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Abstract. We present a O(n3) algorithm for solving the Distance Ge-
ometry Problem for a complete graph (a simple undirected graph in
which every pair of distinct vertices is connected by a unique edge) con-
sisting of n+ 1 vertices and non-negatively weighted edges. It is known
that when the solution of the problem exists, the dimension of the Eu-
clidean embedding is at most n. The algorithm provides the smallest
possible dimension of the Euclidean space for which the exact embed-
ding of the graph exists. Alternatively, when the distance matrix un-
der consideration is non-Euclidean, the algorithm determines a subset of
graph vertices whose mutual distances form the Euclidean matrix. The
proposed algorithm is an exact algorithm. If the distance matrix is a
Euclidean matrix, the algorithm provides a geometrically unambiguous
solution for the location of the graph vertices.
The presented embedding method was illustrated using examples of the
metric traveling salesman problem that allowed us in some cases to obtain
high dimensional partial immersions.

Keywords: isometric embedding, Euclidean distance matrix, Euclidean
distance geometry problem, rigidity of graphs

1 Introduction

In this paper, we concentrate on providing a fast algorithm for solving
the Euclidean geometry problem which aims at deciding whether it is
possible to find the configuration of points in the Euclidean space, such
that the Euclidean distances between each pair of points match a given
distance matrix. The dimension of the Euclidean space is not known in
advance. Our goal, if any solution exists, is to find the point configuration
in the Euclidean space of the smallest dimensionality.
The existence of a solution is directly related to the Euclidean distance
matrix problem (EDM) [5], [13]. In this paper, we assume that only
distance matrix D = [dij ], i, j ∈ V is given. Our goal is to check if D is
EDM and if the answer is positive, to determine the location of vertices
V in the Euclidean space of the smallest dimensionality m ≤ |V | − 1.
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The problem can also be formulated equivalently in the terms of graphs.
Namely, given a non-negatively weighted complete graph (defined by the
distance matrix), decide whether the smallest dimension m exists and
the configuration of points in Rm corresponding to the graph vertices
such that Euclidean distances between all pairs of the points are equal
to the edge weights.
There are known conditions that guarantee that the real solution of the
Euclidean embedding problem exists [5], [18], [19], [15], [23], but verifying
these conditions has a similar computational complexity as the direct
solving of the problem proposed here.
For many years, other problems related to the Euclidean geometry prob-
lem have also been considered, such as Euclidean matrix completion
problems [1], molecular reconstruction of chemical structures [12], [14],
[15], [16] [17], sensor localization in sensor networks [4], [6], [10], [26],
machine learning and dimensionality reduction [7], [25], and signal pro-
cessing [11] among others.
These problems are outside the scope of this paper, but we are convinced
that the algorithm proposed in this paper can also be adapted to solve
many of the problems mentioned. However, this will be the subject of
further research and experimentation.
The outline of the paper is as follows. Section 2 introduces the main
ideas, definitions, and properties used throughout this paper. Section
3 describes the proposed embedding algorithm and discuss its computa-
tional complexity. Section 4 provides the experimental framework used to
illustrate the performance of the algorithm and its possible results when
the distance matrix is a non-Euclidean one. Finally, Section 5 presents
our conclusions as well as some propositions for further research.

2 The Euclidean Distance Matrix Problem and
Euclidean Distance Geometry Problem.

The Euclidean Distance Matrix (EDM) problem is formulated as follows.
Determine whether a given matrix is Euclidean and a specific Distance
Geometry Problem (DGP): given a nonnegatively weighted complete
graph defined by the distance matrix, decide whether the smallest di-
mension m exists such that Euclidean distances between pairs of points
in Rm are equal to the edge weights.
Let us denote d2ij - a squared distance between nodes i ∈ V and j ∈ V ,
by aij Thus, A = [aij ] is the matrix of squared distances [d2ij ]ij,0:n.
Matrix A is a squared distance matrix if and only if all elements on the
diagonal of A are zero, the matrix is symmetric, i.e., aij = aji , aij ≥ 0
and (by the triangle inequality)

√
aij ≤

√
aik +

√
akj .

