
Embedding alignment methods in dynamic
networks

Kamil Tagowski1[0000−0003−4809−3587], Piotr Bielak1[0000−0002−1487−2569], and
Tomasz Kajdanowicz1[0000−0002−8417−1012]

Department of Computational Intelligence, Wroclaw University of Science and
Technology, Poland

{kamil.tagowski, piotr.bielak, tomasz.kajdanowicz}@pwr.edu.pl

Abstract. In recent years, dynamic graph embedding has attracted a
lot of attention due to its usefulness in real-world scenarios. In this paper,
we consider discrete-time dynamic graph representation learning, where
embeddings are computed for each time window, and then are aggregated
to represent the dynamics of a graph. However, independently computed
embeddings in consecutive windows suffer from the stochastic nature of
representation learning algorithms and are algebraically incomparable.
We underline the need for embedding alignment process and provide nine
alignment techniques evaluated on real-world datasets in link prediction
and graph reconstruction tasks. Our experiments show that alignment of
Node2vec embeddings improves the performance of downstream tasks up
to 11 pp compared to the not aligned scenario.

Keywords: dynamic graphs · graph embedding · embedding alignment

1 Introduction

Node representation learning is pervasive across multiple applications, like social
networks [13,21], spatial networks [24,25] or citation networks [9,21]. The vast
majority of node embedding methods are trained in an unsupervised manner, pro-
viding an automated way of discovering node representations for static networks.
However, the body of knowledge for dynamic graph node embedding methods
is rather unaddressed [4]. There are not many approaches to deal with real-
world scenarios, where the structure of the network evolves and node embedding
depends on such dynamics.

The embedding of dynamic graphs can be performed according to two scenar-
ios: continuous and discrete-time approaches. The continuous approach allows to
handle a single event that triggers updates of node embeddings. The latter setting
that is commonly utilized, involves the aggregation of graph data into snapshots
and computes embeddings for each one of them. Such snapshot embeddings are
further combined into a single node embedding that captures the whole graph
evolution. Unfortunately, such decomposition of the embedding process suffers
from the stochastic nature of representation learning algorithms. Embeddings of
consecutive snapshots are algebraically incomparable due to the transformations

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://dx.doi.org/10.1007/978-3-030-77961-0_48

2 K. Tagowski et al.

(artifacts) induced by the embedding methods. Therefore, there exists an research
gap of how to deal with these unwanted transformations. The expected outcome
is to map embeddings from particular snapshots into a common space. This can
be achieved by embedding alignment methods that mitigate linear transfor-
mations and provide the ability to compare embeddings along with consecutive
snapshots. Performing downstream tasks on nonaligned node embedding vectors
may provide inconclusive results.

In this paper, we focus on several node embedding alignment methods that
allow finding unified representation for nodes in dynamic networks using static
network embedding approaches (in our case: node2vec). Based on extensive exper-
iments on several real-world datasets for link prediction and graph reconstruction
tasks, we demonstrate that node embedding alignment is crucial and allows to
increase performance up to 11 pp compared to not aligned embeddings.

We summarize our contributions as follows. (1) We formulate aligner per-
formance measures (AMPs) for evaluating alignment algorithms, regardless of
the downstream tasks. (2) We propose nine embedding alignment methods for
graph. (3) We provide a comprehensive evaluation showing that alignment is
an indispensable operation in dynamic graph embedding based on a discrete
approach, while dealing with node2vec embeddings.

This paper is structured as follows: in Section 2 we discuss other work related
to our topic. Then, we discuss applications of graph embedding alignment and
emphasize its importance (Section 3.2). We also formulate aligner performance
measures in Section 3.3. Next, we propose several methods for dynamic graph
embedding alignment (Section 3.4) and evaluate them in downstream tasks as
well as by means of introduced measures (Section 4). We conclude our work
and point out future directions in Section 5.

2 Related works

The literature on static node embedding methods is very rich [4]. We can dis-
tinguish many approaches that are based on random-walks: DeepWalk [18],
Node2vec [13], metapath2vec [9]; graph neural networks: GCN [14], GAT [23];
and matrix factorization: LLE [19], Laplacian Eigenmaps [1], HOPE [17]. Even
though all of them are very powerful concepts, their applicability to dynamic
graph embeddings is very limited. Embedding alignment is a tool that makes
static embedding usable. Indeed, embedding alignment is crucial in many machine
learning areas, e.g., in machine translation [12], cross-graph alignment [5, 6, 8],
dynamic graph embedding [3, 20, 22]. Embedding alignment techniques are often
based on solving Orthogonal Procrustes problem to obtain a linear transforma-
tion between pairs of embeddings [6]. We can also distinguish approaches that
utilize adversarial training [5, 8]. Dynamic Graph Embedding methods provide
an embedding update mechanism for changes in the graph structure (appearing
or disappearing nodes and edges). Embedding update may be performed in an
online manner with the arrival of single events [15,16] or with arrival of a new
batch (graph snapshot) [3, 11, 20, 22]. In the tNodeEmbed [20] and LCF [22]

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://dx.doi.org/10.1007/978-3-030-77961-0_48

Embedding alignment methods in dynamic networks 3

methods, alignment is achieved by solving the Orthogonal Procrustes problem
using all common nodes to obtain the transformation matrix. In FILDNE [3], the
authors do not follow this scenario and they provide a mechanism for selecting
only a subset of nodes used in the alignment process.

3 Graph embedding alignment

Fig. 1: Graph embedding alignment in the whole graph processing pipeline. For
a dynamic graph in the form of snapshots, compute node embeddings, then
(optionally) determine the reference nodes VREF and align the newest embedding
Ft−1,t to a given target / reference embedding (previous one Ft−2,t−1, or the first
one overall F0,1). Such aligned embeddings can be used in downstream tasks,
improving the performance compared to non-aligned embeddings.

