 2, ..., Q} based
on the quantile that attemptsk belongs to. This causes features with a similar
amount of attempts to be grouped in a single bin, reducing the negative effect
that the original method has on regularization. This method produces vector x
with the dimensionality given by eq.5.

dbin =

|E|∑
i=1

min(|Fi|, Q) given ∀i,jattemptsi 6= attemptsj (5)

As in First Level Aggregates, vector x is normalized per bin across all features.
Aggregate Encoding requires storing a mapping from a feature value fi to a
probability of success P (success|fi) and a mapping from fi to a binq. Since fi
is a feature from the training set the additional complexity is the same as for
Hashing Trick when holding training set feature values in memory.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

8 R. Wiatr et al.

It is known that in logistic regression the log loss, LL(θ), is given by eq. 6
and partial derivative for θj by eq. 7 where θ are the parameters of the model
and σ is the sigmoid function. The cost function J(θ) with L2 regularization is
given by eq. 8 and partial derivative for θj by eq. 9. By minimizing J(θ) one can
find θ that is optimal under the regularization constraints.

LL(θ) =

N∑
i=1

y(i)log[σ(θTx(i))] + (1− y(i))log[1− σ(θTx(i))] (6)

∂LL(θ)

∂θj
=

N∑
i=1

[y(i) − σ(θTx(i))]x
(i)
j (7)

J(θ) =
λ

N
θT θ − 1

N
LL(θ) (8)

∂J(θ)

∂θj
=

λ

N

∂

∂θj
θT θ − 1

N

∂LL(θ)

∂θj
=

λ

N
θj −

1

N

N∑
i=1

[y(i) − σ(θTx(i))]x
(i)
j (9)

Let xk and xq be created by splitting feature Fj with Q = 2. Let x(i)q = 0

for i ∈ {1, 2, ..., n} and x(j)k = 0 for j ∈ {n+ 1, n+ 2, ..., N}. In other words we
create two quantile bins bink encoded on xk, where all rows with feature values
from binq are encoded as x(j)k = 0 and binq encoded on xq, where all rows with
feature values from bink are encoded as x(j)k = 0 as shown in Fig. 4. Knowing
that we split eq. 9 in to eq. 10 and eq. 11.

P(f0)

P(f2)

0

0

x xk xq

P(f0)

P(f1) P(f1) 0

P(f2)

x(0)

P(f2) P(f2)0

x(1)

x(2)

x(3)

Fig. 4. Vector x encoding a single feature, as described by First Level Aggregate
Encoding (subsection 4.2), is splitted into two vectors xk and xq, each containing
features with similar occurrences. f0 and f1 occur once, f2 occurs two times. P (fj) is
P (success|fj) as defined in eq. 4. x(j) is the row index corresponding to the input data.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

Fast Click-Through Rate Estimation using Data Aggregates 9

∂J(θ)

∂θk
=

λ

N
θk −

1

N

[
n∑

i=1

[y(i) − σ(θTx(i))]x
(i)
k +

N∑
j=n+1

[y(j) − σ(θTx(j))]× 0

]
(10)

∂J(θ)

∂θq
=

λ

N
θq −

1

N

[
n∑

i=1

[y(i) − σ(θTx(i))]× 0 +

N∑
j=n+1

[y(j) − σ(θTx(j))]x(j)q

]
(11)

We introduce nk = n and nq = N − n and we derive eq. 12 and eq. 13 by
extracting the non-zero components as the gradient expectations when x is drawn
from the train set where xk or xq is not zero, which are the mean gradient values
at the current optimization step.

∂J(θ)

∂θk
=

λ

N
θk −

nk
N
EX∼traink

[(y − σ(θTx))xk] (12)

∂J(θ)

∂θq
=

λ

N
θq −

nq
N
EX∼trainq

[(y − σ(θTx))xq] (13)

We can see that the regularization parameter θ is scaled by a constant that
depends on the amount of data and the regularization parameter λ for both
θk and θq. The gradients in both cases are scaled by different values that are
corresponding to the element counts, respectively nk for θk and nq for θq. The
amount of scaling depends on counts distribution of feature Fj . In our case
nk < nq meaning that the regularization for xk has relatively higher impact than
for xq. A similar effect will take place if Dummy Encoding is used and all features
are separated.

If the features are joined randomly, as in Hashing Trick, the effect diminishes,
meaning that rare features will be regularized together with frequent features.

The maximum dimensionality of a data set is given by eq. 1. When dhash
approaches the dimensionality of Dummy Encoding (eq. 3) the amount of conflicts
is reduced not entirely to zero due to the nature of the hash function. When
dhash < ddummy the conflicts occur, including situations where frequent and rare
feature values occupy the same vector positions and might impact regularization.
For Aggregate Encoding, if no two features have the same count, dbin given by
eq. 5 is equal at most ddummy. In this case, the methods are identical. If some
feature values have the same count, they are encoded in the same binq as the
probability of success given by eq. 4 and will most likely be distinguishable by
the model. If dbin < ddummy our method groups features with similar counts
together, thus preserving the properties of regularization.

