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Abstract. Ever-increasing data size raises many challenges for scientific
data analysis. Particularly in cosmological N-body simulation, finding the
center of a dark matter halo suffers heavily from the large computational
cost associated with the large number of particles (up to 20 million).
In this work, we exploit the latent structure embed in a halo, and we
propose a hierarchical approach to approximate the exact gravitational
potential calculation for each particle in order to more efficiently find
the halo center. Tests of our method on data from N-body simulations
show that in many cases the hierarchical algorithm performs significantly
faster than existing methods with a desirable accuracy.

Keywords: N-body simulation, hierarchical analysis, clustering, halo
center

1 Introduction

Cosmological N-body simulation [2, 4] is essential for identifying dark matter
halos and studying the formation of large-scale structure such as galaxies and
clusters of galaxies. For example, the halos in a simulation provide the infor-
mation needed to analyze structure formation and the galaxy distribution of
the universe, which is useful to predict specific models to be compared with ob-
servations and therefore understand the physics of gravitational collapse in an
expanding universe [17]. One way of identifying halo is through the friends-of-
friends (FOF) algorithm [9, 8]. Alternatively, one can identify a halo by adopting
a certain definition for the halo center and grows spheres around it until given
criteria is satisfied [21].

However, one key limitation of these N-body simulations is its rapid increase
in computational load with the number of particles, even given the computing
power of today’s advanced supercomputers. In particular, the calculation of
the bounded potential (BP), i.e., the gravitational force, is the most
time consuming task in N-body simulations [4]: in modern cosmological
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simulations, large halos can comprise tens of millions of particles [13]. Therefore,
any improvement for this online analysis is vital.

A number of existing algorithms have been developed to run such large cal-
culations. The most straightforward way to calculate the force is to carry out a
direct pairwise summation over all particles, which is a brute-force algorithm and
requires O(N2

p ) operations [16, 1]. A large halo in a modern simulation may have
up to 20 million particles, and thus such a global operation comes with consider-
able expense and quickly becomes impractical. Alternatively, given the fact that
the particles close to each other share common properties, one can group parti-
cles that lie close together and treat them as if they are a single source, hence,
the force of a distant group of particles is approximated by pseudo particle lo-
cated at the center of mass of the group. Such methods include the tree method
where the particles are arranged in a tree structure [5, 14], and the fast multi-
pole method (FMM) [7]. FMM improves the tree method by including higher
moments of mass distribution within a group.

Fig. 1: Illustration of MBP and MCP of two halos with different shapes [19].
Notice that when the halo is approximately spherical, MBP and MCP coincide.
Otherwise, they can be far away from each other.

In this work, we focus on the calculation of the halo center, which is a natural
byproduct of the BP calculation, and is commonly defined as the “most bounded
particle” (MBP). MBP is the particle within a halo with the lowest BP. Another
type of halo center is the “most connected particle” (MCP), which is the particle
within a halo with the most “friends.” Figure 1 [19] demonstrates MCP and MBP
separately for two different halos and suggests that, given a halo, its MBP and
MCP may or may not coincide. Finding the MCP is relatively simple: one sweeps
through the virtual edges connecting two particles provided by FOF-based halo
finding. However, finding the MBP is much more computationally expensive
directly due to the calculation of BP. Some efforts have been made to estimate
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the exact MBP. The most intuitive and common way is to approximate the MBP
location by MCP. However, this approach can provide a reliable estimation only
when the halo is roughly spherical, which unfortunately is not always the case.
Other recent developments include using a A∗ search algorithm to approximate
the BPs [10], which is proved eight times faster than the brute-force algorithm.
Another approach is to utilize a binning algorithm to rule out the particles that
cannot be the MBP, in order to reach a complexity of O(mNp); however, for
most of the time, m can be still very large. High-performance computing also
has been used to accelerate the calculation [19]. One common feature of these
approaches is that the BP is exactly calculated, meaning that the summation is
over every other particle in the halo.

Inspired by the tree-based methods, we propose to further exploit the latent
or intrinsic structure within the data, grouping the data into corresponding
clusters and then performing operations on the respective groups. We notice
that, given the definition of BP (defined below in Sec. 2), the farther the particle
is away from another, the less the impact of this particle on the other’s BP.
This realization can be illustrated by the BP map of a halo. Given a 3D dark
matter halo from an N-body simulation with 89,887 particles, we show its 2D
projection for better visualization in Fig. 2 on the left side. The right side shows
that the BP map is smooth in the sense of small value change around a local
neighborhood. Therefore, in this work, instead of exactly calculating every BP
to find the MBP, we exploit the local smoothness of the BP map and propose a
hierarchical approach to approximate the BP by its so-called local BP, which is
defined only on a local neighborhood.