3.1 Notation and problem statement

We denote a dynamic graph G0,T as a tuple (V0,T , E0,T), where V0,T is the set of
all nodes (vertices) observed between timestamp 0 and T , and E0,T is the set of
edges in the same timestamp range. We model such a dynamic graph as a series
of snapshots G0,1, G1,2, . . . , GT−1,T .

A node embedding function f : V → R|V|×d maps every node v ∈ V into a
low-dimensional vector representation of size d, d << |V|, resulting in a node
embedding matrix F , where each row represents an embedding of a single node.

An embedding alignment is a function g : R|V|×d → R|V|×d that transforms
(aligns) a given node embedding matrix F respective to another one, producing
an aligned node embedding matrix F ∗. The method is trained on the observed
change of embedding for a subset of nodes – called reference nodes – VREF ⊆ V.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://dx.doi.org/10.1007/978-3-030-77961-0_48

4 K. Tagowski et al.

3.2 The importance of embedding alignment

Node embedding methods capture the structure of graphs and encode it in
low-dimensional representation vectors for every node. The final form of the
embedding space and the actual positions of node vectors highly depend on
the optimized cost function as well as the optimization procedure itself. For
instance, in random walk-based methods (like node2vec), there are three sources:
(1) the stochastic nature of random walk generation, (2) the random initialization
of embedding vector values, and (3) the order of node-context pairs used for
training the Skip-gram model influence the final node vectors. It results in the
situation that calculating the embedding for the same graph twice, with the same
parameters of the embedding method, we observe that the node embeddings
in the second run end up in different positions. Deformations of embeddings
may be caused by a wide family of geometric transformations. For simplicity,
we hypothesize that it is enough to consider a subset of linear transformations
– translation, scaling and rotations (see: Figure 2). Such transformations are
examples of affine transformations, i.e., are composed of linear transformations
and translations of the embedding space. In such situations, two embeddings of
the same node are incomparable.

Fig. 2: Two runs of embedding calculation of the same graph.

The problem becomes fundamental in the case of dynamic graph representation
learning, where embeddings are computed for every snapshot independently. In
downstream tasks, these embeddings are often combined to obtain a representation
for the whole dynamic graph, e.g., as in itebielak2020fildne. To obtain a rational
combination of snapshots’ embeddings, we are forced to align them. All rotations,
scaling, and translations must be eliminated (see: Figure 3). Note that proper
alignment requires some transformation anchors (nodes). Sophisticated methods
may automatically learn to perform the alignment against the common nodes
between consecutive graphs. Notwithstanding, we developed a much simpler
and computationally less complex methodology to select a subset of common
nodes present in both graph snapshots. It significantly widens the applicability
of the alignment to large scale networks. Our intuition is that nodes whose local
structure has significantly changed, should not have been used to perform the
alignment. The selection of appropriate reference nodes influences the performance
of downstream tasks.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://dx.doi.org/10.1007/978-3-030-77961-0_48

Embedding alignment methods in dynamic networks 5

Fig. 3: Embedding of dynamic graph snapshots with alignment method applied.

3.3 Alignment performance measures

In this subsection, we introduce a novel set of alignment performance measures
(APM) that constitute the criteria an alignment algorithm should meet. We also
propose measures to evaluate the fit of alignment methods to criteria.

Overall, graph representation learning methods derive low-dimensional vector
embeddings for different entities in the graph, i.e., nodes, edges, or subgraphs.
From now on, we will present a case of node embedding approach, but it can be
easily transfigured to edge or subgraph related problems.

The aim of node embedding methods is, generally speaking, to encode struc-
tural information in vector representations by placing embeddings of similar nodes
near in the embedding space and keeping dissimilar nodes at a further distance.
The definitions of "distance" and "similarity" as well as "structural information"
depend on the properties of the representation we want to achieve (e.g., Euclidean
distance, cosine similarity, considering first or second-order neighborhoods).

The family of random walk-based embedding approaches (e.g., DeepWalk [18],
Node2vec [13], metapath2vec [9]) explicitly preserve the distances between nodes
in the graph. Thus, we postulate the first APM which is related to distances:

APM 1 The pairwise distances of vectors in the embedding space should be
preserved during alignment.

Changing the relative distances corrupts the information encoded by the embed-
ding algorithm. To measure the magnitude of changes in relative distances, we
propose Pairwise Embedding Distance (PED):

PED(F, F ∗) =
1

|V| ∗ (|V| − 1)

∑
(u,v)∈V×V

u6=v

|D(F)(u, v)−D(F∗)(u, v)|, (1)

where F is the initial node embedding matrix, F ∗ is the matrix after alignment,
| · | denotes the absolute value. For the distance measure D(F)(u, v) between

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://dx.doi.org/10.1007/978-3-030-77961-0_48

6 K. Tagowski et al.

embeddings of nodes u and v in the embedding matrix F , we use the L2 distance,
but one can employ other ones, like the cosine distance.

This performance measure quantifies how the embedding alignment method
mitigates translation and rotation. High values of this metric indicate that the
embedding structure is corrupted during the alignment process. Contrary, if the
value is equal to zero (PED(F, F ∗) = 0), the embedding is perfectly preserved.

Besides translation and rotation, we also consider the scaling transformation,
proposing the following APM. We propose the Scaling Score Distance (SSD;
see Equation 2).

APM 2 The scaling of distances between reference nodes after alignment should
be the same for all other nodes.

SSD(F, F ∗) = | 1

|VREF| ∗ (|VREF| − 1)

∑
(uR,vR)∈VREF×VREF

uR 6=vR

D(F∗)(uR, vR)

D(F)(uR, vR)

− 1

|V\VREF| ∗ (|V\VREF| − 1)

∑
(u,v)∈(V\VREF)×(V\VREF)

u6=v

D(F∗)(u, v)

D(F)(u, v)
|.

