
Fast and Accurate Determination of Graph Node
Connectivity Leveraging Approximate Methods

Robert S. Sinkovits1

1 San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093,
USA

sinkovit@sdsc.edu

Abstract. For an undirected graph G, the node connectivity K is defined as the
minimum number of nodes that must be removed to make the graph discon-
nected. The determination of K is a computationally demanding task for large
graphs since even the most efficient algorithms require many evaluations of an
expensive max flow function. Approximation methods for determining K replace
the max flow function with a much faster algorithm that gives a lower bound on
the number of node independent paths, but this frequently leads to an underesti-
mate of K. We show here that with minor changes, the approximate method can
be adapted to retain most of the performance benefits while still guaranteeing an
accurate result.

Keywords: Graph algorithm, node connectivity, approximation methods, k-
components.

1 Introduction

Given an undirected graph, what is the smallest number of nodes that need to be re-
moved so that the graph is broken into two or more disjoint components (i.e. there no
longer exist paths connecting all possible pairs of nodes)? Like many problems in com-
puter science, the question is easy to pose, but can be difficult to solve. Although the
minimum node degree provides an upper bound, even highly connected graphs can be-
come fragmented by the removal of just a few nodes (Fig. 1). The crux of our contri-
bution is recognizing that the expensive vertex disjoint paths calculations underlying
the solution of the node connectivity problem can first be estimated using a much faster
approximate algorithm. We can easily determine when the approximation is invalid and
revert to the more expensive calculation where necessary, thereby guaranteeing that we
get the correct result.

The node connectivity problem is not just of theoretical interest, but is highly rele-
vant to a number of fields. It has been applied to the impact of peer groups on juvenile
delinquency [1], economic network models [2], clustering in social networks [3], polit-
ical polarization [4], community structure [5, 6] and neural connectivity [7].

In the remainder section we define the conventions and nomenclature that will be
used throughout the paper and describe the current state of the art in the calculation of

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

2

the graph node connectivity. This is followed by descriptions of our new faster algo-
rithm (section 2), the implementation (section 3), results of computational experiments
(section 4) and finally a discussion and future work (section 5). Notation and symbols
used repeatedly in the manuscript are summarized in Table 1.

A graph G = (V, E) is specified by a collection of nodes V(G) and the edges E(G)
that connect pairs of nodes. An undirected graph is a graph for which the edges do not
have a directionality. The numbers of nodes and edges in the graph are denoted by
|V(G)| and |E(G)|, respectively. Since we are working with a single graph, we simply
denote the node and edge counts as |V| and |E|. The degree of a node, d(v), is the number
of edges that connect to node v and d is the minimum vertex degree across all nodes in
the graph. A set of nodes S whose removal makes the graph disconnected is a cut set
and the node connectivity K of a graph is defined as the size of the minimal cut set.

Fig. 1. Removal of gray nodes separates graphs into two disjoint graphs (blue and red nodes). In
panel A, the degree of the blue node is the same as the number of nodes that need to be removed.
In panel B, although no node has degree less than four, the removal of three nodes is sufficient.

Table 1. Notation and symbols used in manuscript

symbol definition
v, w Nodes
vs Starting node used in node connectivity algorithms
d(v) Degree of node v
d Minimum node degree
E, |E| Edges, number of edges
k Local node connectivity
kapprox Approximate local node connectivity based on shortest paths
K Graph node connectivity
Kapprox Graph node connectivity based on approximate algorithm
ntarget Number of target nodes tested in search for optimal vs
ntrial Number of starting nodes tested in search for optimal vs
tapprox Run time for approximate node connectivity algorithm based on shortest paths
tfast Run time for fast node connectivity algorithm (presented in this paper)
torig Run time for original node connectivity algorithm
tworst-case Worst-case run time for fast node connectivity algorithm
V, |V| Nodes, number of nodes in graph

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

3

2 Related Work

The determination of K is a computationally challenging problem (for a good over-
view of both node and edge connectivity algorithms, see [8]). Several approaches have
been designed for this purpose that rely on the underlying evaluation of a max flow
function. This in turn is based on Menger’s theorem, which states that for a pair of non-
adjacent nodes in an undirected graph, the number of node independent paths between
the pair (i.e. paths that have no nodes in common other than the starting and ending
points) is equal to the number of nodes that must be removed from the graph so that no
paths remain between the pair [9]. Let k(G, v, w) be the local node connectivity function
that returns the number of independent paths between vertices v and w in graph G. A
brute force approach to finding K would be to simply calculate k(G, v, w) for all non-
adjacent pairs of nodes in G and take the minimum value. It should be noted that there
are several algorithms that do not rely on max flow, either addressing specific problems
such as confirming 3-connectivity [10] or 4-connectivity [11] or the general case using
random methods [12]. We will limit our discussions to only those that use max flow.

