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Abstract. For an undirected graph G, the node connectivity K is defined as the 
minimum number of nodes that must be removed to make the graph discon-
nected. The determination of K is a computationally demanding task for large 
graphs since even the most efficient algorithms require many evaluations of an 
expensive max flow function. Approximation methods for determining K replace 
the max flow function with a much faster algorithm that gives a lower bound on 
the number of node independent paths, but this frequently leads to an underesti-
mate of K. We show here that with minor changes, the approximate method can 
be adapted to retain most of the performance benefits while still guaranteeing an 
accurate result. 

Keywords: Graph algorithm, node connectivity, approximation methods, k-
components. 

1 Introduction 

Given an undirected graph, what is the smallest number of nodes that need to be re-
moved so that the graph is broken into two or more disjoint components (i.e. there no 
longer exist paths connecting all possible pairs of nodes)? Like many problems in com-
puter science, the question is easy to pose, but can be difficult to solve. Although the 
minimum node degree provides an upper bound, even highly connected graphs can be-
come fragmented by the removal of just a few nodes (Fig. 1). The crux of our contri-
bution is recognizing that the expensive vertex disjoint paths calculations underlying 
the solution of the node connectivity problem can first be estimated using a much faster 
approximate algorithm. We can easily determine when the approximation is invalid and 
revert to the more expensive calculation where necessary, thereby guaranteeing that we 
get the correct result. 

The node connectivity problem is not just of theoretical interest, but is highly rele-
vant to a number of fields. It has been applied to the impact of peer groups on juvenile 
delinquency [1], economic network models [2], clustering in social networks [3], polit-
ical polarization [4], community structure [5, 6] and neural connectivity [7]. 

In the remainder section we define the conventions and nomenclature that will be 
used throughout the paper and describe the current state of the art in the calculation of 
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the graph node connectivity. This is followed by descriptions of our new faster algo-
rithm (section 2), the implementation (section 3), results of computational experiments 
(section 4) and finally a discussion and future work (section 5). Notation and symbols 
used repeatedly in the manuscript are summarized in Table 1. 

A graph G = (V, E) is specified by a collection of nodes V(G) and the edges E(G) 
that connect pairs of nodes. An undirected graph is a graph for which the edges do not 
have a directionality. The numbers of nodes and edges in the graph are denoted by 
|V(G)| and |E(G)|, respectively. Since we are working with a single graph, we simply 
denote the node and edge counts as |V| and |E|. The degree of a node, d(v), is the number 
of edges that connect to node v and d is the minimum vertex degree across all nodes in 
the graph. A set of nodes S whose removal makes the graph disconnected is a cut set 
and the node connectivity K of a graph is defined as the size of the minimal cut set.  

 
Fig. 1. Removal of gray nodes separates graphs into two disjoint graphs (blue and red nodes). In 
panel A, the degree of the blue node is the same as the number of nodes that need to be removed. 
In panel B, although no node has degree less than four, the removal of three nodes is sufficient. 

Table 1. Notation and symbols used in manuscript 

symbol definition 
v, w Nodes 
vs Starting node used in node connectivity algorithms 
d(v) Degree of node v 
d Minimum node degree 
E, |E| Edges, number of edges 
k Local node connectivity 
kapprox Approximate local node connectivity based on shortest paths 
K Graph node connectivity 
Kapprox Graph node connectivity based on approximate algorithm 
ntarget Number of target nodes tested in search for optimal vs 
ntrial Number of starting nodes tested in search for optimal vs 
tapprox Run time for approximate node connectivity algorithm based on shortest paths 
tfast Run time for fast node connectivity algorithm (presented in this paper) 
torig Run time for original node connectivity algorithm 
tworst-case Worst-case run time for fast node connectivity algorithm 
V, |V| Nodes, number of nodes in graph 
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2 Related Work 

The determination of K is a computationally challenging problem (for a good over-
view of both node and edge connectivity algorithms, see [8]). Several approaches have 
been designed for this purpose that rely on the underlying evaluation of a max flow 
function. This in turn is based on Menger’s theorem, which states that for a pair of non-
adjacent nodes in an undirected graph, the number of node independent paths between 
the pair (i.e. paths that have no nodes in common other than the starting and ending 
points) is equal to the number of nodes that must be removed from the graph so that no 
paths remain between the pair [9]. Let k(G, v, w) be the local node connectivity function 
that returns the number of independent paths between vertices v and w in graph G. A 
brute force approach to finding K would be to simply calculate k(G, v, w) for all non-
adjacent pairs of nodes in G and take the minimum value. It should be noted that there 
are several algorithms that do not rely on max flow, either addressing specific problems 
such as confirming 3-connectivity [10] or 4-connectivity [11] or the general case using 
random methods [12]. We will limit our discussions to only those that use max flow. 