(2)

We also address the requirement of preserving the same positions of reference
nodes in two snapshots of a dynamic graph. We assume that the alignment is
performed according to those nodes. This leads us to our third APM and we
propose the Reference Nodes Distance (RND; see Equation 3).

APM 3 After the alignment of the embedding of the second snapshot, the vectors
of reference nodes must be placed in the same positions as in the embedding of
the first snapshot.

RND(F1, F
∗
2) =

1

|VREF|
∑

uR∈VREF

D(F1,F
∗
2)(uR), (3)

VREF is the set of reference nodes and D(F1,F
∗
2)(uR) is the L2 distance between

uR’s embedding vectors in F1 and F ∗2 , respectively. The most desired case assumes
a score equal to zero.

Assuming that the embedding algorithm introduces rotations, scaling, and
translations, the alignment algorithm is performing perfectly if all the proposed
measures are equal to zero.

3.4 Dynamic graph embedding alignment methods

The embedding alignment problem might be addressed in two major ways: either
(i) using post-hoc alignment of already computed embedding matrices, or (ii)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://dx.doi.org/10.1007/978-3-030-77961-0_48

Embedding alignment methods in dynamic networks 7

adding an auxiliary loss to the embedding method that ensures alignment of
node embeddings. The first one assumes the situation where all embeddings
of consecutive static networks are already computed and the networks are not
available at the time of dynamic embedding. On the other hand, the latter setting
benefits from the availability of two network snapshots as it can address embedding
deformation artifacts. In this work, we consider the post-hoc setting only leaving
the second approach for the future work. To keep our proposed alignment methods
computationally trackable, we focus in this work on the methods inspired by
matrix alignment using the Orthogonal Procrustes problem [20]. Thus, we omit
computationally expensive methods based on neural networks, like [8]. In this
section, we will present how the embedding alignment techniques work and how
they select reference nodes.

Given two matrices A ∈ Rn×d and B ∈ Rn×d with matching rows, the
Orthogonal Procrustes method find a transformation matrix Q such that:

argmin
Q:QᵀQ=I

||BQ−A||22 (4)

It can be solved as Qopt = UW ᵀ with UΣW ᵀ being the Singular Value Decom-
position (SVD) of BᵀA. In the case of dynamic graph embedding alignment, the
A and B matrices are two node embeddings.

As we already pointed out in Section 3.2, for dynamic graphs, we will select a
subset of nodes, whose characteristics were the same (or at least similar) in both
graph snapshots. Although, for completeness, we evaluate also the approach with
all common nodes as reference nodes and call it Procrustes Aligner (PA).

A simple yet quite restrictive approach, called Procrustes Unchanged
Aligner (PUA), is to select all nodes whose neighborhood does not change
between snapshots, i.e., nodes having the same neighbors in both snapshots.

Another method for selecting only a subset of nodes as the reference nodes
was already presented in FILDNE [3]. The authors proposed to use a node’s
activity (activity function), in the form of the multi-degree centrality, and
then compare these activities in both snapshots using the function presented in
Equation 5 to finally obtain a nodes’ score s (scoring function).

s(a
(v)
t−1, a

(v)
t) = |a(v)t−1 − a

(v)
t |
(π
2
− arctan(max{a(v)t−1, a

(v)
t })

)
, (5)

where a(v)t is the v node’s activity in snapshot Gt−1,t. This method is evaluated
in our experiments as FILDNE Aligner (FA).

We further explore this idea and propose to apply other activity functions.
Due to the fact that the embedding is performed on dynamic graphs, we propose
to utilize temporal (dynamic) node centrality measures from a body of knowledge
related to complex network analysis, e.g. [26]. We postulate to measure the
activity using: temporal betweenness TB, temporal closeness TC, temporal k-
shell score TK, and temporal degree deviation TDD. See details of the measures
in [26]. We choose L1-norm as the scoring function:

s(a
(v)
t−1, a

(v)
t) = |a(v)t−1 − a

(v)
t | (6)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://dx.doi.org/10.1007/978-3-030-77961-0_48

8 K. Tagowski et al.

Both for the FILDNE and all temporal node-activity-based aligners, we still
need to select the actual reference nodes based on the computed nodes’ scores.
In our experiments, we consider the top percent scenario from FILDNE [3] as
the other ones can be equivalently applied. We select the top p percent of the
lowest scores: select(S,V) = VREF ⊆ sortS(V), s.t. |VREF| = p|V|, where S are
the node scores.

We also further develop another perspective of the scoring function that
deeper exploits the structural graph properties, instead of node activity only. We
propose the Edge Jaccard Aligner (EJA), which for every node existing in
two snapshots, computes the Jaccard distance of their neighbouring edges:

s(E
(v)
t−1, E

(v)
t) = 1−

|E(v)
t−1 ∩ E

(v)
t |

|E(v)
t−1 ∪ E

(v)
t |

, (7)

where E(v)
t is the set of edges in snapshot Gt−1,t connected to node v.

The last proposed aligner is the Embedding Neighbor Jaccard Aligner
(ENJA), which utilizes the computed node embeddings. For all nodes existing in
two snapshots, it extracts n percent of the closest neighbors in both embedding
spaces, and then computes the Jaccard distance of neighbor sets:

s(F
(v)
t−1, F

(v)
t) = 1−

|CNn(F
(v)
t−1) ∩ CNn(F

(v)
t)|

|CNn(F
(v)
t−1) ∪ CNn(F

(v)
t)|

, (8)

where CNn(F
(v)
t) is the set of the top n percent of closest neighbors of node v in

the the embedding Ft.