Any function ψ : V → Rm is an embedding of V in Rm.

Theorem 1 ( [15], [22]) A necessary and sufficient condition for the
isometric embeddability of a finite metric set (V, d) of n+ 1 elements in

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_42

https://dx.doi.org/10.1007/978-3-030-77961-0_42


Algorithm for Finite Metric Space Embedding into a Euclidean Space 3

an Euclidean space Rn is that the following statement be true:
The matrix [ 1

2
(a0i + a0j − aij)]i,j=1:n is positive definite.

There are also known conditions of embeddability based on the Cayley-
Menger determinants [15], [23], but discussion of that approach is outside
the scope of our paper.

An embedding is locally unique [21], i.e., we say that p : V → Rm and
q : V → Rm are congruent, if

||pi − pj || = ||qi − qj ||

for all pairs i, j ∈ V .

As a consequence, if Euclidean distance matrix D = is given, then any
solution ψ : V → Rm such that ||ψi − ψj || = dij , i, j ∈ V is locally
unique.

Obviously, any rigid transformation such as a translation, a rotation or a
reflection or their composition does not destroy the distance structure of
(V,D). More precisely, two complete graphs in the same Euclidean space
are congruent if they are related by an isometry which is either a rigid
motion (translation and/or rotation), or a composition of a rigid motion
and a reflection [8].

A rigid graph is an embedding of a graph in a Euclidean space which
is structurally rigid [9], [18]. A graph in Euclidean space Rm is said to
be rigid if and only if a continuous motion of the vertices in Rm with
keeping the distances between adjacent vertices unchanged preserves the
distances between all pairs of graph vertices.

It is well known that every complete graph embedded in Rm is rigid in
Rm [2], [3], [9].

3 An Exact Incremental Algorithm for
Embedding a Complete Weighted Graph in the
Euclidean Space

In this section, we will deal with the algorithmic side of the problem.

A set of n+ 1 points in the Euclidean space spans a subspace of at most
n dimensions, hence the embedding dimension considered should not
exceed this number. We assume that metric distance matrix D = [dij ],
ij,= 0 : n is given. The naive approach leads to the need to solve the
system of n(n + 1)/2 non-linear equations with a very large number of
variables (at least 2n, at most n2):

||x(i)− x(j)|| = dij , i, j = 0 : n

x(i) ∈ Rn, i = 0 : n.

It is clear that without loss of generality we can set x(0) = (0, . . . , 0).

If the system of equations is contradictory, the problem is a non-Euclidean
one and an exact embedding in the Euclidean space is not possible.
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Analyzing the equivalent form of the previous system of equations, i.e.,

n∑
l=1

(xl(i)− xl(j))2 = aij , i, j = 0 : n

(recall that aij = d2ij) we can provide a computationally efficient algo-
rithm for embedding a complete graph ( a set of objects) in the Euclidean
space when such exact immersion exists. Otherwise, the algorithm will
stop indicating that it is impossible to preserve the currently considered
set of equality constraints. The proposed approach consists of joining
another vertex to an already existing partial immersion (as a new point
in the Euclidean space). Next, it is necessary to check the possibility
of maintaining the distance of the vertex in question, let us say kth,
from other k − 1 vertices already located in the Euclidean space, so as
not to violate the values contained in matrix D. It may possibly require
increasing the current dimension of the Euclidean space by one.
In the end, the algorithm provides the dimension number of the em-
bedding and the locally unique embedding of V , or stops when exact
embedding is impossible. The exact embedding does not depend on the
vertex chosen as a starting point.
We begin analysis with a set of three vertices, let say, vertices labeled
by 0, 1 and 2. Due to the triangle inequality, it is obvious that these
vertices can be embedded in R2 and this embedding is locally unique.
Vertex-representing points form a triangle and the shape of this triangle
is unique. So, without loss of the generality we can locate vertex v0 in
x(0) = (0, 0), v1 in x(1) = (d01, 0), and v2 in x(2) = (x1(2), x2(2)),
where x(2) coordinates are obtained by solving the following system of
equations:

(x1(2)− x1(0))2 + (x2(2)− x2(0))2 = a02, (1)

(x1(2)− x1(1))2 + (x2(2)− x2(1))2 = a12. (2)

Since x(0) = (0, 0), (1) simplifies to

x22(1) + x22(2) = a02 (3)

and (2) takes the form

(x2(1)− d01)2 + x22(2) = a12.