Several authors have developed schemes that minimize the number of calls to k,
leading to much better scaling. Even and Tarjan presented an algorithm that required
(K + 1)(|V| - d - 1) – ½ K(K + 1) calls to the max flow function [13]. Esfahanian and
Hakimi further reduced the number of calls to (|V| - d - 1) + ½ K(2d - K - 3) [14]. They
noted that for each minimum node cut set in G, there exists at least one node that does
not belong to the cut set. A randomly chosen node therefore either belongs to every
minimum cut set or is outside of at least one minimum cut set. In the first case, it is
sufficient to calculate the number of node independent paths between all pairs of non-
adjacent neighbors of the selected node (i.e. between neighbors of the selected node
that are not themselves neighbors). In the second case, we need to calculate the node
connectivity between the selected node and all non-neighboring nodes. This algorithm,
which accounts for both cases, can be expressed as follows.

G = (V, E)
K ¬ d
select arbitrary node vs such that d(v) == K
for w in V \ {{neighbors(vs)} ∪ {vs}}
 K ¬ min(k(G, vs, w), K)
for x, y in {neighbors(vs)} such that x, y non-adjacent
 K ¬ min(k(G, x, y), K)

Improvements to the performance of this graph node connectivity algorithm would

require either a further reduction in the number of evaluations of k or the implementa-
tion of a faster method for calculating k. Esfahanian and Hakimi had already considered
the former and described a procedure for limiting the number of target nodes in the case
where vs is not a member of the minimum cut set. Although not considered in their
paper, identifying a starting node vs with the absolute smallest number of non-adjacent
neighbors from among the minimal degree nodes could lead to a reduction in number

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

4

of calls to k, but for large graphs this would make a negligible difference. Regarding
the latter option, although it might be possible to find more efficient ways to calculate
k, multiple algorithms already exist and additional progress would be extremely diffi-
cult.

Our approach is described in the next section and, while related to the efficient eval-
uation of k, does not require the development of a new or refinement of an existing max
flow algorithm. Instead, we use a combination of the approximate and exact algorithms
for k to boost performance while still guaranteeing an accurate result for K.

3 Faster Computation of Graph Node Connectivity

An approximate algorithm for calculating the local node connectivity, denoted kapprox,
is based on the repeated identification of the shortest path between the pair of nodes
[15]. The shortest path is first identified and nodes on this path are marked as visited.
The next shortest path involving only unvisited nodes is then determined and the nodes
on that path are also marked as visited. The process is repeated until no paths remain
between the node pair that involve only unvisited nodes. This approximate algorithm is
extremely fast since the shortest path calculations are much more efficient than any
known max flow algorithm. An approximate method for finding K simply replaces the
calls to k with kapprox. The use of this approximation has also been applied to the prob-
lem of finding the k-components of a graph, where a k-component is the maximal sub-
graph with node connectivity equal to at least k [16]. The obvious downside of using
kapprox instead of k is that we trade accuracy for speed. While the approximate local
node connectivity algorithm often agrees with the result of the max flow function, a
single discrepancy can lead to an incorrect result for K.

Fortunately, there is a way that we can exploit the efficiency of the approximation
while still obtaining an exact result. We note that kapprox always returns a lower bound
on the true local node connectivity since the max flow algorithm can identify node in-
dependent paths that are not necessarily shortest paths. The condition kapprox(G, v, w) ≤
k(G, v, w) holds for all (v, w) in G.

This means that we can first perform the approximate calculation and then repeat the
exact calculation only if kapprox is less than the value currently assigned to K, resulting
in a modified algorithm that can leverage the better performance of the approximation
while still guaranteed to yield the correct result. This is illustrated below.