4 Experiments

We evaluate all the proposed alignment methods on real-world datasets on
two downstream tasks: link prediction and graph reconstruction. Moreover, we
provide the analysis of the introduced Alignment Performance Measures. The
code, as well as the computational environment configuration (DVC pipeline), is
made publicly available at https://gitlab.com/tgem/embedding-alignment
to ensure reproducibility.

4.1 Datasets

We perform experiments on nine real-world datasets (see Table 1). Each of
them is split based on the timestamp frequency: daily (ia-hypertext), monthly
(enron-employees, radoslaw-email, fb-forum, fb-messages) and yearly (bitcoin-
alpha, bitcoin-otc, ppi, ogbl-collab). The total number of snapshots varies from
3 to 9. As dataset time characteristics are not ideal and some of the generated
snapshots were too small, we performed the following operations: we merged the
first snapshot into the second one (bitcoin-alpha, bitcoin-otc, fb-messages); we

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://gitlab.com/tgem/embedding-alignment
https://dx.doi.org/10.1007/978-3-030-77961-0_48

Embedding alignment methods in dynamic networks 9

merged the last snapshot to the second last one, as validation on tiny snapshots
would be biased (bitcoin-alpha, bitcoin-otc, employees, ia-radoslaw-email); we
also ignored first four snapshots (ppi, ogbl-collab), as merging them would result
in a much bigger time-span than other snapshots.

Table 1: Statistics of graph datasets. |V| - number of nodes, |E| - number of edges,
Directed - whether the graph is directed or not

Dataset |V| |E| Directed Timespan Number of Snapshot
snapshots timespan

hypertext 113 20 818 × 2.5 days 3 1 day
enron-employees 151 50 572 × 37.9 months 6 6 months
radoslaw-email 167 82 927

√
9 months 9 1 month

fb-forum 899 33 720 × 5.5 months 5 1 month
fb-messages 1 899 61 734 × 7.2 months 7 1 month
bitcoin-alpha 3 783 24 186

√
5.2 years 5 1 year

bitcoin-otc 5 881 35 592
√

5.2 years 5 1 year
ppi 16 386 141 836 × 24 years 5 5 years
ogbl-collab 233 513 1 171 947 × 34 years 7 5 years

4.2 Node embeddings

To compute node embeddings we utilize the Node2vec method implemented
in the PyTorch Geometric library [10]. We embed each snapshot separately.
Using the Hyperopt optimizer [2] (restricted to 200 iterations), we performed
Node2vec hyperparameter search. We recomputed all embeddings 25 times to
handle the stochastic nature of Node2vec (random initialization and random
walks). The obtained embeddings were evaluated on a link prediction task on
the same snapshot, i.e., embedding Ft−1,t was evaluated against graph Gt−1,t for
all snapshots.

4.3 Embedding aggregation

In our setting, all downstream tasks require a single embedding for a given node
that captures its whole history in the dynamic graph. Hence, we need to combine
nodes’ embeddings from all snapshots. There are several approaches, like the
simple averaging, convex combination with Bayesian inference, [3], exponential
decaying, linear combination [22], or deep neural networks [11,20]. We decided
to choose the most computationally efficient one – averaging node embedding
vectors from all snapshots.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://dx.doi.org/10.1007/978-3-030-77961-0_48

10 K. Tagowski et al.

4.4 Embedding alignment

We evaluate all the proposed aligners (Section 3.4) accompanied with not aligned
embeddings N/AL as a baseline. As shown in Figure 1, one could either align
a given snapshot embedding Ft−1,t to its previous one F ∗t−2,t−1 or the first
embedding overall F0,1. We decided to use the latter setting, as it provides a
common reference space for all the following snapshots. Moreover, we performed a
grid search on the link prediction task using aggregated embeddings. The percent
parameter was evaluated for a range p ∈ {0.1, 0.2, . . . , 0.9} and (for ENJA aligner)
the parameter n was evaluated for following values: n ∈ {0.1, 0.2, . . . 1.0}.

4.5 Link prediction

Setup. Link prediction evaluation predicts the existence of edges in the last snap-
shot based on previous ones. We combine the snapshot embeddings F0,1, . . . , FT−2,T−1
using average operator. The link prediction dataset is generated from the last
snapshot GT−1,T , with edges in the graph as existing links (class 1). Additionally,
we sample an equal number of non-existing edges (class 0). We split the dataset
into train (75%) and test (25%). Using edge representations, obtained from the
Hadamard product, we train a Logistic Regression classifier. To measure the
performance, we report the mean and standard deviation of the AUC metric over
25 runs.

Results. The results can be found in Table 2 (upper half). Notice that for the vast
majority of cases, the alignment of node embeddings improves the overall link
prediction performance. We can gain up to 10 and 11pp (bitcoin-alpha with EJA,
enron-employees with ENJA) over non-aligned embeddings. In the case of the
Procrustes Unchanged aligner (PUA), we observe that five out of nine datasets
could not be aligned. This occurs because this aligner relies on nodes, whose
neighborhood was precisely the same between snapshots and for those datasets
there were snapshot pairs with an empty set of reference nodes. Moreover, such
a restrictive selection criterion affects the performance – see bitcoin-alpha and
bitcoin-otc, where the aligned embeddings perform worse than not aligned ones
(−0.95pp and −0.44pp, respectively). On the other hand, the biggest loss of
−1.03pp was for hypertext using ENJA, but comparing the standard deviations
of the results ENJA provides a more robust embedding. Among the best aligners
we find TB (fb-forum, fb-messages, ppi), EJA (radoslaw-email, bitcoin-alpha)
and ENJA (enron-employees, bitcoin-otc).