Different from existing methods, our approach provides following benefits:

– It provides a more flexible framework to incorporate domain knowledge,
such as different properties of halo in terms of linkage length. Therefore, the
accuracy and computational cost can be optimally balanced.

– It is able to recover the local minimum which also contains important phys-
ical information for the scientific discovery.

– We provides the theoretical error bounds and complexity analysis of our
proposed framework.

– Systematic experiments reveals that our proposed method is significantly
faster and yet accurate as the number of particles are increasing, which is
critical for halo center finding.

We organize our presentation as follows. In Sec. 2, we introduce our hier-
archical framework based on several key components, including construction of
the tree structure and an algorithm for finding local extremes. In Sec. 3, we an-
alyze the error bounds and complexity of our proposed hierarchical framework.
In Sec. 4, we compare our proposed framework with a brute-force algorithm (as
to provide gold standards for accuracy) and FMM on many synthetic halos with
different configurations. In Sec. 5, we present our conclusions and discuss ideas
for future development.
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Fig. 2: Left: 2D projection of a 3D halo with 89,887 particles. We can see three
major dense areas that can yield at least three local minima of problem (2.2);
right: its global BP map calculated by Eq. (2.1). We can see a smooth change
of the BP value around a local neighborhood.

2 Method

Given a collection of Np distinct particles X = {Xi : i = 1, . . . , Np} in a halo,
we denote a MBP by Xp. The BP of a given particle Xi is computed as the sum
over all other particles of the negative of mass divided by the distance,

P (Xi) =
∑
j 6=i

j∈[1,...,Np]

−mj

d(Xi, Xj)
, i = 1, . . . , Np, (2.1)

where Xi ∈ R3 is the ith particle represented by its position coordinates, mi is its
corresponding mass, and d(Xi, Xj) is the Euclidean distance between particles
Xi and Xj . Then, we have the following optimization problem,

Xp ∈ argmin
Xi∈X

∑
j 6=i

j∈[1,...,Np]

−mj

d(Xi, Xj)
. (2.2)

We notice that the BP map from every particle is relatively smooth in its local
region. Therefore, our approach is, starting from the whole domain, to approx-
imate the BP map by a few sampled (seed) particles that are sufficiently far
away from each other. By comparing the local BP of the sample particles, we
gradually narrow the search region to a smaller area where the MBP can be. In
other words, at each hierarchical level (as described in Alg. 1), we approximate
the BP map of the corresponding search region by the local BPs of a few sample
particles.

Three critical questions need attention. First, how many sample particles
should be enough to approximate the whole domain? Second, how far do the
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sample particles have to be away from each other to guarantee a sufficient cover-
age? Third, how can one determine the threshold used to calculate the local BP?
Intuitively, the deeper the hierarchical level is, the smaller the search region is;
therefore, larger thresholds can approximate the BP better. Thus, an essential
step is to perform a range search to allocate the neighboring particles given a
threshold. Our approach is to use a kd-tree to first construct the neighborhood
among particles. A kd-tree is a data structure that partitions the space through
alternative dimensions for organizing points in a k-dimensional space [6]. Since
kd-trees divide the range of a domain in half at an alternative dimension at each
level of the tree, they are efficient for performing range searches. This structure
is constructed only once, in the beginning. Throughout the process, the precon-
structed tree structure is used to search for ranges at a given distance threshold.
For example, if a tree is storing values corresponding to distance, then a range
search looks for all members of the tree in the distance that are smaller than the
given threshold. Throughout the paper, we employ the range search algorithm
presented in [15].

Once the kd-tree is constructed, on the first level we uniformly sample a few
particles from X and approximate their local BPs (denoted as P̃ ) by the range
search at a given distance threshold ε1 > 0 as follows:

P̃ (Xi) =
∑
j 6=i

Xj∈B(Xi,ε1)

−mj

d(Xi, Xj)
, i = 1, . . . , Np, (2.3)

where B(Xi, ε1) is the ball with center Xi and radius ε1. Accordingly, we have
a particle with minimum local BP as

