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Abstract. Quantum materials research is a rapidly growing domain of
materials research, seeking novel compounds whose electronic properties
are born from the uniquely quantum aspects of their constituent electrons.
The data from this rapidly evolving area of quantum materials requires a
new community-driven approach for collaboration and sharing the data
from the end-to-end quantum material process. This paper describes
the quantum material science process in the NSF Quantum Foundry
with an overarching example, and introduces the Quantum Data Hub, a
platform to amplify the value of the Foundry data through data science
and facilitation of: (i) storing and parsing the metadata that exposes
programmatic access to the quantum material research lifecycle; (ii)
FAIR data search and access interfaces; (iii) collaborative analysis using
Jupyter Hub on top of scalable cyberinfrastructure resources; and (iv)
web-based workflow management to log the metadata for the material
synthesis and experimentation process.

Keywords: Quantum Material Science · FAIR · Data Management ·
Collaboration Platform · JupyterHub

1 Introduction

Quantum materials research is a rapidly growing domain of materials research,
seeking for novel compounds whose electronic properties are born from the
uniquely quantum aspects of their constituent electrons. Electronic states whose
order can be defined locally, such as superconductivity and collective magnetism,
emerge in quantum materials as well as electronic states forming non-local order,
such as topologically nontrivial band structures and many-body entangled states.
These and other states are sought to form the basis of the coming revolution in
quantum-based electronics and can allow quantum information to be harnessed
for next-generation computing and sensing applications.

Although there are material research data facilities built around generation,
ingestion and sharing of data, the data from this rapidly evolving area of quantum
materials require a community-driven approach for collaboration and sharing the
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data from the end-to-end quantum material process. It is critical to establish
a community network and a collaborative data management and analytical
ecosystem to couple data to theory to materials development and to complement
the growing number of theory-forward materials prediction databases in the field.

UC Santa Barbara’s NSF Quantum Foundry 3, funded by the National Science
Foundation, is a next generation materials foundry that develops materials and
interfaces hosting the coherent quantum states needed to power the coming age
of quantum-based electronics. Its mission is to develop materials hosting unprece-
dented quantum coherence, train the next generation quantum workforce, and to
partner with industry to accelerate the development of quantum technologies.Quantum Foundry Data Science Pipeline
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Fig. 1: The conceptual data pipeline for the Quantum Data Hub.

This paper describes the quantum material science process with an overar-
ching example from the Quantum Foundry, and introduces the Quantum Data
Hub (QDH), a platform to amplify the value of the Foundry data through
data science. As depicted in Figure 1, the QDH collects, curates and manages
the experimental and theoretical scientific data, often not in a searchable and
queriable form until now. The data, which includes large amounts of physical
objects (e.g. samples/devices), characterization data, and growth and material
parameters serves as a backbone of our efforts, to aid the data-driven discovery
and development of new materials with engineered functionalities. The data is
made readily searchable for analysis using advanced cyberinfrastructure tools
for automated workflows, machine learning, and statistical analysis. The QDH
enables data cleaning to provide users with FAIR [19] views over it. The data
collected is served through RESTful APIs that can serve the raw, cleaned and
versions of analytical data products in a scalable fashion. This scalable approach
allows for the simultaneous availability of such data to many processing modules.

Contributions. In this paper, we present the data and analysis components
of the Quantum Data Hub to facilitate: (i) storing and parsing the metadata that
exposes programmatic access to the quantum material research lifecycle involving
experimentation and synthesis; (ii) FAIR data search and access interfaces with
access control; (iii) collaborative analysis using Jupyter Hub on top of dynamic
cyberinfrastructure resources; and (iv) web-based workflow management to log

3 Quantum Foundry Website: https://quantumfoundry.ucsb.edu/
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the metadata for the material synthesis and experimentation process. We also
present a case study for powder synthesis and measurement process.

Outline. The rest of this paper is organized as follows. In Section 2, we
describe the quantum material research process and a case study for powder
synthesis. Section 3 introduces the Quantum Data Hub architecture and its main
components. We review related work in Section 4 and conclude in Section 5.