4.6 Graph reconstruction

Setup. Graph reconstruction evaluation aims at reproducing the graph structure
based on nodes’ embedding. In our case, we expect to reconstruct the whole
dynamic graph G0,T from the dynamic embedding of all snapshots F0,T =
Avg(F0,1, . . . , FT−1,T). We compute the mean Average Precision score (mAP) for
graphs [7]. This metric captures local graph properties, i.e. for any node and its

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://dx.doi.org/10.1007/978-3-030-77961-0_48

Embedding alignment methods in dynamic networks 11

embedding vector it checks how many of the nearest vectors in the embedding
space (in the sense of euclidean norm) are actually first-order neighbors of this
node (see FILDNE [3] for details). Similarly to link prediction results, we also
report the mean and standard deviation of the mAP metric over 25 runs.

Results. The results can be found in Table 2 (lower half). For all but one case,
we observe an improvement in the mAP metric values – up to about 8 pp
(for enron-employees with PA and hypertext with TB). The only worse result
occurs in hypertext with EJA (−0.53 pp). The best performing aligners are PA
(bitcoin-otc, fb-messages, enron-employees, ppi) and TB (fb-forum, hypertext,
radoslaw-email).

4.7 Impact of the node fraction taken in the alignment process

In Table 2 we only reported the best scores for a particular aligner. We performed
also grid search over parameter p, see Section 4.4, which describes percent of
reference nodes taken from all common nodes. We compared each result with
PA aligner (its mean and std result) that used all common nodes. It turned out
that for bitcoin-alpha, bitcoin-otc, fb-forum, fb-messages, ia-hypertext, ppi and
ogbl-collab datasets it was sufficient to take only 10 percent of nodes, whereas
for enron-employees 20 percent and for radoslaw-email 30 of common nodes to
achieve comparative results. Such feature is especially crucial when dealing with
large datasets, as it shortens computation time of Orthogonal Procrustes.

4.8 Embedding alignment performance metrics

We compute the metrics mentioned in Section 3.3 for all aligned embeddings
across all datasets and alignment algorithms. We observe that for the PED and
SSD metrics we receive values close to zero, which proves the alignment process
preserves the information encoded in the node embeddings. In the case of the
RND metric, we obtain values greater than zero, but after careful investigation,
we show that the distance between reference nodes decreases after alignment,
respective to the targeted embedding (see: Figure 4).

Overall, all the results obtained in our study on embedding alignment allow
claiming that (1) alignment is essential for embedding algorithms and (2) provide
superior results in downstream tasks like link prediction and graph reconstruction.

5 Conclusions and future work

In this paper, we emphasize the importance of node embedding alignment in
dynamic graph embedding. We formulate three aligner performance measures for
the evaluation of alignment algorithms. We propose several embedding alignment
methods for dynamic graphs. According to our experimental evaluation, align-
ment is an indispensable operation in dynamic graph embedding. Furthermore,
embedding alignment improves the performance of downstream tasks up to 11
pp compared to the not aligned scenario. We plan to exploit other approaches of
embedding alignment that are directed to edges and subgraphs.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://dx.doi.org/10.1007/978-3-030-77961-0_48

12 K. Tagowski et al.

Table
2:D

ow
nstream

task
results

(link
prediction

and
graph

reconstruction).N
/A

L
denotes

evaluation
ofnotaligned

em
beddings

and
×

denotes
a
scenario

w
here

em
beddings

could
not

be
aligned

due
to

m
issing

reference
nodes.W

e
present

values
as

the
m
ean

and
standard

deviations
over

25
em

bedding
retrains

w
ith

gain
(or

loss)
of

aligned
em

beddings
over

not
aligned

ones
(difference

of
m
ean

values)
in

parenthesis.
B
old

values
m
ark

the
best

results
for

a
single

dataset.
W
e
perform

ed
a
Friedm

an
test

w
ith

N
em

enyipost-hoc
to

confirm
that

allalignm
ent

m
ethods

are
statistically

different
from

N
/A

L
case.T

here
w
ere

no
statistically

significant
differences

betw
een

alignm
ent

m
ethods.T

he
"∗"

sym
boldenotes

m
ethods

that
are

significantly
w
orse

than
the

best
m
ethod.

bit
c
o
in

bit
c
o
in

fb
fb

en
ro

n
h
y
pert

ex
t

r
a
d
o
slaw

o
g
bl

ppi
A

lig
n
er

a
lph

a
o
t
c

fo
ru

m
m
essag

es
em

plo
y
ees

em
a
il

c
o
lla

b

Link prediction (AUC)

N
/A

L
4
7
.7
2
±

1
4
.4
4

7
0
.1
9
±

5
.6
3
∗

8
3
.2
9
±

2
.8
0
∗

5
9
.5
0
±

6
.8
0
∗

7
4
.2
9
±

3
.9
5
∗

8
7
.9
9
±

1
2
.8
3

8
4
.3
2
±

1
.3
4
∗

8
1
.2
4
±

0
.4
5
∗

5
9
.0
8
±

0
.8
0
∗

P
A

5
0
.8
0
±

1
3
.9
5
(+

3
.0
8
)

7
9
.3
7
±

2
.8
3
(+

9
.1
8
)

9
0
.3
6
±

1
.3
6
(+

7
.0
7
)

6
4
.4
6
±

8
.3
3
(+

4
.9
6
)

8
4
.4
8
±

1
.3
7
(+

1
0
.1
9
)

8
7
.5
6
±

6
.3
1
(−

0
.4
3
)

9
2
.8
9
±

0
.3
8
(+

8
.5
7
)
∗
8
2
.4
8
±

0
.5
3
(+

1
.2
4
)
6
0
.2
2
±

0
.7
8
(+

1
.1
4
)