Xp̃ ∈ argmin
Xi∈X

P̃ (Xi), (2.4)

where Xp̃ is the approximation to a global MBP Xp. The next step is to inter-
polate the coarse BP map for every particle in the halo and use a peak-finding
algorithm to locate the particles having the first few smallest BPs while their
pairwise distance is bigger than another distance threshold denoted by ε > 0.
These particles are then used as the next-level sample particles. We mark the
particle with the smallest local BP as a temporary Xp̃. Then we start a range
search on each newly selected sample particle. From the second level, instead of
calculating only local BPs for the sample particles, we calculate local BPs for
every particle in the ranges and repeat the steps of interpolating, peak finding,
and locating the temporary Xp̃ until the current temporary Xp̃ coincides with
the previous temporary Xp̃. We fix the number of sample particles at each level
as Ns and denote the collection of the current samples as Seeds. The full pro-
cedure is described in Alg. 1, and the step of locating peaks in the BP map is
described in Alg. 2.

We now discuss in detail how we choose the distance thresholds. First, to
determine ε1 that defines the neighborhood, we need to analyze the sensitivity
of ε1 for preserving the pattern of the true BP map. Given the same halo as
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Algorithm 1 Xp̃ = recursive localMBP (X,m)

1: Given lmax > 0, and initialize tree = kd tree(X).
2: for level = 1, · · · lmax do
3: if (level = 1) then
4: Select Ns uniformly distributed random particles {Xĩ : ĩ = 1, . . . , Ns} from

X as Seeds.
5: For each Xĩ, calculate B(Xĩ, ε1) = range search(tree,Xĩ, ε1) and P̃ (Xĩ) by

Eq. (2.3).
6: Find Xp̃ ∈ argmin

Xi∈X
P̃ (Xi) based on the interpolated BP map from every par-

ticle in the halo.
7: Seeds = find peak(P̃ , Ns, ε) that updates Seeds as the particles with local

minimum BP value.
8: else
9: For each Xĩ in Seeds, calculate B(Xĩ, ε1) = range search(tree,Xĩ, ε1).

10: For every particle Xi ∈
⋃Ns

ĩ=1
B(Xĩ, ε1), calculate P̃ (Xi).

11: Set X
(0)
p̃ = Xp̃.

12: Find Xp̃ ∈ argmin
Xi∈

⋃Ns
ĩ=1

B(X
ĩ
,ε)

P̃ (Xi).

13: end if
14: if ‖X(0)

p̃ −Xp̃‖ = 0 then
15: break
16: end if
17: end for

Algorithm 2 Seeds = find peak(P,m, ε1)

1: Order a given vector P (local BPs of previous Seeds) monotonically increasing.
2: Choose the particles corresponding to the first Ns components of ordered P and

whose pairwise distance is larger than ε, and assign them as the new Seeds.

shown in Fig. 2, we first compare the local Xp̃ provided by Eq. 2.4 and the
global Xp provided by Eq. 2.2. Given 100 different ε1 that are equally spaced
in the region [0, 1], we generate their corresponding Xp̃ as a function of ε1 and
calculate its error compared with Xp, respectively, as |Xp̃(ε1)−Xp|. The result
is shown in Fig. 3a. We can see that as ε1 increases, Xp̃ has a better chance
to match Xp. In particular, as ε1 > 0.1, the difference between Xp̃ and Xp is
negligible given the sufficient physical distance threshold used to distinguish two
particles as 10−3.

Furthermore, we fix ε1 = 0.3 to calculate the corresponding local BPs and
compare them with its global BP, as shown in Fig. 3b. Notice that ε1 = 0.3
is considered very small given the mean of all pairwise distances as 2.1. The
x-axis arranges the particle indices to monotonically increase the global BPs. As
we can see, although there is almost a constant offset between the local- and
global-potential profiles, the local BP map preserves the shape of the global BP,
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which suggests that the minimizer of the local BPs can closely approximate the
minimizer of the global BPs.

ε1
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Fig. 3: Left: we compare the relative error between Xp and Xp̃ generated by
different ε1 from Eq. (2.4). As ε1 increases, the local Xp̃ has a better chance to
coincide with the global Xp; Right: Given ε1 = 0.3 as the choice for the rest of
the tests, the local BP map has a pattern similar to that of the global BP map,
which makes them share the same minimizer.

These numerical tests suggest a reasonable choice of ε1 = 0.3 on the first
level, so that the local BP map agrees well with the global BP map. Because
of the common features (e.g., mean of the pairwise distances between particles,
linkage length) shared by different dark matter halos, we keep ε1 = 0.3 for
different halos from the same simulation system. Accordingly, the choice of ε1
suggests that ε, which is the distance threshold to avoid seed particles being too
close to each other, should be at least as big as ε1 in order to guarantee a good
coverage of the domain of interest.