2 Quantum Material Research Process and Data Model

2.1 Quantum Material Research Process

The past 15 years have witnessed a revolution in the computational modeling
and theoretical prediction of quantum materials with tailored electronic proper-
ties. Experimental assessment of these predictions however proceeds at a much
slower pace due to the bottleneck of the laborious and often iterative process
of experimentally synthesizing newly predicted materials. Due to the difficulty
in predicting and modeling inorganic reaction pathways, diffusion, and grain
growth at elevated high temperatures, the materials growth synthesis process
in the quantum materials domain remains dominated by chemically informed
starting points followed by onerous trial and error iteration.

The research process itself starts with a prediction of a new material with
desired functional properties. This is followed by developing a plan to synthe-
size the new compound, and starting points are typically chosen based off of
a researcher’s prior experience synthesizing related materials or via reported
synthesis conditions of similar compounds. A starting point for the reaction
conditions/processing space is chosen which involves the choice of the starting
reagents, a thermal profile for reacting the reagents, and the choice of the correct
processing space for the reaction to occur (e.g., what gas environment should be
used; what type of furnace/heating source; what type of reaction vessel; etc.).

Once the initial conditions are chosen, the experiment is executed and then
the product is analyzed via a number of experimental probes to ascertain what
material was created. This typically involves x-ray structural analysis, various
forms of chemical fingerprinting such as energy dispersive spectroscopy, and
composition analysis via electron microscopy. Once the composition of the created
material is ascertained, then the original conditions of the reaction are modified
to push toward the reaction toward the desired result. In quantum materials
research, the most common goal is to create a high purity, single phase sample of
the desired compound for follow on study.

Once the desired compound is created with the requisite purity, then the elec-
tronic properties of the compound are explored via a number of complementary
probes. This can include bulk measurements of electrical resistivity, the mag-
netic susceptibility, heat capacity, more advanced characterization with optical
spectoscopy, angle-resolved photoemission, and scanning tunneling microscopy.
Depending on the hypothesis being tested and the experiments needed, the form
factor for a sample may need to be a macroscopic, single crystal of the new com-
pound, rather than a multigrain powder (a collection of microscopic crystallites).
Developing the necessary parameters for achieving crystal growth of a given com-
pound then requires further experiment design and iterative growth/testing steps.
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We also note here that quantum materials are also heavily explored in thin film
form, which entails additional complexities (substrate type, growth orientation,
etc.) beyond the broad overview of “bulk” materials synthesis detailed above.

Once a high enough purity sample is created in the appropriate form factor
(e.g., power, single crystal, thin film), the lifecycle of experimental exploration can
be long. Measurement by multiple complementary probes is common, and many
materials are tuned chemically following their initial measurement in order to test
new hypothesis formed from the characterization data. Changing the composition
of the starting material to address these hypothesis begins the iterative synthesis
process again, which feeds into the theory, synthesis, characterization loop. The
synthesis step in this loop is a major bottleneck for the field.

Julia’s example:
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Fig. 2: Powder synthesis and measurement process for the chemical GaNb4Se8:
(a) An excerpt from a lab notebook outlining the process. (b)The Quantum Data
Hub representation of the workflow for the process outlined in the lab notebook.

2.2 Example: Powder Synthesis and Measurement Process

An example use case of the synthesis and measurement of the chemical GaNb4Se8
is illustrated in Figure 2. The preparation of GaNb4Se8 involves several steps
involving multiple instruments and processes before the figure of merit of the
sample, its chemical purity, is confirmed using X-ray powder diffraction. This
measurement step is common to many solid-state chemical reactions and serves as
a node where the user then decides whether to proceed with other measurement
processes, represented by magnetometry and synchrotron diffraction in Figure 2.
The Quantum Data Hub (QDH) provides a number of features to make such an
analysis simpler and streamlined within the quantum material research process.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_52