K ¬ d
select arbitrary node vs such that d(v) == K
for w in V \ {{neighbors(vs)} ∪{vs}}
 if kapprox(G, vs, w) < K
 K ¬ min(k(G, vs, w), K)
for x, y in {neighbors(vs)} such that x, y non-adjacent
 if kapprox(G, x, y) < K
 K ¬ min(k(G, x, y), K)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

5

We define the following conventions used in the remainder of the paper. The origi-
nal algorithm refers to Esfahanian and Hakimi, which exclusively uses k for the local
node connectivity calculations. The fast algorithm, described above, uses a combination
of k and kapprox while ensuring the correct result. The approximate algorithm (intro-
duced in [15]) relies entirely on kapprox and is not guaranteed to give the correct answer.

The performance benefits depend on the relative costs of evaluating kapprox and k,
along with the number of calls to k that can be avoided. Let N be the number of calls to
k in the original algorithm. The computational expense is then N<t(k)>, where <t(k)>
is the average time needed to evaluate k. In the best case, where kapprox(G, v, w) is
greater than or equal to the initial value assigned to K for all node pairs (a, b) that are
tested, no calls need to be made to k and the run time of the new algorithm will be
N<t(kapprox)>. In the worst case, where kapprox(G, v, w) is always less than the running
value for K, the run time will be N<t(kapprox)> + N<t(k)>. In general, kapprox(G, v, w)
will be less than K for a fraction p of the calls and the computational expense is
N<t(kapprox)> + pN<t(k)>. Note that in order to avoid having to calculate k, it is not
necessary that kapprox return the correct result. Rather, we only require that kapprox(G, v,
w) be greater than or equal to the running value for K.

Assuming that <t(kapprox)> is small compared to <t(k)>, the scaling of the fast
algorithm with |V|, K and d will be the same as that for the original algorithm but with
overall run time multiplied by a factor of p.

There can be significant variation in the value of p for different choices of the start-
ing node vs. Finding with absolute certainty the best node would incur considerable
expense since it entails determining K for each node of minimal degree. Our solution is
to consider a subset of the minimal degree nodes and evaluate kapprox between the trial
starting node and a random set of non-neighboring nodes. We then choose as vs the
node that satisfies the condition kapprox < d with the lowest frequency.

G = (V, E)
for v in X Í {x : d(x) == d}; where |X| == ntrial
 c(v) ¬ 0
for w in Y Í V \ {neighbors(v)} \ {v}; where |Y| == ntarget
 if kapprox(G, v, w) < d
 c(v) ¬ c(v) + 1
vs ¬ {v : c(v) == min(c(v)}

We want to choose the numbers of trial nodes (ntrial) and test evaluations of kapprox

for each trial node (ntarget) to be large enough to obtain a sufficiently small value for p,
but not so large that we expend significant computational effort in the search for vs.

4 Implementation

As our starting point, we use the Esfahanian and Hakimi algorithm as deployed in the
node_connectivity function of the NetworkX Python package. This enables us to meas-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

6

ure the benefits of our modified algorithm in the context of a state-of-the-art implemen-
tation and to take advantage of the full NetworkX framework for our benchmarks. The
NetworkX version also builds an auxiliary digraph and residual network that are passed
as additional arguments to the local node connectivity function, leading to improved
performance. The node_connectivity function can accept one of several max flow func-
tions and we use the current default (Edmonds-Karp in NetworkX 2.1). For the evalu-
ation of kapprox we use the approximate node_connectivity function, which can be called
after importing the NetworkX approximation module.

The deployment of our new algorithm involves minimal changes to the original ver-
sion. In the most basic implementation, this only requires the addition of several state-
ments to evaluate kapprox(G, v, w) and test whether the result is less than the running
value of K. A small amount of extra code allows one to choose between using a partic-
ular starting node vs that is passed as an input argument or automatically selecting vs
from among candidate nodes of minimal degree. We also provide an option that forces
the algorithm to simulate the worst case by evaluating kapprox and ignoring the result
regardless of how it compares to the running value for K, leading to both k and kapprox
being called for each node pair. Although this option would not be used in practice, it
is useful for testing purposes and providing a bound on the worst case.