3 Error Bounds and Complexity Analysis

In this section, we first provide a preliminary error estimate of the proposed
method. Again, since the BP function is a function of inverse Euclidean dis-
tance, distance greater than ε1 can be negligible to some extent. Together with
the local smooth property of BP function, the error P (Xi)− P̃ (Xi) can be ana-
lyzed analogous to the cumulative distribution function error between Gaussian
distribution and truncated Gaussian distribution. We assume each term in func-
tion P (Xi) follows a Gaussian distribution with respect to d(Xi, Xj), where its
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mean is 0 and standard deviation is σ, then we have

‖P (Xi)− P̃ (Xi)‖ = 1− 1

2

[
erf

(
ε1√
2σ

)
− erf

(
−ε1√

2σ

)]
= 1− erf

(
ε1√
2σ

)
,

(3.5)

where erf x =
2√
π

∫ x

0

e−t
2

dt is the error function. As shown in Fig. 4, we can

see that as ε1 gets larger, the estimation error of local BP is getting smaller and
approaching 0.

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Fig. 4: The estimation error provided by Eqn. (3.5). As ε1 gets larger, the esti-
mation error gets smaller and approaches 0.

Next, we estimate the complexity of our proposed hierarchical algorithm.
Each level involves the following computations:

– Conduct a range search for each Seed: O(NpNs).
– After level 1, approximate the local BP for each particle in the neighborhood

of the seed particles: O(n2Ns), where n � Np is roughly the number of
particles in each neighborhood. Figure 5 shows the relationship between n
and Np empirically for various of halos.

– Find the peak: the dominant calculation is sorting, which takes O(Nsn log n).

On average, three levels are needed in order to converge, and the complexity of
a one-time kd-tree construction is O(Np logNp). By summing up these compo-
nents, the total complexity is

O(Np logNp + n2).

4 Numerical Results

We now illustrate the performance of the proposed algorithm on a set of halos
from catalogs created by the in situ halo finder [18] of the Hybrid Accelerated
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Fig. 5: Given various halos with different numbers of particles, we report the
corresponding mean value of n resulting from the proposed Alg. 1. It suggests
that compared with Np, n is significantly smaller.

Cosmology Code (HACC) [12]. All the numerical experiments are implemented
in MATLAB and performed on a platform with 32 GB of RAM and two Intel
E5430 Xeon CPUs. We first demonstrate the proposed approach on the 2D
projection of the 3D halo shown in Fig. 2 where we uniformly downsample only
4,933 particles for a better visualization. This halo is a relatively challenging
example since it contains approximately three locally dense areas, which results
in three local minima for problem (2.2). We demonstrate the recursive process
in Fig. 6, where Fig. 6a shows where the seed particles are on the first level with
its corresponding local BP map and Fig. 6b shows similar information for the
second level. Figure 7 shows the result where the recursively calculated local Xp̃

agrees with the global Xp.

4.1 2D Result

First, we benchmark the performance of the proposed method on 455 2D halos
which are projected from the corresponding 3D dark matter halos simulated
by HACC. In Fig. 8, we compare the performance of three different methods
for finding the MBP: brute force where we explicitly calculate every point-wise
distance between particles, the proposed recursive method with Ns = 10 and
fixed ε, and the FMM using an optimized MATLAB implementation [20]. We
can see from the time plot, as the number of particles increases, the proposed
recursive approach is outperforming FMM and brute force, while the accuracy
in terms of potential error of the returned MBP from our recursive approach is
better than FMM in average. Notice here that in order to easily visualize the
value, we sort the potential error as shown in y-axis.
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Fig. 6: Demonstration of the hierarchical process. Figure 6a illustrates the per-
formance of the first level. The left side shows where the seed particles (denoted
as +) are located along with the color-coded global BP map. The right side
shows the local BP map provided by the previously chosen seed particles; The
second level is shown similarly in Fig. 6b. We can see that the local BP map
resembles well the global BP map of the corresponding region.