https://dx.doi.org/10.1007/978-3-030-77961-0_52


Title Suppressed Due to Excessive Length 5

Ease of Integrated Data Access and Analysis. Throughout the synthesis
and measurement workflow, all metadata and measurement results can be up-
loaded from any laboratory with a computer and an internet connection. The
QDH provides a highly portable analysis environment for measurement data such
as magnetometry. Typically, such magnetic data would be transferred from the
instrument to the user’s computer, where they perform analysis with a variety
of methods including user-written Python scripts. On the QDH, the data and
user-written Python analysis libraries can be uploaded and run anywhere, greatly
streamlining the synthesis and measurement workflow. The QDH also allows the
user to access information about their samples and data analysis online.

Capturing Reusable Synthesis Conditions. Quantum materials, as well as
materials science, has historically relied on published journal articles for reported
materials synthesis conditions. There have been a number of efforts to use
published synthesis conditions to datamine and machine learn material synthesis
to remove the synthesis bottleneck in materials research. However, researchers
lose vital information in the publication process. Failed synthesis conditions
provide invaluable data points for exploring a new chemical phase space but
typically only successful synthesis conditions are published. The Quantum Data
Hub retains failed synthesis conditions with query-able metadata associated with
the material and its synthesis processes. By creating a database of materials and
their synthesis conditions, the QDH can serve as a highly organized and useful
dataset for data science efforts in quantum materials science.

Extracting Physical Properties. Other limitations in the field of quantum ma-
terials research include compilations of measured physical properties of candidate
quantum materials. In fact, compiling data exhibiting the physical properties of
novel materials presents many additional challenges including the same challenges
of compiling published synthesis conditions. Measured properties are seldom pub-
lished in raw data form. Instead, researchers present measured data in a variety
of formats, including plots, tables, and other graphics. Additionally, data pub-
lished in journals are often processed to exhibit certain features of the magnetic
properties of a material, making it difficult for automated data extraction. The
QDH automatically creates a searchable database of physical properties that are
important to quantum materials as raw data, retaining a maximal amount of
information and unpublished materials property measurements.

One such use case involves the magnetic properties of materials. Magnetic
properties are very important to many quantum materials. Magnetometry mea-
surements are common as an initial characterization method of a novel material.
There are a variety of different descriptors of magnetic properties, including order-
ing temperatures, but in quantum materials research, often the most important
magnetic features are qualitative, such as the general shape of the magnetization
as a function of temperature or applied magnetic field. This is particularly true
for quantum materials that are of interest to leverage exotic magnetic proper-
ties. Existing databases of experimental magnetic properties focus on limited
descriptors such as ordering temperatures and common magnetic properties such
as ferromagnetism and antiferromagnetism. By design, a lot of experimental
information is lost in these databases. However, if researchers had access to raw
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"processSteps": [

{"@id": "_:b1",

"processName": "http://sweetontology.net/procPhysical/Shorten",

"processParameters": [

{ "cuttingSizeValue": 20,

"cuttingSizeUnit": "mm" } ],

"http://rdf.data-vocabulary.org/#description":

"cut into small pieces",

"http://www.loa-cnr.it/ontologies/

FunctionalParticipation#patient": 102,

"next_steps": [ "_b4" ]},

... ]

Fig. 3: Every process step, expressed as a semi-structured node, has its own ID.
The next steps element denotes a list of edges from the current node to other
steps. The attributes of a data object may come from established ontologies.

magnetic data, initial assessments of the magnetic properties of a material are
incredibly quick to a trained eye. The QDH will enable users to search through
and quickly evaluate as-measured magnetic data in the form that they choose.

The QDH allows searching through materials and their properties, enabling
users to quickly assess the magnetic properties of materials with all the associ-
ated metadata of the measurement and material. This will accelerate the initial
bottleneck of selecting materials candidates and synthesizing them as well as en-
abling data science initiatives in quantum materials research to connect materials
descriptors such as chemistry or atomic structure to novel physical properties.