Several authors have developed schemes that minimize the number of calls to k, 
leading to much better scaling. Even and Tarjan presented an algorithm that required 
(K + 1)(|V| - d  - 1) – ½ K(K + 1) calls to the max flow function [13]. Esfahanian and 
Hakimi further reduced the number of calls to (|V| - d - 1) + ½ K(2d - K - 3) [14]. They 
noted that for each minimum node cut set in G, there exists at least one node that does 
not belong to the cut set. A randomly chosen node therefore either belongs to every 
minimum cut set or is outside of at least one minimum cut set. In the first case, it is 
sufficient to calculate the number of node independent paths between all pairs of non-
adjacent neighbors of the selected node (i.e. between neighbors of the selected node 
that are not themselves neighbors). In the second case, we need to calculate the node 
connectivity between the selected node and all non-neighboring nodes. This algorithm, 
which accounts for both cases, can be expressed as follows. 

 
G = (V, E) 
K ¬ d 
select arbitrary node vs such that d(v) == K 
for w in V  \ {{neighbors(vs)} ∪ {vs}} 
 K ¬ min(k(G, vs, w), K) 
for x, y in {neighbors(vs)} such that x, y non-adjacent 
 K ¬ min(k(G, x, y), K) 
 
Improvements to the performance of this graph node connectivity algorithm would 

require either a further reduction in the number of evaluations of k or the implementa-
tion of a faster method for calculating k. Esfahanian and Hakimi had already considered 
the former and described a procedure for limiting the number of target nodes in the case 
where vs is not a member of the minimum cut set. Although not considered in their 
paper, identifying a starting node vs with the absolute smallest number of non-adjacent 
neighbors from among the minimal degree nodes could lead to a reduction in number 
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of calls to k, but for large graphs this would make a negligible difference. Regarding 
the latter option, although it might be possible to find more efficient ways to calculate 
k, multiple algorithms already exist and additional progress would be extremely diffi-
cult. 

Our approach is described in the next section and, while related to the efficient eval-
uation of k, does not require the development of a new or refinement of an existing max 
flow algorithm. Instead, we use a combination of the approximate and exact algorithms 
for k to boost performance while still guaranteeing an accurate result for K. 

3 Faster Computation of Graph Node Connectivity 

An approximate algorithm for calculating the local node connectivity, denoted kapprox, 
is based on the repeated identification of the shortest path between the pair of nodes 
[15]. The shortest path is first identified and nodes on this path are marked as visited. 
The next shortest path involving only unvisited nodes is then determined and the nodes 
on that path are also marked as visited. The process is repeated until no paths remain 
between the node pair that involve only unvisited nodes. This approximate algorithm is 
extremely fast since the shortest path calculations are much more efficient than any 
known max flow algorithm. An approximate method for finding K simply replaces the 
calls to k with kapprox. The use of this approximation has also been applied to the prob-
lem of finding the k-components of a graph, where a k-component is the maximal sub-
graph with node connectivity equal to at least k [16]. The obvious downside of using 
kapprox instead of k is that we trade accuracy for speed. While the approximate local 
node connectivity algorithm often agrees with the result of the max flow function, a 
single discrepancy can lead to an incorrect result for K. 

Fortunately, there is a way that we can exploit the efficiency of the approximation 
while still obtaining an exact result. We note that kapprox always returns a lower bound 
on the true local node connectivity since the max flow algorithm can identify node in-
dependent paths that are not necessarily shortest paths. The condition kapprox(G, v, w) ≤ 
k(G, v, w) holds for all (v, w) in G. 