5 Experiments and Results

In our experiments, we compare Hashing Trick with Aggregate Encoding. As we
argue at the end of Section 4 both of the methods degenerate to Dummy Encoding.
Aggregate Encoding exploits the fact that the model uses regularization and
Hashing Encoding due to the hashing function fails to do so. In this section we

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

10 R. Wiatr et al.

show the impact of this behaviour using the iPinYou [10] data set. We do not
use conjunctions of the original variables. We train a separate model for each
advertiser. The feature ’usertag’ representing a tag given to a user, is a special
feature that in sense that a single user can be tagged with none, one or several
tags. In our experiments we treat each tag value as a separate feature but we
omit the feature in our comparison as it requires special treatment.

5.1 Experiment Setup

Our Hashing Trick implementation encodes all features to single feature space
and resolves conflicts by using the sign of an additional hashing function as
described in subsection 4.1. Our Aggregate Encoding implementation does not
resolve conflicts when feature values fi and fj have attemptsi = attemptsj .

To build training and test sets we sample the negative class without repetition
to reduce the amount of time and memory required by the experiments. Negative
class sampling was set to 20% for advertisers *1458 and *3386 and 50% for others
due to memory constraints. We sample the sets before every iteration to measure
how the method behaves depending on the input distributions.

For Hashing Trick we iterate over maximum dimensionality zmax from a
predefined list. For each zmax we sample the test and train data set and set
dhash = zmax + zdelta where zdelta is a random. We modify zmax by a random
number from the range [−5, 5], as we have noticed that the result may vary
depending on the selected dimensionality. Next, we encode the data sets using
the method described above, train the model and evaluate it using AuROC. For
each (advertiser, zmax) pair we repeat the experiment five times.

For Aggregate Encoding, we iterate over bin size Q from a predefined list. For
each Q we sample the test and train data set. dbin varies between experiments as
it depends on the sampled data. As with Hashing Trick, we encode the data sets,
train the model and evaluate it using AuROC. For each (advertiser, Q) pair we
repeat the experiment also five times. We do not introduce conjunction features
but it is possible to do so in both methods.

5.2 Results

Comparison of Hashing Trick and Aggregate Encoding is shown in Tab. 1. To
create the table first a quantile bin size binq value was selected amongst the
values with the highest average AuROC. Then a hashing dimensionality zmax was
selected with AuROC close to the corresponding binq results. The only exceptions
from this rule are advertisers **2259 and **2997 where both binq and zmax had
to be lowered due to a relatively small amount of unique features. The mean gain
for AuROC is close to zero as intended. Gain in terms of feature shows almost
a two times increase for Aggregate Encoding compared to Hashing Trick. This
means that using Aggregate Encoding we were able to significantly reduce the
amount of features preserving AuROC results.

Fig. 5 shows AuROC change depending on the number of features produced by
Hashing Trick and Aggregate Encoding. We fit an exponential curve to illustrate

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

Fast Click-Through Rate Estimation using Data Aggregates 11

Table 1. AuROC and no. of features comparison. Average AuROC gain [A-H] is the
difference of average AuROC for Aggregates and Hashing methods. Average number
of features gain [H/A] is the quotient of Average number of features for Hashing and
Aggregates methods. The average number of features is selected the to minimize the
mean average AuROC gain.

Avg. AuROC (%) Avg. no. of features

Advertiser Hashing Aggregates Gain [A-H] Hashing Aggregates Gain [H/A]

*1458 63.75 64.35 0.60 499.00 242.60 2.06
3358 74.55 74.58 0.03 501.00 259.80 1.93
*3386 75.44 75.98 0.54 499.75 255.50 1.96

3427 71.10 70.84 -0.27 499.75 273.00 1.83
3476 62.64 63.08 0.43 498.25 261.00 1.91

**2259 66.75 67.17 0.42 198.40 209.33 0.95

2261 62.34 61.88 -0.46 500.40 275.80 1.81
2821 59.57 59.83 0.26 497.75 250.25 1.99

**2997 57.02 56.04 -0.98 400.60 207.33 1.93

Mean 0.06 1.82

the trend. AuROC for most advertisers behaves better when Aggregate Encoding
is used. In most cases, the improvement is most evident for low feature count
and diminishes with the feature increase. This behaviour is expected due to two
facts. As shown earlier Aggregate Encoding is expected to exploit the benefits of
regularization on low dimensional data compared to a Hashing Trick which is
not optimized for this behaviour. With the increase of feature count, as shown in
subsection 4.2, both of the methods are being reduced to Dummy Encoding with
one difference. Error introduced by Aggregate Encoding may be easily reduced
to zero opposed to the error introduced by Hashing Trick that is fully dependent
on the hashing function used.