P
U

A
4
6
.7
7
±

1
4
.1
7
(−

0
.9
5
)

6
9
.7
5
±

5
.4
1
(−

0
.4
4
)
∗
8
3
.7
2
±

2
.5
3
(+

0
.4
3
)
∗
×

×
×

8
6
.5
5
±

1
.0
5
(+

2
.2
3
)
∗
×

×
F
A

5
0
.9
1
±

1
4
.7
8
(+

3
.1
9
)

7
7
.4
8
±

4
.7
6
(+

7
.2
9
)

9
0
.4
7
±

1
.2
8
(+

7
.1
8
)

6
3
.6
0
±

6
.6
1
(+

4
.1
0
)

8
3
.0
9
±

1
.3
9
(+

8
.8
0
)
∗

8
7
.9
5
±

5
.5
9
(−

0
.0
4
)

9
2
.9
6
±

0
.3
8
(+

8
.6
4
)

8
2
.4
0
±

0
.6
7
(+

1
.1
6
)

6
0
.2
6
±

0
.7
4
(+

1
.1
8
)

T
B

5
3
.4
2
±

1
3
.3
5
(+

5
.7
0
)

7
8
.9
1
±

3
.7
5
(+

8
.7
2
)

9
1
.0
7
±

1
.3
7
(+

7
.7
8
)
6
6
.7
9
±

6
.7
4
(+

7
.2
9
)
7
9
.8
3
±

2
.0
4
(+

5
.5
4
)
∗

8
8
.9
5
±

4
.6
8
(+

0
.9
6
)

9
2
.7
0
±

0
.4
0
(+

8
.3
8
)
∗
8
2
.1
9
±

0
.5
3
(+

0
.9
5
)

6
0
.5
3
±

0
.5
7
(+

1
.4
5
)

T
C

5
5
.2
1
±

1
2
.6
1
(+

7
.4
9
)

7
8
.0
2
±

3
.7
5
(+

7
.8
3
)

9
0
.0
3
±

1
.9
0
(+

6
.7
4
)

6
4
.8
5
±

7
.2
6
(+

5
.3
5
)

8
3
.1
0
±

2
.0
8
(+

8
.8
1
)
∗

9
0
.3
7
±

4
.4
5
(+

2
.3
8
)

9
2
.7
8
±

0
.4
2
(+

8
.4
6
)
∗
8
2
.0
3
±

0
.5
1
(+

0
.7
9
)
∗
5
9
.8
0
±

0
.6
8
(+

0
.7
2
)
∗

T
K

5
6
.9
1
±

1
2
.7
7
(+

9
.1
9
)

7
9
.2
8
±

2
.8
2
(+

9
.0
9
)

9
0
.7
1
±

1
.6
4
(+

7
.4
2
)

6
2
.6
8
±

6
.3
1
(+

3
.1
8
)

8
3
.5
0
±

0
.9
7
(+

9
.2
1
)
∗

9
0
.4
2
±

2
.0
2
(+

2
.4
3
)

9
2
.9
3
±

0
.3
7
(+

8
.6
1
)
∗
8
2
.4
1
±

0
.5
5
(+

1
.1
7
)

6
0
.1
1
±

0
.8
0
(+

1
.0
3
)

T
D

D
5
6
.9
1
±

1
2
.7
7
(+

9
.1
9
)

7
9
.2
8
±

2
.8
2
(+

9
.0
9
)

9
0
.7
1
±

1
.6
4
(+

7
.4
2
)

6
2
.6
8
±

6
.3
1
(+

3
.1
8
)

8
3
.5
0
±

0
.9
7
(+

9
.2
1
)
∗

9
0
.4
2
±

2
.0
2
(+

2
.4
3
)
9
2
.9
3
±

0
.3
7
(+

8
.6
1
)
∗
8
2
.4
1
±

0
.5
5
(+

1
.1
7
)

6
0
.1
1
±

0
.8
0
(+

1
.0
3
)

E
JA

5
7
.7
5
±

1
2
.1
0
(+

1
0
.0
3
)
7
9
.0
6
±

3
.9
5
(+

8
.8
7
)

8
9
.6
4
±

1
.7
3
(+

6
.3
5
)
∗
6
3
.1
7
±

7
.6
9
(+

3
.6
7
)

8
4
.4
6
±

1
.2
5
(+

1
0
.1
7
)

8
8
.5
5
±

5
.0
0
(+

0
.5
6
)

9
3
.2
3
±

0
.3
1
(+

8
.9
1
)
8
2
.4
2
±

0
.6
5
(+

1
.1
8
)

6
0
.1
4
±

0
.7
7
(+

1
.0
6
)

E
N

JA
5
6
.6
0
±

1
2
.0
6
(+

8
.8
8
)

7
9
.6
7
±

2
.8
7
(+

9
.4
8
)
9
0
.5
6
±

1
.4
9
(+

7
.2
7
)

6
4
.7
0
±

7
.9
3
(+

5
.2
0
)

8
5
.2
9
±

1
.2
9
(+

1
1
.0
0
)
8
6
.9
6
±

4
.8
0
(−

1
.0
3
)

9
3
.0
2
±

0
.4
3
(+

8
.7
0
)

8
2
.3
8
±

0
.4
6
(+

1
.1
4
)

6
0
.2
6
±

0
.7
5
(+

1
.1
8
)

bit
c
o
in

bit
c
o
in

fb
fb

en
ro

n
h
y
pert

ex
t

r
a
d
o
slaw

o
g
bl

ppi
A

lig
n
er

a
lph

a
o
t
c

fo
ru

m
m
essag

es
em

plo
y
ees

em
a
il

c
o
lla

b

Graph Reconst. (mAP)