Substracting the first equation from the second one, we obtain a linear
equation:

−2d01x2(1) + a01 = a12.

Thus, x21 = −0.5(a12 − a01)/d01 , and consecutively

x22(2) = a02 −
(a12 − a01)2

4a01
.

Due to the triangle inequality,

a02 −
(a12 − a01)2

4a01
≤ 0.

There exist at most two solutions of the system with x2(2) being a posi-
tive or a negative real number. When points x(0), x(1), x(2) are collinear,
x2(2) = 0 and the embedding dimension is m = 1. As a consequence, all
coordinates x2(·) can be neglected and may be removed.
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3.1 Algorithm of the Euclidean embedding of a 3-vertex
structure

Algorithm 1.
1. Step B1. Set x(0) = 0., x(1) = d01 and dimension number m(1) = 1.

2. Step B2. Compute ∆ = a02 − (a12−a01)
2

4a01
If ∆ = 0. set x(2) =

(0.5(a12 − a01)/d01) and m(2) = 1. Otherwise set m(2) = 2 , x(0) =
(0., 0.) , x(1) = (d01, 0.) , and x(2) = (−0.5(a12 − a01)/d01,

√
∆).

The proposed approach can generalized for larger graphs and larger di-
mensions. Expanding the set of the immersed vertices one by one leads
to the incremental embedding algorithm.

3.2 General Location Algorithm

Locating a new vertex from V in the Euclidean space leads to the fol-
lowing problem:

Problem 1 We assume that we have given coordinates of r + 1 points
representing an exact embedding of Vr ⊂ V , |Vr| = r + 1 in a Euclidean
space, i.e., (x(0), x(1), . . . x(r)) ∈ Rm(r), where m(r) is a dimension of
the Euclidean space, and m(r) <= r. Thus, that we have:

||x(i)− x(j)||2 = aij , i, j ∈ 0 : r.

Find a vector of dimensionality at most m(r) + 1 representing a new
selected vertex, let us say, vr+1 ∈ V − Vr that does not violate distances
from D between all vertices in Vr ∪ vr+1.

Thus, our goal is to find

x(r + 1) = (x1(r + 1), x2(r + 1), . . . , xm(r)+1(r + 1))

such that
||x(i)− x(r + 1)||2 = ai,r+1, i = 0, 1, . . . , r, (4)

where the dimension of all points in Xr = [x(i)]i=0:r is expanded to
m(r) + 1, and the (m(r) + 1)-th coordinates of all vectors in Xr are
set to zero. If x(r + 1) ∈ Rm(r)+1 exists and xm(r)+1(r + 1) = 0 the
system of r + 2 points lays in the m dimensional quotient space, i.e.,
x(0), x(2), . . . x(r), x(r+1) ∈ Rs. All m(r)+1 zero coordinates should be
removed and m(r+ 1) = m(r). Otherwise, when xm(r)+1(r+ 1) 6= 0, the
new dimension of the embedding Euclidean space is m(r+1) = m(r)+1.
The lack of any real solution means that the metric d is not a Euclidean
metric and an exact immersion in the Euclidean space does not exist.
Taking into account the fact that the number of non-zero coordinates
successively considered vertices vi gradually increase and is equal to the
previously determined values of m(i), we can rewrite (4) as a system of
linear equations:

x(r + 1)xT (i) =

m(i)∑
j=1

xj(i)xj(r + 1) = (5)
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1

2
[a0,i + a0,r+1 − ai,r+1], i = 1 : r

supplemented by a nonlinear equation of the form ||x(r+ 1)||2 = a0,r+1.
Notice, that in (5) we have replaced ||x(r + 1)||2 by a0,r+1 and ||x(i)||2
by a0,i.
If the solution of the linear system (2) exists, but it is such that ||x(r +
1)||2 6= a0,r+1 there is no real solution of (4) and the exact embedding of
V (r + 1) in the Euclidean space is not possible.
To better illustrate the essence of the proposed algorithm, let us first
show a simple example.