It should be noted that the NetworkX package specifically or a Python implementa-
tion in general will likely have lower performance than an implementation in a com-
piled language such as C++. We are aware of these limitations, but as described earlier,
using NetworkX provides the convenience of being able to work in a complete graph
analytics package. The simplicity of our modifications to the original algorithm make
them easy enough to employ in an implementation in any language where the user has
access to the necessary graph libraries. The performance gains should be comparable
to what we see using NetworkX, but the exact speedup will depend on the relative com-
putational expense of the max flow and shortest path calculations.

5 Results

Here we compare the performance of our algorithm against the original and approxi-
mate algorithms for several types of graphs. We start with a collection of random graphs
of varying sizes and densities generated using three different well-known models. We
then apply our method to a set of graphs generated from a real-life anonymized social
network, starting with the largest embedded 3-component and ending with the largest
embedded 7-component. This social network example includes several intermediate
graphs generated during the iterative process used to find these embedded components.

In all these benchmarks, the reported times for our method include the overhead
associated with choosing an appropriate starting node vs. We used up to 10 trial nodes
(ntrial) and 100 target nodes (ntarget). If there are fewer than 10 nodes with d(v) equal to
d, all minimum-degree nodes are used.

We also address two issues raised earlier. The first regards the dependence of the
run time on the choice of the source node vs. The second concerns the overhead associ-
ated with the worst case where kapprox is always less than the running value for K and

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

7

the evaluation of the exact algorithm for the local node connectivity can never be
avoided. All timings are obtained running the benchmarks with Python 3.6.4 and Net-
workX 2.1 on a 1.8 GHz Intel Core i5 with 8 GB 1600 MHz DDR3.

5.1 Random Graphs

We present benchmark results for graphs generated using the Barabasi-Albert [17],
Erdös-Renyi [18] and Watts-Strogatz [19] models for a range of graph sizes and edge
counts in Tables 2-4, respectively. The Barabasi-Albert model generates scale-free net-
works in which the degree distribution of the nodes follows a power-law of approxi-
mately k-3. This is accomplished using a preferential attachment model whereby nodes
of higher degree are more likely to be assigned new edges. The Erdös-Renyi model
produces random graphs where each potential edge in the graph is independently cre-
ated with a fixed probability. The Watts-Strogatz model creates graphs having small-
world properties by starting with a ring lattice where each node is connected to a given
number of neighbors and then rewiring the edges with a given probability. Keep in
mind that rerunning the examples will produce different results since new graphs will
be randomly generated and there is a variation in run time even when working with the
same graphs.

Table 2. Performance of original and fast algorithms for random Barabasi-Albert graphs using
seed equal to 1456789356 + n + m. The model parameters n and m are the number of nodes and
number of edges from the newly added node to existing nodes as the graph is grown, respectively.
|E| is the number of edges in graph, K is the node connectivity, tapprox, tfast and torig are the times
taken by approximate, fast and original algorithms, respectively, to find the node connectivity
and speedup is the ratio torig / tfast. All times reported in seconds.

n m |E| K tapprox tfast torig speedup
1,000 4 3,984 4 0.10 0.36 15.31 42.53
1,000 6 5,964 6 0.17 0.45 21.06 46.80
1,000 8 7,936 8 0.24 0.75 28.07 37.43
1,000 10 9,900 10 0.32 1.30 31.14 23.95
2,000 4 7.984 4 0.31 0.75 52.31 69.75
2,000 6 11,964 6 0.46 1.08 69.72 64.56
2,000 8 15,936 8 0.63 1.43 98.15 68.64
2,000 10 19,900 10 1.30 1.99 120.26 60.43
4,000 4 15,984 4 0.91 1.67 238.77 142.98
4,000 6 23.964 6 1.30 2.68 332.70 124.14
4,000 8 31,936 8 1.91 3.15 373.17 118.47
4,000 10 39,900 10 2.68 4.86 446.49 91.87
8,000 4 31.984 4 2.88 3.97 851.88 214.58
8,000 6 47,964 6 2.65 4.48 1,170.44 261.26
8,000 8 63,936 8 4.86 6.92 1,470.57 212.51
8,000 10 79,900 10 5.81 8.95 1,747.80 195.28
16,000 4 63,984 4 5.90 8.22 3,496.00 425.30
16,000 6 95,964 6 7.97 11.31 4,692.47 414.90
16,000 8 127,936 8 15.83 20.85 5,941.14 284.95
16,000 10 159,900 10 14.05 19.52 7,250.68 371.45