2.3 The Quantum Foundry Data Model

The Quantum Foundry Data Model (QFDM) builds on the premise that the data
activities of the Foundry is centered around scientific processes and their products.
The processes include the synthesis of new materials, taking a newly synthesized
material through a series of instruments and computations to measure complex
properties, recording these measurements and computational results, evaluation
of these results, publishing the results in scientific venues, and possibly using
the products of one synthesis process as the raw ingredients of another synthesis
process. The data model captures the essential descriptions and order of these
processes, as well as all artifacts produced at different stages of these processes.

Formally, the QFDM is a federated heterogeneous data model, which is a
multi-part model, each part expressed with a different modeling language and
implemented in a different store, yet schematically connected through explicit
references (foreign keys). The data model is stored in a polystore based information
management system called AWESOME [9] developed at UC San Diego.
1. Process Model (Semistructured – DAG). The objective for designing

the process model is to enable new scientists find previous material synthesis
experiments based on ingredients, instruments, experimental results and sub-
processes that might possibly be reused. The process model takes the structure
of a directed acyclic graph (DAG) where nodes represent subprocesses, and
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edges designate a direct transition from one subprocess to the next. The nodes
of the graph are typed, semistructured objects implemented as JSON-LD
so that one element can reference another element within the same process
or to an external object through a hyperlink. Figure 3 shows a node of the
Process Model DAG. A schematic of the full process DAG is shown in Figure
2. Partially inspired by [17], the process DAG illustrates the following features.

– A process node may belong in one of many system-defined types, e.g.,
a mechanical process, a chemical process, a computational process, etc.
Each process may have subcategories. For example, gas flow synthesis,
spark plasma sintering and annealing are chemical processes.

– For each process type, there are a set of mandatory metadata attributes.
For example, a mechanical or a chemical process must record the environ-
ment in which the process occurs. grinding might be performed in open
air and another may require an inert gas environment at a prescribed
pressure. Similarly, a measurement process must specify the measuring
instrument and must point to the measurement settings.

– A node attribute may have external references. There are two kinds of
references. A URI reference is used to point to other information objects
like a PubChem entries, while a data reference points to a measurement
item or a computational item within our system.

2. Measurements Model (Relational/Semistructured). Measurements are
primarily outputs of different measuring devices or from computational pro-
cesses. Figure 2 shows three measurement nodes, namely, X-ray diffraction,
Synchrotron diffraction and magnetometry. These nodes point to data files
whose formats may be relational or semistructured (XML). In either case,
the measurement data has a “settings” component and a “measured values”
component. Since one of our goals is to find materials synthesis processes
that use similar measurement settings, we maintain both the original and
flattened versions of the settings data. The “measured values” component is
stored to be primarily consumed by analysis routines, and is transformed to a
relational form for querying as well as to a form that the analysis routines
expect. When measurements are produced from computational processes, the
“settings” component contains the identity of the corresponding computational
process and the parameters of its execution.

3. Computation as Data (Semistructured/Vector). The final component
of the data model are computations that analyze data. These computations
can be in a black box or gray box mode. A proprietary analysis software is
considered a black box, while an accessible computation, performed through
a Jupyter Notebook, is a gray box because parts of the notebook, including
documentation, are expressed in an interpretable form (JSON) and can be
analyzed algorithmically, while other parts, like the inner details of libraries
called in a notebook cannot. As mentioned before, only the invocation infor-
mation can be stored for black box computations. Gray box computations,
provide significantly more details including (a) a vector of libraries used, (b)
document vectors comprising all commentaries, and (c) a list of output items
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that are stored externally. These three vectors are preserved and can be used
in finding similar processes in downstream analysis.
The above description illustrates the cross-pointers between different parts of

the data model, allowing us to query for materials synthesis processes through any
of the stored parameters and then navigating to find all related information stored
in other parts of the AWESOME system, which is designed to store relational,
semistructured, graph and text-centric data.