N
/A

L
2
5
.1
8
±

0
.2
0
∗

2
8
.0
9
±

0
.3
6
∗

1
1
.3
0
±

0
.2
9
∗

1
4
.4
3
±

0
.1
9
∗

4
4
.5
3
±

1
.8
5
∗

5
2
.4
8
±

1
.1
5
∗

3
8
.8
5
±

1
.1
9
∗

1
1
.7
3
±

0
.0
5
∗

8
.9
0
±

0
.0
7
∗

P
A

2
7
.4
0
±

0
.2
5
(+

2
.2
2
)

3
0
.6
1
±

0
.3
1
(+

2
.5
2
)
1
4
.0
8
±

0
.3
2
(+

2
.7
8
)
∗
1
6
.0
5
±

0
.2
4
(+

1
.6
2
)
5
2
.5
3
±

0
.9
0
(+

8
.0
0
)
5
7
.4
6
±

0
.7
4
(+

4
.9
8
)

4
5
.2
7
±

0
.4
2
(+

6
.4
2
)
∗
1
1
.9
9
±

0
.0
4
(+

0
.2
6
)
9
.4
3
±

0
.0
5
(+

0
.5
3
)

P
U

A
2
5
.2
1
±

0
.2
8
(+

0
.0
3
)
∗
2
8
.2
3
±

0
.3
9
(+

0
.1
4
)
∗
1
1
.5
6
±

0
.3
6
(+

0
.2
6
)
∗
×

×
×

4
2
.9
4
±

0
.5
9
(+

4
.0
9
)
∗
×

×
F
A

2
6
.4
4
±

0
.2
4
(+

1
.2
6
)
∗
3
0
.4
4
±

0
.3
5
(+

2
.3
5
)
∗
1
4
.1
5
±

0
.3
1
(+

2
.8
5
)

1
5
.9
0
±

0
.2
3
(+

1
.4
7
)

5
1
.4
6
±

1
.0
9
(+

6
.9
3
)
∗
5
9
.0
4
±

0
.9
3
(+

6
.5
6
)

4
5
.9
1
±

0
.4
3
(+

7
.0
6
)
∗
1
1
.9
7
±

0
.0
5
(+

0
.2
4
)

9
.0
6
±

0
.0
9
(+

0
.1
6
)
∗

T
B

2
7
.3
4
±

0
.2
8
(+

2
.1
6
)

3
0
.5
3
±

0
.3
4
(+

2
.4
4
)

1
4
.3
5
±

0
.3
8
(+

3
.0
5
)
1
5
.9
8
±

0
.2
5
(+

1
.5
5
)

5
0
.9
3
±

1
.0
6
(+

6
.4
0
)
∗
6
0
.4
2
±

0
.8
7
(+

7
.9
4
)
4
6
.6
7
±

0
.4
1
(+

7
.8
2
)
1
1
.8
8
±

0
.0
4
(+

0
.1
5
)
∗
9
.3
9
±

0
.0
5
(+

0
.4
9
)

T
C

2
7
.4
8
±

0
.2
6
(+

2
.3
0
)
3
0
.5
3
±

0
.3
2
(+

2
.4
4
)

1
4
.1
1
±

0
.3
1
(+

2
.8
1
)

1
5
.7
6
±

0
.2
3
(+

1
.3
3
)
∗
5
2
.4
6
±

1
.1
2
(+

7
.9
3
)

5
5
.7
6
±

0
.8
8
(+

3
.2
8
)
∗
4
6
.2
2
±

0
.5
2
(+

7
.3
7
)

1
1
.8
5
±

0
.0
4
(+

0
.1
2
)
∗
9
.1
9
±

0
.0
8
(+

0
.2
9
)
∗

T
K

2
6
.7
0
±

0
.3
1
(+

1
.5
2
)
∗
3
0
.4
7
±

0
.3
2
(+

2
.3
8
)

1
3
.9
7
±

0
.3
2
(+

2
.6
7
)
∗
1
5
.9
0
±

0
.2
4
(+

1
.4
7
)
∗
5
2
.1
6
±

1
.0
7
(+

7
.6
3
)

5
4
.6
0
±

0
.7
0
(+

2
.1
2
)
∗
4
4
.6
4
±

0
.5
8
(+

5
.7
9
)
∗
1
1
.9
8
±

0
.0
5
(+

0
.2
5
)

9
.3
9
±

0
.0
5
(+

0
.4
9
)

T
D

D
2
6
.7
0
±

0
.3
1
(+

1
.5
2
)
∗
3
0
.4
7
±

0
.3
2
(+

2
.3
8
)
∗
1
3
.9
7
±

0
.3
2
(+

2
.6
7
)
∗
1
5
.9
0
±

0
.2
4
(+

1
.4
7
)
∗
5
2
.1
6
±

1
.0
7
(+

7
.6
3
)

5
4
.6
0
±

0
.7
0
(+

2
.1
2
)
∗
4
4
.6
4
±

0
.5
8
(+

5
.7
9
)
∗
1
1
.9
8
±

0
.0
5
(+

0
.2
5
)

9
.3
9
±

0
.0
5
(+

0
.4
9
)

E
JA

2
6
.7
0
±

0
.3
0
(+

1
.5
2
)
∗
3
0
.3
8
±

0
.3
4
(+

2
.2
9
)
∗
1
3
.8
4
±

0
.3
0
(+

2
.5
4
)
∗
1
5
.9
6
±

0
.2
2
(+

1
.5
3
)

5
1
.1
0
±

1
.0
8
(+

6
.5
7
)
∗
5
1
.9
5
±

0
.5
1
(−

0
.5
3
)
∗
4
6
.0
4
±

0
.4
2
(+

7
.1
9
)

1
1
.9
9
±

0
.0
4
(+

0
.2
6
)
9
.3
9
±

0
.0
5
(+

0
.4
9
)