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

8

Table 3. Performance of original and fast algorithms for random Erdös-Renyi graphs using seed
equal to 1456789356 + n + 1000*p. The model parameters n and p are the number of nodes and
probability of edge creation, respectively. |E| is the number of edges in graph, K is the node
connectivity, tapprox, tfast and torig are the times taken by approximate, fast and original algorithms,
respectively, to find the node connectivity and speedup is the ratio torig / tfast. All times reported
in seconds.

n p |E| K tapprox tfast torig speedup
1,000 0.01 4,965 3 0.10 0.32 16.86 52.69
1,000 0.02 9,988 8 0.31 0.52 34.84 67.00
1,000 0.04 15,004 13 0.59 1.24 58.35 47.06
2,000 0.01 20,019 6 0.61 1.30 113.60 87.38
2,000 0.02 40,007 21 3.60 5.55 311.78 56.18
4,000 0.03 59,761 35 8.58 13.07 648.37 49.61
4,000 0.01 80,443 18 7.24 10.33 986.54 95.50
4,000 0.02 159,306 51 58.99 64.49 3,648.42 56.57
4,000 0.03 240,767 89 111.60 216.73 11,576.66 53.42

Table 4. Performance of original and fast algorithms for random Watts-Strogatz graphs using
seed equal to 1456789356 + n + k. The model parameters n and k are the number of nodes and
number of neighbors to join in ring topology, respectively. Rewiring probability was set to 0.10
for all graphs. |E| is the number of edges in graph, K is the node connectivity, tapprox, tfast and torig
are the times taken by approximate, fast and original algorithms, respectively, to find the node
connectivity and speedup is the ratio torig / tfast. All times reported in seconds. Incorrect result
returned by approximate algorithm marked with *.

n k |E| K tapprox tfast torig speedup
1,000 5 2,000 2 0.23 0.38 11.00 28.95
1,000 7 3,000 3 0.35 0.42 13.45 32.02
1,000 9 4,000 5 0.50 0.75 18.72 24.96
2,000 5 4,000 2 0.54 1.03 38.35 37.23
2,000 7 6,000 3 0.81 0.84 50.69 60.35
2,000 9 8,000 5 1.20 2.19 67.96 31.03
4,000 5 8,000 2 1.23 1.95 129.42 66.37
4,000 7 12,000 3 2.25 2.48 177.92 71.74
4,000 9 16,000 5 3.73 5.71 215.24 37.70
8,000 5 16,000 2 6.22 7.70 592.69 76.97
8,000 7 24,000 3 6.09* 7.80 699.72 89.71
8,000 9 32,000 4 9.34 8.27 841.16 101.71
16,000 5 32,000 2 10.77 13.24 2,167.33 163.70
16,000 7 48,000 3 15.98 16.77 2,488.67 148.40
16,000 9 64,000 4 23.78 21.84 3,259.02 149.22

For the Barabasi-Albert graphs, we observe speedups ranging from 24x to 425x,

with the speedup increasing with the number of nodes and showing a weak dependence
on the parameter m, which specifies the number of edges from the newly added node
to existing nodes during the construction of the graph. For the Erdös-Renyi graphs, we
obtained speedups ranging from 47x to 95x, with weak dependence on the graph size
and reduced benefits at larger values of the edge creation probability. For the Watts-
Strogatz graphs, speedups ranged from 25x to 149x. We obtained noticeably weaker

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

9

gains for smaller graphs, but this might reflect the overhead in searching for vs. The
performance gains also decrease as the parameter k, which sets the number of neighbors
to join in the ring topology, is increased.

Although there is considerable variation in the speedup when applying our algorithm
to graphs created using different models and parameters, we consistently observe sig-
nificant gains of at least one order of magnitude reduction in run time.

For the random graphs, we found that the approximate algorithm nearly always re-
turned the correct result while only taking 30-80% as long as our fast algorithm. While
it is tempting to simply rely on the approximate algorithm, there is no guarantee of
accuracy as seen in Table 4 and demonstrated in the next section.