The operations supported by the QFDM are developed based on the intended
use. Typically, the actual data values, like an X-Ray diffraction measurement
value at a specific angle, are not queried for. Rather, the whole measurement data
is consumed by a computation or a visualization process. Similarly, an image
produced through an experiment is not queried through content analysis.

At this point, QFDM operations are being designed to support sample-based
queries and process-based queries. In one type of sample-based query, the
user knows (or can query the system to determine) the sample, and retrieves a
data product derived from the sample by measurement or computation. A more
general type of sample-based query locates samples for which general process
parameters are specified. For example, “which samples were subjected to the
X-Ray diffraction method but did not get characterized based on magentometry”?
Yet as third category of sample-based queries would be on the characterization
and experimental settings of the synthesized material. For example, in the use case
described in Section 2.2 the query can be stated as “Find all samples for which,
tin (Sn) is a component material, Single Crystal Neutron Diffraction and Electron
Paramagnetic Resonance were measured and Field-dependent magnetization data
were collected at a temperature below 5K with magnetic field below 10T”. In
contrast to sample-based queries, a process-based query retrieves a subgraph of
the process DAG based on query conditions. For example, “What mechanical and
chemical process steps are executed for synthesizing materials for which electron
probe microanalysis are conducted? In which of these process steps do we need
to use high-pressure inert atmosphere”? The resulting subgraphs may be edited
and extended to create a new synthesis process.

The full extent of the QFDM is designed but it is currently under development.
Next, we provide a summary of the progress as a part of the QDH architecture.

3 Quantum Data Hub Architecture

The Quantum Data Hub (QDH) platform provides scientists and researchers a
unique combination of virtually unlimited storage space combined with a powerful
data analysis environment. To this end, the QDH platform exploits developments
in storage and database systems to provide large scale storage capabilities. QDH
also leverages developments in computing to create a secure layered architecture.
This coupled compute-data structure gives each scientists an agile workshop to
build their ideas by leveraging advanced data science and artificial intelligence
(AI) libraries to transform large quantum material datasets.

The QDH architecture, shown in Figure 4, consists of 5 main subsystems:
(a) a User Authentication and Authorization; (b) a Cloud-based Object Storage
back-end and an associated QDH application programming interfaces (APIs); (c)
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Fig. 4: System architecture of the Quantum Data Hub Platform.

a web-accessible user front-end; (d) a Jupyterhub based analysis environment; and
(e) a database system that implements the data model described in Section 2.3.
The QDH4 platform enables multiple users to log in, record process and associated
metadata, and upload data products related to the material synthesis process. A
common usecase involves the material research scientists to log their sequence
of steps, various equipment settings and corresponding outcomes of material
synthesis process in their logbooks manually as shown in Figure 2a. The front-end
web interface was designed to empower researchers and students to electronically
capture a material synthesis process in form of scientific workflow DAG (e.g.,
the DAG shown in Figure 2b). The associated data is saved as metadata in a
relational database whereas the data and computational products are saved in
the cloud object store.

The platform is designed for collaborative research and the environment
enables multiple researchers to simultaneously perform complex data analysis
using the QDH, and yet store their data securely with required permission
management to a unified shared Object Storage system. In order to discover
relevant quantum datasets and experiments from unified Cloud Object store,
researches can leverage the web-based search interfaces which uses DB queries with
metadata attributes in a FAIR-compatible [19] way (e.g., Findable, Accessible,
Interoperable, and Reusable). Researchers can connect to the unified Swift Cloud
Object store using our QDH APIs and ingest data for analysis. The QDH APIs
provide seamless integration of distinct users to shared storage space with precise
access control capabilities. The platform leverages JupyterHub [14] as a data
analysis platform. The JupyterHub enables each user to launch a dedicated
Jupyter Notebook inside a sandboxed Docker [16] container that proxies it back
to the user’s web browser. The QDH APIs provide simple commands to perform
data access operations on the unified Cloud Object storage such as, upload,
download, update and delete through the Jupyter notebooks. Integrating the
JupyterHub in the QDH amplifies the value of the Quantum Foundry data through

4 The URL for Quantum Data Hub: https://quantumdatahub.sdsc.edu
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data science. Its workshop-in-a-browser structure enables users to perform data
analysis on the quantum datasets with low overhead.