4.2 3D Result

Next, we run our algorithm on 455 simulated 3D dark matter halos, using differ-
ent algorithm configurations. However, due to the difficulty of having optimally
implemented MATLAB-based 3D FMM code, in this section, we only compare
the performance of our proposed approach against brute force using different pa-
rameter settings. For the first test we fix Ns = 10, ε1 = 0.3, and ε = ε1 for each
level. On the left of Fig. 9, we can see that as the number of particles increases
from different halos, our hierarchical method is 100 times faster than the brute-
force method. The middle panel shows the location accuracy of our hierarchical
method compared with that of the brute-force method. We note that in reality,
if two particles are separated by a distance less than 10−3, we do not distinguish
these two particles. As a result, 90% of the halos in this test achieve location er-
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Fig. 7: Result of the recursive process shown in Fig. 6: the approximated local
MBP agrees with the global MBP in terms of both location and potential value.
Its centroid is labeled to show multiple dense areas in this particular 2D halo.

ror smaller than 10−3, which is a desirable accuracy. We also report the relative

potential error on the right panel, which is given as
|P (Xp̃)− P (Xp)|

|P (Xp)|
.

We also examine our algorithm by gradually reducing the neighborhood ra-
dius ε1 by half along each level. Accordingly, ε is scaled by half as well along
each level. Figures 10 and 11 show the effect of having Ns = 100 and Ns = 10
seed particles, respectively, where the initial ε1 = 0.3 and scaled by half along
each level. We can see that the computational time saved is slightly better than
without scaling ε1. We also note that the accuracy has kept relatively similar to
the case where ε1 is fixed in terms of finding the Xp. Furthermore, if we examine
the relative error between the potential values P (Xp) and P (Xp̃), we obtain a
mean of these errors to be 10−3. This suggests that our hierarchical algorithm
can find the local minimum if not the global minimum. This capability is also
useful since the local minimum of the MBP optimization problem also obtains
important features [11]. We note that the oscillatory behavior of the time elapsed
and the MBP error on halos with relatively small number of particles are due to
the different hierarchical levels required for different structures (such as number
of local minima).

5 Conclusion and Future Work

We propose a hierarchical framework to accelerate the performance of finding
a halo center, in particular, the MBP. Instead of using an exact calculation to
find the global MBP, which is extremely expensive because of the large number
of particles in a typical halo, we explore the smooth property and the hierar-
chical structure of the BP map and approximate the global BP only by the
local information. The preliminary numerical results suggest that our method
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Fig. 8: Performance comparison of finding MBP for various 2D halos using three
different algorithms: brute force, our proposed hierarchical method with Ns = 10
and fixed ε1, and FMM. Left: time elapsed; Right: error of potential between
the MBP located by proposed method and FMM, respectively.
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Fig. 9: 3D halo result with fixed ε1. Left: time elapsed for the hierarchical ap-
proach and the brute-force approach. Middle: location accuracy of the MBP
approximation for different halos with different structures and numbers of par-
ticles. Right: Potential error between the approximated MBP and the global
MBP.

is comparable to fast multipole method (even slightly better) in terms of both
speed and accuracy, and show dramatic speedup compared with the most com-
mon brute-force approach. On the other hand, comparing to existing methods,
our approach provides a more flexible framework to incorporate domain knowl-
edge, such as linkage length used to define a halo, to optimally choose the hyper
parameters ε and ε1 used in the Alg. 1.

Therefore, opportunities remain to further accelerate the performance. First,
one can explore different ways of performing tree data structure, such as R-tree
[3], to better exploit the geographical correlations among particles. Furthermore,
one can explore ways to shrink the range search parameter along each level
guided by the density of the local region. For example, if the density is high, the
search parameter ε1 should not decrease. Another key area of investigation is the
initial sampling strategy. We believe the algorithm presented in this work can

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_53

https://dx.doi.org/10.1007/978-3-030-77961-0_53


Hierarchical Analysis of Halo Center in Cosmology 13

5 10 15

# of particles 10
5

10
2

10
3

10
4

Time elapsed (sec)

Brute force

Recursive

5 10 15

# of particles 10
5

10
-15

10
-10

10
-5

10
0

MBP location error

5 10 15

# of particles 10
5

10
-15

10
-10

10
-5

MBP potential error

Fig. 10: Result of applying the hierarchical method for the same set of halos with
Ns = 100, and ε1 scaled by half along each level.
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Fig. 11: Result of applying the hierarchical method for the same set of halos with
Ns = 10, and ε1 scaled by half along each level.

be generalized to other applications that share the same feature as halo center
finding, such as approximation of the pairwise distance matrix.

Acknowledgments

This work was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of
Science and the National Nuclear Security Administration). This material was
based on work supported by the U.S. Department of Energy, Office of Science,
under contract DE-AC02-06CH11357.