E
N

JA
2
6
.7
0
±

0
.2
5
(+

1
.5
2
)
∗
3
0
.5
4
±

0
.3
0
(+

2
.4
5
)

1
4
.1
0
±

0
.2
9
(+

2
.8
0
)

1
5
.9
2
±

0
.2
6
(+

1
.4
9
)
∗
5
1
.7
0
±

0
.8
7
(+

7
.1
7
)

5
7
.4
2
±

0
.8
5
(+

4
.9
4
)
∗
4
6
.1
6
±

0
.5
7
(+

7
.3
1
)

1
1
.9
7
±

0
.0
4
(+

0
.2
4
)

9
.4
2
±

0
.0
5
(+

0
.5
2
)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

https://dx.doi.org/10.1007/978-3-030-77961-0_48

Embedding alignment methods in dynamic networks 13

Fig. 4: Visualization of RND measure. We compare RND computed using: (1)
non-aligned embedding and (2) aligned embeddings. We aggregate values across
all datasets and show that in the RND for aligned embeddings are lower than for
not aligned case. This indicates that the alignment is successful.

Acknowledgment

The project was partially supported by The National Science Centre, Poland, the
research project no. 2016/21/D/ST6/02948, 2016/23/B/ST6/01735 and statutory
funds of Department of Computational Intelligence.

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation 15(6), 1373–1396 (2003)

2. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In: International
conference on machine learning. pp. 115–123 (2013)

3. Bielak, P., Tagowski, K., Falkiewicz, M., Kajdanowicz, T., Chawla, N.V.: Fildne: A
framework for incremental learning of dynamic networks embeddings (2020)

4. Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K.: Machine learning on
graphs: A model and comprehensive taxonomy. arXiv preprint arXiv:2005.03675
(2020)

5. Chen, C., Xie, W., Xu, T., Rong, Y., Huang, W., Ding, X., Huang, Y., Huang,
J.: Unsupervised adversarial graph alignment with graph embedding. CoRR
abs/1907.00544 (2019), http://arxiv.org/abs/1907.00544

6. Chen, X., Heimann, M., Vahedian, F., Koutra, D.: CONE-Align: Consistent Network
Alignment with Proximity-Preserving Node Embedding, p. 1985–1988. Association
for Computing Machinery, New York, NY, USA (2020), https://doi.org/10.1145/
3340531.3412136

7. De Sa, C., Gu, A., Ré, C., Sala, F.: Representation tradeoffs for hyperbolic embed-
dings. Proceedings of machine learning research 80, 4460 (2018)

8. Derr, T., Karimi, H., Liu, X., Xu, J., Tang, J.: Deep adversarial network alignment.
CoRR abs/1902.10307 (2019), http://arxiv.org/abs/1902.10307

9. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: Scalable representation learning
for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining. pp. 135–144 (2017)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

http://arxiv.org/abs/1907.00544
https://doi.org/10.1145/3340531.3412136
https://doi.org/10.1145/3340531.3412136
http://arxiv.org/abs/1902.10307
https://dx.doi.org/10.1007/978-3-030-77961-0_48

14 K. Tagowski et al.

10. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

11. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: Capturing network dynam-
ics using dynamic graph representation learning. Knowledge-Based Systems 187,
104816 (2020)

12. Grave, E., Joulin, A., Berthet, Q.: Unsupervised alignment of embeddings with
wasserstein procrustes. In: Chaudhuri, K., Sugiyama, M. (eds.) Proceedings of
Machine Learning Research. Proceedings of Machine Learning Research, vol. 89,
pp. 1880–1890. PMLR (16–18 Apr 2019), http://proceedings.mlr.press/v89/
grave19a.html

13. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In:
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining. pp. 855–864 (2016)

14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

15. Lee, J.B., Nguyen, G., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Dynamic node
embeddings from edge streams (2019)

16. Ma, Y., Guo, Z., Ren, Z., Tang, J., Yin, D.: Streaming graph neural networks.
In: Huang, J., Chang, Y., Cheng, X., Kamps, J., Murdock, V., Wen, J., Liu, Y.
(eds.) Proceedings of the 43rd International ACM SIGIR conference on research
and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July
25-30, 2020. pp. 719–728. ACM (2020). https://doi.org/10.1145/3397271.3401092

17. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserv-
ing graph embedding. In: Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 1105–1114 (2016)

18. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 701–710 (2014)

19. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear
embedding. science 290(5500), 2323–2326 (2000)

20. Singer, U., Guy, I., Radinsky, K.: Node embedding over temporal graphs. In:
Proceedings of the 28th International Joint Conference on Artificial Intelligence.
pp. 4605–4612. AAAI Press (2019)

21. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale
information network embedding. In: Proceedings of the 24th international conference
on world wide web. pp. 1067–1077 (2015)

22. Trivedi, P., Büyükçakır, A., Lin, Y., Qian, Y., Jin, D., Koutra, D.: On structural
vs. proximity-based temporal node embeddings (2020)

23. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

24. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-
temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

25. Xu, D., Wei, C., Peng, P., Xuan, Q., Guo, H.: Ge-gan: A novel deep learning frame-
work for road traffic state estimation. Transportation Research Part C: Emerging
Technologies 117, 102635 (2020)

26. Yu, E.Y., Fu, Y., Chen, X., Xie, M., Chen, D.B.: Identifying critical nodes in
temporal networks by network embedding. Scientific Reports 10(1), 1–8 (2020)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_48

http://proceedings.mlr.press/v89/grave19a.html
http://proceedings.mlr.press/v89/grave19a.html
https://doi.org/10.1145/3397271.3401092
https://dx.doi.org/10.1007/978-3-030-77961-0_48