Fig. 5: QDH API calls to access Swift Storage from Jupyter Notebook

In the rest of this section, we summarize the main components of the QDH.
Authentication. The QDH platform authenticates users through CILogon [5].
CILogon leverages the OAuth 2.0 standard for token-based authentication to
the cyberinfrastructure. Users can gain access to the QDH with their existing
university credentials, or other preferred identity providers in few steps. The QDH
platform uses a single-sign-on authentication paradigm to allow for navigation
and access across its subsystems, such as the QDH front-end, JupyterHub and
the Cloud Object Store. Once users’ credentials are established at entrypoint to
the QDH, users can log their experiments, work in Jupyter notebooks to analysis
large amounts of data, leverage the APIs to store and access data products using
multiple interfaces, and exploit other platform capabilities for their use-cases.
Authorization. The access control model in this system is based on a hierarchi-
cal group-based model and represented by the access control triple <subject,

object, permission>. The subject of the access control model is an individual
group, and objects are artifacts, results, or documents produced by the user.
Users may have read, write or update permission on the document. A user may
be a member of multiple groups. The fine-grained object-level access control will
be the future work[11].
Cloud Object Store. We are using the Cloud storage at the San Diego
Supercomputer Center using Swift (https://www.sdsc.edu/support/cloud_

storage_account.html) to store and archive data products associated with
quantum material synthesis process. Swift stores unstructured data in a scalable
way to support growth of data over the time, and reliably maintains redundant
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copies of data, performs error checking, and provides an economical option for
research and academic projects.
QDH API. The Python-based QDH API library provides a high-level interface
for researchers to interact with the Swift Object storage to store and retrieve
data. The API commands use GraphQL queries to call Swift APIs, and can be
called from a Jupyter notebook as well as to support the data operation behind
the web-interface to perform create, upload, download, delete operations on data
objects stored in Swift. Some of the QDH API commands include:
– qdh.create sample("sampleName") - Creates an object with the given sam-

pleName by a user as a top-level object to stores its associated data products.
– qdh.list samples() - Lists all the samples stored in the Swift storage.
– obj.list all() - Lists all the data products associated with a sample, e.g.,

the data products and files under categories Logbooks and Characterization.
– sampleName.upload logbook() - Submits a logbook into Swift.
– uploaded file.delete() - Removes a file from Swift.
– uploaded file.download() - Creates a local copy of a file.

Data Analysis Platform. JupyterHub provides a platform where multiple
users can access a Jupyter Notebook environment to perform data analysis. The
Jupyterhub in QDH enables users to perform data analysis, access, upload, and
share data. Once the user logs in the QDH, with a click of a button they can
start a dedicated Jupyter Notebook single-user application that proxies back
to the user’s browser. Users can develop or upload their algorithms in Jupyter
notebooks and can use simple QDH API commands from Jupyter notebook to
access quantum data objects in Swift. Figure 5 shows simple API calls from
Jupyter Notebook to create, upload, download, delete operations on this data.
Web Interface. The QDH front-end leverages modern advancements in web
development practices in order to provide a feature-rich application for researchers
on all platforms. It was engineered with the following goals:
– Create, modify, and collaborate on quantum material sample projects.
– Upload, download, and edit data files and Jupyter Notebooks on Swift.
– Launch JupyterHub to edit and run Jupyter Notebooks.
– Edit procedures for each sample.

The front-end is written using React — an open-source JavaScript state manage-
ment library that allows for the rapid creation of reusable stateful components,
with each encapsulating its own logic. By composing a web front-end with a
component-oriented model, development iteration cycles are sped up, and any
user-experience issues may be triaged efficiently.