References

1. Aarseth, S.J.: From NBODY1 to NBODY6: The growth of an industry. Publica-
tions of the Astronomical Society of the Pacific 111(765), 1333 (1999)

2. Aarseth, S.J.: Gravitational N-body Simulations: Tools and Algorithms. Cam-
bridge University Press (2003)

3. Arge, L., Berg, M.D., Haverkort, H., Yi, K.: The priority R-tree: A practically
efficient and worst-case optimal R-tree. ACM Transactions on Algorithms (TALG)
4(1), 1–30 (2008)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_53

https://dx.doi.org/10.1007/978-3-030-77961-0_53


14 Z. Di et al.

4. Bagla, J.S.: Cosmological N-body simulation: techniques, scope and status. Current
Science pp. 1088–1100 (2005)

5. Barnes, J., Hut, P.: A hierarchical O (N log N) force-calculation algorithm. Nature
324(6096), 446–449 (1986)

6. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9), 509–517 (1975)

7. Darve, E.: The fast multipole method: numerical implementation. Journal of Com-
putational Physics 160(1), 195–240 (2000)

8. Davis, M., Efstathiou, G., Frenk, C.S., White, S.D.: The evolution of large-scale
structure in a universe dominated by cold dark matter. The Astrophysical Journal
292, 371–394 (1985)

9. Einasto, J., A. Klypin, A., Saar, E., Shandarin, S.F.: Structure of superclusters and
supercluster formation–III. quantitative study of the local supercluster. Monthly
Notices of the Royal Astronomical Society 206(3), 529–558 (1984)

10. Fasel, P.: Cosmology analysis software. Los Alamos National Laboratory Tech Re-
port (2011)

11. Gao, L., Frenk, C., Boylan-Kolchin, M., Jenkins, A., Springel, V., White, S.: The
statistics of the subhalo abundance of dark matter haloes. Monthly Notices of the
Royal Astronomical Society 410(4), 2309–2314 (2011)

12. Habib, S., Morozov, V., Frontiere, N., Finkel, H., Pope, A., Heitmann, K., Ku-
maran, K., Vishwanath, V., Peterka, T., Insley, J., et al.: HACC: extreme scaling
and performance across diverse architectures. Communications of the ACM 60(1),
97–104 (2016)

13. Heitmann, K., Frontiere, N., Sewell, C., Habib, S., Pope, A., Finkel, H., Rizzi, S.,
Insley, J., Bhattacharya, S.: The Q continuum simulation: harnessing the power of
GPU accelerated supercomputers. The Astrophysical Journal Supplement Series
219(2), 34 (2015)

14. Jernigan, J.G., Porter, D.H.: A tree code with logarithmic reduction of force terms,
hierarchical regularization of all variables, and explicit accuracy controls. The As-
trophysical Journal Supplement Series 71, 871–893 (1989)

15. Kakde, H.M.: Range searching using Kd tree. Florida State University (2005)
16. Makino, J., Hut, P.: Performance analysis of direct N-body calculations. The As-

trophysical Journal Supplement Series 68, 833–856 (1988)
17. Ross, N.P., DaAngela, J., Shanks, T., Wake, D.A., Cannon, R.D., Edge, A., Nichol,

R., Outram, P., Colless, M., Couch, W.J., et al.: The 2dF-SDSS LRG and QSO sur-
vey: the LRG 2-point correlation function and redshift-space distortions. Monthly
Notices of the Royal Astronomical Society 381(2), 573–588 (2007)

18. Sewell, C., Heitmann, K., Finkel, H., Zagaris, G., Parete-Koon, S.T., Fasel, P.K.,
Pope, A., Frontiere, N., Lo, L.t., Messer, B., et al.: Large-scale compute-intensive
analysis via a combined in-situ and co-scheduling workflow approach. In: Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. p. 50. ACM (2015)

19. Sewell, C., Lo, L.t., Heitmann, K., Habib, S., Ahrens, J.: Utilizing many-core accel-
erators for halo and center finding within a cosmology simulation. In: 2015 IEEE
5th Symposium on Large Data Analysis and Visualization (LDAV). pp. 91–98.
IEEE (2015)

20. Tafuni, A.: A single level fast multipole method solver.
https://www.mathworks.com/matlabcentral/fileexchange/55316-a-single-level-
fast-multipole-method-solver (2020)

21. White, M.: The mass of a halo. Astronomy & Astrophysics 367(1), 27–32 (2001)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_53

https://dx.doi.org/10.1007/978-3-030-77961-0_53