5.2 Social Network Example

Table 5 contains the results of benchmarks for subgraphs extracted from a large social
network. The performance gains, while still significant, are less dramatic than those
obtained when applying our fast algorithm to the random graphs. They range from a 5x
speedup for the largest 7-component to 31x for the largest pre-5-component, the penul-
timate graph generated during the iterative search for the largest 5-component [20]. The
fast algorithm did extremely well for the most challenging problem, reducing the time
to find the connectivity for the largest 3-component from nearly eight hours to about
17 minutes. Most importantly though, our algorithm produced the correct result
whereas the approximate algorithm underestimated the connectivity for seven out of
the eight graphs tested.

Table 5. Performance of original and fast algorithms on subgraphs of large social network. Nam-
ing convention for graphs: X-comp is the largest k-component in graph and pre-X is the largest
graph found in last step of iterative process during search for k-component. K is the true node
connectivity and Kapprox is the connectivity reported by the approximate algorithm; |V| (equivalent
to n in the random graph models in tables 2-4) and |E| are the number of nodes and edges; tapprox,
tfast and torig are the times taken by approximate, fast and original algorithms; speedup is the ratio
torig / tfast. All times reported in seconds.

graph K Kapprox |V| |E| tapprox tfast torig speedup
7-comp 7 5 542 3,704 0.37 2.75 14.20 5.16
pre-7 6 6 573 3,889 0.77 1.02 15.82 15.51
6-comp 6 4 3,089 19,002 13.97 69.59 468.29 6.73
pre-6 5 3 3,636 22,166 12.50 45.51 520.58 11.44
5-comp 5 3 9,864 53,732 38.39 210.85 2653.61 12.59
pre-5 4 3 9,923 53,996 37.02 79.87 2508.79 31.41
4-comp 4 2 19,948 94,630 41.15 518.87 9540.75 18.39
3-comp 3 1 37,938 150,453 109.03 1017.04 28351.48 27.88

5.3 Dependence on Choice of Starting Node

The performance of the fast algorithm depends critically on the frequency with which
the exact local node connectivity calculation can be avoided. We found, particularly for

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

10

the subgraphs extracted from the social network, that this frequency in turn depends on
the choice of starting node vs.

Let nk(vs) be the number of evaluations of k given vs. Figure 2 shows the run time as
a function of nk(vs) for the fast algorithm applied to the largest 6-component using all
451 minimal degree nodes (d = 6) as starting points. The time varies from 51 seconds
to 552 seconds, with the corresponding values of nk(vs) equal to 199 and 2,996, respec-
tively. Although the run time tracks closely with nk(vs), there is still some variation. For
example, using the starting node that maximized nk(vs) with a value of 3,079, the run
time was only 479 seconds. While long compared to the best cases, this is still consid-
erably less than the longest run time. At the other end of the spectrum, there can be a
30% variation in run time for starting nodes with the same or nearly the same value for
nk(vs). This spread reflects the fact that the overall run time depends not only on nk(vs),
but also in the variation in the time needed to execute k for different node pairs.

Fig. 2. Dependence of the fast algorithm performance on choice of starting node (vs) when ap-
plied to the largest 6-component in large social network. Each marker represents one of the 451
minimal degree (d = 6) nodes. nexact is the number of calls to k and tfast is the time required by the
fast algorithm.

These results reaffirm the importance of carefully selecting vs. In this particular case,
nearly 80% of the starting nodes lead to performance that is at least 4x better than the
original algorithm. Evaluating even a small number of choices for vs before launching
the full calculation drastically reduces the likelihood of a poor outcome.

5.4 Worst-case Performance

Here we compare the worst-case performance of our algorithm against the standard
algorithm for a collection of random graphs. As noted in the previous section, the choice
for vs affects the run time in two ways – the number of calls that must be made to k and

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

11

the variation in the computational expense of evaluating k for different node pairs. To
allow for a fair comparison, each pair of runs using the original and fast algorithms is
done using the same choice for vs.

The results are shown in Table 6. To simulate the worst case, we evaluate kapprox as
usual, but then ignore the result and require that k still be executed. We find that the
fast algorithm takes at most a few percent longer than the original algorithm, although
in several instances we measured it to be slightly faster. Since the worst case basically
involves running the original algorithm plus the overhead associated with the execution
of kapprox, this finding can be attributed to the natural variability in runtime.