Example Let r = 2 , m(1) = 1, and m(2) = 2 then (2) is of the form

x1(3)x1(1) = [a0,1 + a0,3 − a1,3]/2,

x1(3)x1(2) + x2(3)x2(2) = [a0,2 + a0,3 − a2,3]/2.

Using results of Step B2, i.e., x(1) = (d01, 0.) , and x(2) = (−0.5(a12 −
a01)/d01,

√
∆), we can obtain values of x1(3), x2(3) and check if x21(3) +

x22(3) = a0,3. Alternatively, after computing x1(3) from the first equation,
one can obtain x22(3) = a0,3−x21(3). It is obvious that when a0,3−x21(3) <
0 the real solution of the problem does not exist.
The system of equations (5) can be written as:

XxT (r + 1) = b, (6)

where x(r + 1) = (x1(r + 1), . . . , xm(r)(r + 1)), b = 1
2
[a0,i + a0,r+1 −

ai,r+1]i=1:r and X = [x(i)]i=1:r ∈ Rr×m(r) is a triangle-like matrix.

Algorithm
1. Start with Algorithm 1. We assume that previously computed values

of m(1), . . . ,m(r) are known, and available. Additionally m(0) = 0.
2. Step 1. Solving (5):
3. for i← 1 to r do

set m = m(i).
4. if m = m(i− 1) + 1 compute

xm(r + 1) =
(a0,i + a0,r+1 − ai,r+1)

2xm(i)(i)
x−

∑m(i)−1
j=1 xj(i)xj(r + 1)

xm(i)(i)

and go to Step 2.
5. else (i.e., when m = m(i− 1)) recalculate xm(r + 1) as

xnew
m (r + 1) =

(a0,i + a0,r+1 − ai,r+1)

2xm(i)(i)
−
∑m(i)−1

j=1 xj(i)xj(r + 1)

xm(i)(i)
.

if |xm(r + 1)− xnew
m (r + 1)| > 0

then system of equations (5) is not consistent. Stop and provide
adequate information.

6. else (i.e., when |xm(r + 1)− xnew
m (r + 1)| = 0) end
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7. Step 2. Checking feasibility:

8. Compute

a =

m(r)∑
j=1

x2j (r + 1).

9. if a > a0,r+1,

then full embedding does not exist. Stop and give adequate infor-
mation.

else

if a < a0,r+1

then set m(r + 1) = m(r) + 1 and xm(r+1)(r + 1) =
√
a0,r+1 − a,

else (when a = a0,r+1) then set m(r + 1) = m(r).

10. end

System (5) can be over-determined (when m(r) < r) but it is consistent
when exact embedding exists.

Notice that if two subsequent, previously embedded vertices, let us say
vi and vi+1, have the same embedding dimension (i.e., m(i) = m(i +
1) ) then two subsequent equations from the system (5) are linearly
dependent or inconsistent. In the second case the solution does not exist.

The presented algorithm exploits the triangle-like structure of X .

Thus, it allows us to solve (5) performing at most O(r2) arithmetic op-
erations. Using the ordinary least square method to solve (5) leads to
O(r3) local complexity.

Summarizing, the algorithm of embedding V is as follows:

Given a n + 1 × n + 1 matrix of squared distances A the algorithm
provides the dimension of the embedding m(n) and vector’s coordinates
X = [x(i)]i=1:n (recall that x(0) is the zero vector) or information that
exact embedding does not exist. Additionally, a partial embedding of the
first k vertices (3 < k < n+ 1) is given.

It should be emphasized that the computational complexity of embed-
ding of the whole set of n+ 1 vertices is in the worst case O(n3). Using
the least square method to solve a local system of equations (5) increases
the total complexity to O(n4) [24].

4 Computational Experiments

The proposed algorithm was extensively tested with problems from the
well-know TSPLIB. The TSPLIB proposed by [20] (http://elib.zib.de
/pub/mp-testdata/tsp/) is a typical set of benchmarks containing 111
different symmetric traveling salesman problems (TSP) problems.