Once authenticated, a dashboard that includes data and notebooks available
to the user is presented. The dashboard dynamically caches data retrieved from
a GraphQL microservice that aggregates data from the Cloud Object store and
Database. We leveraged technical advancements in Kepler scientific workflow
management system, provenance and team science [3] [15] [4] to design QDH
Procedure Editor (QDHPE). Users are able to create the procedure associated
with each sample using the QDH Procedure Editor (QDHPE), designed to
streamline the input of metadata by users. Each vertex displayed in the QDHPE
stores associated mutable metadata for each procedure step. For each vertex,
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users can add custom sets of parameters, and reuse these modifications. The
inspector pane for each vertex provides input suggestions based on linked URI
references. For instance, a chemical sample vertex may provide a URI reference
to a research chemical catalog entry. From there, associated properties (i.e. form,
purity) will be offered as an auto-complete suggestion. After each change by
a user, the QDHPE dynamically translates the graph representation into the
QFDM (see Sec 2.3).

4 Related Work

Quantum materials research is a sub-branch of material science research that sits
at the convergence point of Quantum Physics and Material Science. Approaching
Material Science from a Quantum Physics perspective necessitates a fundamental
shift in the process of innovation. The QDH was designed to support such an
innovation process in a malleable, scalable, adaptable and collaborative fashion.

In recent times, there has been growing interest in the development of storage
and computing platforms that are problem domain sensitive. Some of the storage
platforms that allow users to share data for research purposes are CKAN [1],
Seedme [7], NoMaD [10], OQMD [13]. These platforms solve a very pertinent
problem of data sharing and tackle the problems related to scientific data itself.
In contrast, QDH is a unified system that combines computation and data storage
technologies to enable quantum material researchers to perform complex analytical
tasks. Further, there have been numerous developments in the application of
core computer science tools to benefit material science research in recent times.
This includes the development of platforms such as MaterialCloud [18], NOMAD
[10], AFLOW [8], Material Project [12], CMR [6]. The QDH removes the need
to build and maintain separate systems and allows for streamlined research.

Although there are other material science data and collaboration platforms as
described above, to the best of our knowledge, The QDH is the only material data
platform dedicated to quantum material research for collaborative research that
enables multiple researchers to capture a material synthesis process in form of
scientific workflow as a Directed Acyclic Graph (DAG). In this DAG, each node
saves associated metadata, data, and computational products of the respective
synthesis steps and users can perform complex data analysis in JupyterHub using
the data porting capability of the system. It offers a searchable database with
user-provided metadata that scientists can query to find datasets relevant to
their problem domain and combine it with reproducible analysis in a unified
platform to accelerate experimentation and streamline the innovation process for
synthesis, discovery, storage, and analysis of quantum materials.

5 Conclusions ad Future Work

This paper presented a new material data and analysis platform for ingestion,
management and analysis of quantum material data to couple theory, experimen-
tation and synthesis of quantum materials, built as a part of UC Santa Barbara’s
NSF Quantum Foundry. Quantum Foundry is the only resource funded by NSF
for design and development of materials related to quantum information. The

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_52

https://dx.doi.org/10.1007/978-3-030-77961-0_52


Title Suppressed Due to Excessive Length 13

open exchange of data and its organization together with a built in analytical
platform within one environment accelerates quantum material design and de-
velopment as well as enabling new forms of training in this field. It also enables
validation, reuse and repurposing of data and analytical products within the
Foundry as well as sharing the built in know how with the rest of the world.

In this first description of the QDH, our objective was to describe the vision
and progress towards this new resource as an example and in relationship to other
related work in scientific computing and material science. While the QDH is fully
functional and accessible to a limited group of researchers, the development is
ongoing towards the full vision presented in Section 2.

As a part of the future work, we would like to link the generated data
and insights with other material science data platforms through ontologies and
knowledge graphs developed, e.g., the material commons by [2]. In addition, the
presented QDH is being extended to enable multiple notebook based analysis
process with seamlessly as an analytical workflow with self-reporting capabilities.
Future work also includes an evaluation of system performance related to data
ingestion, querying efficiency, analytical scalability and collaboration capabilities.
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