Table 6. Performance of original and worst-case fast algorithm. K is the node connectivity; tworst-

case and torig are the times of the worst case for the fast algorithm and original algorithm, respec-
tively. For the worst-case, the fast algorithm was deliberately modified so that the exact local
node connectivity was calculated for every node pair that was considered, even if the approximate
node connectivity was greater than or equal to the running value for graph node connectivity. For
each choice of model and parameters, test was run on five different random graphs. All times
reported in seconds.

Model K tworst-case torig speedup
Barabasi-Albert (n=2000, m=4) 4 67.25 68.10 1.01
Barabasi-Albert (n=2000, m=4) 4 67.48 66.44 0.98
Barabasi-Albert (n=2000, m=4) 4 67.65 67.19 0.99
Barabasi-Albert (n=2000, m=4) 4 68.08 66.78 0.98
Barabasi-Albert (n=2000, m=4) 4 68.82 67.96 0.99
Erdos-Renyi (n=1000, p=0.03) 13 57.87 57.45 0.99
Erdos-Renyi (n=1000, p=0.03) 15 62.67 60.97 0.97
Erdos-Renyi (n=1000, p=0.03) 12 55.81 55.29 0.99

6 Discussion

The main challenge going forward is improving the selection of the starting node vs. As
we described earlier, finding the optimal choice would generally be prohibitively ex-
pensive since it requires running the full algorithm for every minimal degree node. Fur-
thermore, it’s not entirely obvious that a minimal degree node is the best option. Esfa-
hanian and Hakimi made this decision in order to minimize the number of calls to k.
Choosing a starting node of higher degree might minimize the frequency with which
kapprox is less than the running value for K, but these benefits could be offset by a larger
number of calculations. Even within our current scheme, additional progress is possi-
ble. Our default is to select 10 trial starting nodes and evaluate kapprox for 100 different
non-neighboring nodes. Increasing either ntrial or ntarget improves the odds of finding a
good choice for vs, but also increases the overhead costs. To further complicate the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

12

situation, the values that strike the right balance between the extra overhead and likeli-
hood of finding an optimal, or close to optimal, choice are probably dependent on the
properties of the graph.

Our work focuses on improving the performance of the general algorithm, but it
should be kept in mind that there are several simple steps that should be taken before
undertaking the more expensive calculations. Graphs with d equal to two have a maxi-
mum K of two and testing for articulation points – nodes whose removal results in a
disconnected graph – quickly identifies graphs with K equal to one.

There are several additional avenues for future work. Our proposed improvements
are not limited to the Esfahanian and Hakimi algorithm and can easily be incorporated
into other schemes that rely on the max flow calculation for determining node connec-
tivity [13, 21] or deciding if the node connectivity is at least k [21, 22]. We are also
considering parallelization of the algorithm since the local node connectivity calcula-
tions can be done independently. One complication is that determining the validity of
the shortest paths-based approximation depends on the running value for the overall
graph node connectivity. This could be addressed by periodic synchronization between
threads and backtracking when required.

Another possible application is to the more difficult problem of identifying the k-
components of a graph. The method described by Moody and White [23] relies on the
repeated execution of two computationally demanding steps: determining the connec-
tivity of a graph or subgraph and finding all minimum sized cut sets using Kanevsky’s
algorithm [24]. Replacing the former with our faster implementation can yield imme-
diate performance gains, although the magnitude will depend on the relative amounts
of time spent in the two steps. Our preliminary benchmarks indicate that the improve-
ments are modest, generally around 10-15%, but additional work remains to be done.
Nonetheless, given the interest in k-components, especially from researchers in the so-
cial sciences [1-6], even small improvements will be welcome.

In conclusion, our new graph node connectivity algorithm effectively leverages the
performance of the fast approximation to the local node connectivity (kapprox) while still
being guaranteed to give the correct result. Although there is significant variation in
performance relative to the original algorithm, depending on the size and complexity
of the graph, we find that in every instance there are unambiguous benefits. The worst-
case scenario, which we have not encountered in any test and that we can simulate only
by forcing kapprox and k to be calculated for every node pair considered, only results in
at most a few percent degradation in performance.

The improved algorithm, test data and Jupyter notebook for running the benchmarks
can be downloaded at https://github.com/sinkovit/node-connectivity-fast.