We are investigating two groups of problems:

– symmetric problems with Euclidean 2D distances (EUC 2D),

– symmetric problems with explicit weights in the form of distance
matrices (MATRIX).

As a method of verification of the concept and its accuracy some of the 61
problems of type EUC 2D (two-dimensional problems where coordinates of
the cities are known and the distance is calculated as a simple Euclidean
norm) were converted to distance matrices. We know that the exact
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dimension is 2. By this reversed method we can easily verify the accuracy
of the result.

Annotation MATRIX indicates that the distances are supplied in the
form of matrices. No other information is available. As a rule, such ma-
trices are not Euclidean distance matrices. Such data allow us to obtain
some partial Euclidean immersions of the TSP vertices.

0 50 100 150 200 250 300

20

40

60

80

100

120

140

160

20 0 20 40 60 80 100 120 140

0

50

100

150

200

250

Fig. 1. Original (first) and reconstructed (second) layout of the a280 problem from
tsplib.

In Fig. 1 we can see the results of the reconstruction in the comparison to
the original data a280 problem from tsplib. It is easy to observe that the
resulting image is accurate with respect to rotation and mirroring. In the
Figure the reconstruction of the bier127 problem is visualized. In both
pictures the vertices (cities) are connected according to the optimal tour.
Further, some metric problems, namely si175, si535 and si1032, were
examined. Distance matrices are not EDM, as shown by the proposed
algorithm. Nevertheless, large parts of the corresponding graphs can be
precisely (without any distortion) embedded in the separate Euclidean
spaces of large dimensionality.

The experiments were performed in the following way. After the informa-
tion about the inability to immerse the next vertex in the lastly indicated
Euclidean space appeared, the procedure was interrupted and the next
subset of vertices was generated. The last rejected vertex was taken as
the starting point of the algorithm. A randomly generated vertex was
selected as the starting node, and then the order of considering other
vertices was established according to the nearest neighbor rule.

In the si175 problem, 5 subsets of nodes immersed in separate Euclidean
spaces of dimension 48, 58, 33, 2, and 29, respectively, and composed of
49, 59, 34, 3, and 30 vertices, was obtained. The si535 problem has
been divided into 8 subgraphs immersed in separate Euclidean spaces of
dimension 14, 97, 116, 2, 133, 126, 2 and 37, respectively. Finally, the
si1032 problem was decomposed by the algorithm into 16 separate EDM
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Fig. 2. Original (first) and reconstructed (second) layout of the bier127 problem from
tsplib.

cliques consisting of 109, 80, 80, 80, 69, 83, 39, 54, 50, 45, 127, 54, 53,
46, 54, and 9 nodes.

5 Concluding Remarks

However, the algorithm presented in this paper can also be used as a
method of computing an approximate solution of the embedding prob-
lem, the global optimization approach based on minimization of the sum
of squared distance distortions (see ( 7)), examined in [14], provides bet-
ter approximations from the point of view of the mean squared error
criterion minimization.
Unfortunately, the global distortion error defined as

n−1∑
i=0

n∑
j=i+1

(
||x(i)− x(j)||2 − aij

)2
,

or as
n−1∑
i=0

n∑
j=i+1

|||x(i)− x(j)||2 − aij |2, (7)

is not easy to minimize, when exact embedding does not exist.
The algorithm presented in the paper allows us to easily impose upper
bounds on subsequent distortion errors of individual distances (both ab-
solute and relative errors). However, this will be the subject of further
research.
Summarizing, the proposed algorithm provides the smallest dimension
number of the embedding and the configuration of points in the Eu-
clidean space, such that the Euclidean distances between each pair of
points match a given distance matrix. Alternatively, if the matrix is a
non-Euclidean one, only a partial solution is generated.
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In such a case the partial embedding depends on the vertex selected as
a starting point. The problem of partial embedding of the finite metric
set is combinatorial in nature and can be formulated in many different
ways. In our opinion, it is a new class of open problems that is worthy
of further research.
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