For each advertiser, we normalize the feature count and AuROC to the values
of Aggregate Encoding as they tend to have less variance. Then we fit exponential
curves to both normalized Hashing Trick and normalized Aggregate Encoding
data. Fig. 6 shows the normalized dependency between AuROC and average no.
of features count on combined data. As observed for most advertisers, the most
significant gain of AuROC is for low dimensional data, and the difference slowly
diminishes as we move towards the dimensionality used by Dummy Encoding.

6 Conclusions and Future Work

In this work, we present Aggregate Encoders - a method for dimensionality
reduction with preservation of regularization properties of logistic regression.
Using iPinYou data set, we empirically show that it behaves as good as the
popular Hashing Trick, producing 42% smaller feature vectors (1.82 mean gain
[H/A] in Tab. 1).

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

12 R. Wiatr et al.

Fig. 5. Results for individual advertisers.

We use this method in a RTB setup but it is universal and can be applied
to other problems. Small feature space is crucial for model training and model
evaluation. During model training lower feature space reduces memory and time
requirements, and during the evaluation, it reduces CPU consumption. Both of
these properties are crucial in environments that are processing tens of billions of
impressions [1] and potentially hundreds of times more offers daily. In this case,
our method can reduce the overall training time and evaluation costs without
sacrificing model performance. In [5] the authors present a deep neural network
model with better log loss than logistic regression but with more parameters.
Given the number of events, logistic regression can be used as the first stage of
CTR assessment before a more expensive deep model is evaluated.

We leave three closely related problems for future work. All of them consider
the challenge of exploiting cross-feature dependencies. The first one is to measure
the effect of conjunction feature aggregates on the AuROC metric. We expect

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

Fast Click-Through Rate Estimation using Data Aggregates 13

Fig. 6. Combined normalized results for all advertisers.

the improvement will be similar than as for Hashing Trick with the exception
that Hashing Trick uses a preset vector size, and Aggregate Encoding increases
the dimensionality of the vector with each added feature. The second one is
using Aggregate Encoding in ensemble methods where each model instead of one
value, might use our technique and return a vector divided by frequencies as this
could be beneficial for regularization in the meta-classifier. The last proposal for
future work is to investigate Aggregate Encoders in conjunction with deep neural
networks.

Acknowledgements

We are grateful for support from the subvention of the Polish Ministry of Education
and Science assigned to AGH University.

References

1. Chapelle, O., Manavoglu, E., Rosales, R.: Simple and scalable response prediction
for display advertising. ACM Transactions on Intelligent Systems and Technology
(TIST) 5(4), 1–34 (2014)

2. Grigas, P., Lobos, A., Wen, Z., Lee, K.c.: Profit maximization for online advertising
demand-side platforms. In: Proceedings of the 2017 AdKDD and TargetAd Work-
shop held in conjunction with the ACM SIGKDD’17 Conference on Knowledge
Discovery and Data Mining. ACM (2017)

3. Lee, K.c., Orten, B., Dasdan, A., Li, W.: Estimating conversion rate in display
advertising from past erformance data. In: Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp. 768–776
(2012)

4. Szwabe, A., Misiorek, P., Ciesielczyk, M.: Logistic regression setup for RTB CTR
estimation. In: Proceedings of the 9th ICMLC 2017 International Conference on
Machine Learning and Computing. pp. 61–70 (2017)

5. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions.
In: Proceedings of the 2017 AdKDD and TargetAd Workshop held in conjunction
with the ACM SIGKDD’17 Conference on Knowledge Discovery and Data Mining.
ACM (2017)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://dx.doi.org/10.1007/978-3-030-77961-0_54

14 R. Wiatr et al.

6. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature
hashing for large scale multitask learning. In: Proceedings of the ICML’09 Annual
International Conference on Machine Learning. pp. 1113–1120. ACM (2009)

7. Wiatr, R.: Code repository for this work (updated 12012021),
https://github.com/rwiatr/agge

8. Wiatr, R., Lyutenko, V., Demczuk, M., Słota, R., Kitowski, J.: Click-fraud detection
for online advertising. In: Proceedings of the 13th PPAM’19 International Conference
on Parallel Processing and Applied Mathematics. pp. 261–271. Springer (2019)

9. Yuan, Y., Wang, F., Li, J., Qin, R.: A survey on real time bidding advertising. In:
Proceedings of 2014 IEEE IntThe 8th International Workshop on Data Mining for
Online Advertising in conjunction with ACM SIGKDD’14 international Conference
on Service Operations and Logistics, and Informatics. pp. 418–423. IEEE (2014)

10. Zhang, W.: iPinYou Data Set (accessed 25082020),
https://github.com/wnzhang/make-ipinyou-data

11. Zhang, W., Yuan, S., Wang, J., Shen, X.: Real-time bidding benchmarking with
iPinYou dataset. Tech. rep., UCL (2014), arXiv preprint arXiv:1407.7073

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_54

https://github.com/rwiatr/agge
https://github.com/wnzhang/make-ipinyou-data
https://dx.doi.org/10.1007/978-3-030-77961-0_54