7 Acknowledgments

The author thanks Doug White for many useful discussions and for introducing him
to the challenging problems in node connectivity and the identification of k-components
in large graphs. Early stages of this work were supported in part by National Science
Foundation grants OCI #0910847 Gordon: A Data Intensive Supercomputer and

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

13

ACI#1053575 XSEDE: eXtreme Science and Engineering Discovery Environment
(XSEDE) through the ECSS program.

References

1. Kreager, D.A., K. Rulison, and J. Moody, Delinquency and the structure of adolescent peer
groups. Criminology, 2011. 49(1): p. 95-127.

2. Mani, D. and J. Moody, Moving beyond stylized economic network models: The hybrid
world of the Indian firm ownership network. AJS; American Journal of Sociology, 2014.
119(8): p. 1629.

3. Moody, J. and J. Coleman, Clustering and cohesion in networks: Concepts and measures.
International Encyclopedia of Social and Behavioral Sciences, 2014.

4. Moody, J. and P.J. Mucha, Portrait of political party polarization. Network Science, 2013.
1(01): p. 119-121.

5. Newman, M.E., Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 2006. 103(23): p. 8577-8582.

6. Porter, M.A., J.-P. Onnela, and P.J. Mucha, Communities in networks. Notices of the AMS,
2009. 56(9): p. 1082-1097.

7. Sporns, O., Graph theory methods for the analysis of neural connectivity patterns, in
Neuroscience databases. 2003, Springer. p. 171-185.

8. Esfahanian, A.H., Connectivity algorithms. URL: http://www.cse.msu.edu/~cse835/Pa-
pers/Graph_connectivity_revised.pdf, 2013.

9. Menger, K., Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 1927. 10(1): p. 96-
115.

10. Hopcroft, J.E. and R.E. Tarjan, Dividing a graph into triconnected components. SIAM
Journal on Computing, 1973. 2(3): p. 135-158.

11. Kanevsky, A. and V. Ramachandran. Improved algorithms for graph four-connectivity. in
Foundations of Computer Science, 1987., 28th Annual Symposium on. 1987. IEEE.

12. Henzinger, M.R., S. Rao, and H.N. Gabow, Computing vertex connectivity: New bounds
from old techniques. Journal of Algorithms, 2000. 34(2): p. 222-250.

13. Even, S. and R.E. Tarjan, Network flow and testing graph connectivity. SIAM journal on
computing, 1975. 4(4): p. 507-518.

14. Esfahanian, A.H. and S. Louis Hakimi, On computing the connectivities of graphs and
digraphs. Networks, 1984. 14(2): p. 355-366.

15. White, D.R. and M. Newman, Fast approximation algorithms for finding node-independent
paths in networks. Santa Fe Institute Working Papers Series. Available at SSRN:
ssrn.com/abstract_id=1831790, June 29, 2001.

16. Torrents, J. and F. Ferraro, Structural Cohesion: Visualization and Heuristics for Fast
Computation. Journal of Social Structure, 2015. 16(8): p. 1-35.

17. Barabási, A.-L. and R. Albert, Emergence of scaling in random networks. science, 1999.
286(5439): p. 509-512.

18. Erdős, P. and A. Rényi, On the strength of connectedness of a random graph. Acta
Mathematica Hungarica, 1961. 12(1-2): p. 261-267.

19. Watts, D.J. and S.H. Strogatz, Collective dynamics of ‘small-world’networks. nature, 1998.
393(6684): p. 440.

20. Sinkovits, R.S., J. Moody, B.T. Oztan, and D.R. White, Fast determination of structurally
cohesive subgroups in large networks. Journal of Computational Science, 2016. 17: p. 62-
72.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

14

21. Galil, Z. and G.F. Italiano. Fully dynamic algorithms for edge connectivity problems. in
Proceedings of the twenty-third annual ACM symposium on Theory of computing. 1991.
ACM.

22. Even, S., An algorithm for determining whether the connectivity of a graph is at least k.
SIAM Journal on Computing, 1975. 4(3): p. 393-396.

23. Moody, J. and D.R. White, Structural cohesion and embeddedness: A hierarchical concept
of social groups. American Sociological Review, 2003: p. 103-127.

24. Kanevsky, A., Finding all minimum-size separating vertex sets in a graph. Networks, 1993.
23(6): p. 533-541.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41