This means that we can first perform the approximate calculation and then repeat the 
exact calculation only if kapprox is less than the value currently assigned to K, resulting 
in a modified algorithm that can leverage the better performance of the approximation 
while still guaranteed to yield the correct result. This is illustrated below. 

 
K ¬ d 
select arbitrary node vs such that d(v) == K 
for w in V  \ {{neighbors(vs)} ∪{vs}} 
 if kapprox(G, vs, w) < K 
  K ¬ min(k(G, vs, w), K) 
for x, y in {neighbors(vs)} such that x, y non-adjacent 
 if kapprox(G, x, y) < K 
  K ¬ min(k(G, x, y), K) 
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We define the following conventions used in the remainder of the paper. The origi-
nal algorithm refers to Esfahanian and Hakimi, which exclusively uses k for the local 
node connectivity calculations. The fast algorithm, described above, uses a combination 
of k and kapprox while ensuring the correct result. The approximate algorithm (intro-
duced in [15]) relies entirely on kapprox and is not guaranteed to give the correct answer. 

The performance benefits depend on the relative costs of evaluating kapprox and k, 
along with the number of calls to k that can be avoided. Let N be the number of calls to 
k in the original algorithm. The computational expense is then N<t(k)>, where <t(k)> 
is the average time needed to evaluate k. In the best case, where kapprox(G, v, w) is 
greater than or equal to the initial value assigned to K for all node pairs (a, b) that are 
tested, no calls need to be made to k and the run time of the new algorithm will be 
N<t(kapprox)>. In the worst case, where kapprox(G, v, w) is always less than the running 
value for K, the run time will be N<t(kapprox)> + N<t(k)>. In general, kapprox(G, v, w) 
will be less than K for a fraction p of the calls and the computational expense is 
N<t(kapprox)> + pN<t(k)>. Note that in order to avoid having to calculate k, it is not 
necessary that kapprox return the correct result. Rather, we only require that kapprox(G, v, 
w) be greater than or equal to the running value for K.  

Assuming that <t(kapprox)> is small compared to <t(k)>, the scaling of the fast 
algorithm with |V|, K and d will be the same as that for the original algorithm but with 
overall run time multiplied by a factor of p. 

There can be significant variation in the value of p for different choices of the start-
ing node vs. Finding with absolute certainty the best node would incur considerable 
expense since it entails determining K for each node of minimal degree. Our solution is 
to consider a subset of the minimal degree nodes and evaluate kapprox between the trial 
starting node and a random set of non-neighboring nodes. We then choose as vs the 
node that satisfies the condition kapprox < d with the lowest frequency. 

 
G = (V, E) 
for v  in X Í {x : d(x) == d};  where |X| == ntrial 
 c(v) ¬ 0 
for w in Y Í V  \ {neighbors(v)} \ {v}; where |Y| == ntarget 
 if kapprox(G, v, w) < d 
  c(v) ¬ c(v) + 1 
vs ¬ {v : c(v) == min(c(v)} 

 
We want to choose the numbers of trial nodes (ntrial) and test evaluations of kapprox 

for each trial node (ntarget) to be large enough to obtain a sufficiently small value for p, 
but not so large that we expend significant computational effort in the search for vs. 

4 Implementation 

As our starting point, we use the Esfahanian and Hakimi algorithm as deployed in the 
node_connectivity function of the NetworkX Python package. This enables us to meas-
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ure the benefits of our modified algorithm in the context of a state-of-the-art implemen-
tation and to take advantage of the full NetworkX framework for our benchmarks. The 
NetworkX version also builds an auxiliary digraph and residual network that are passed 
as additional arguments to the local node connectivity function, leading to improved 
performance. The node_connectivity function can accept one of several max flow func-
tions and we use the current default (Edmonds-Karp in NetworkX 2.1). For the evalu-
ation of kapprox we use the approximate node_connectivity function, which can be called 
after importing the NetworkX approximation module. 

The deployment of our new algorithm involves minimal changes to the original ver-
sion. In the most basic implementation, this only requires the addition of several state-
ments to evaluate kapprox(G, v, w) and test whether the result is less than the running 
value of K. A small amount of extra code allows one to choose between using a partic-
ular starting node vs that is passed as an input argument or automatically selecting vs 
from among candidate nodes of minimal degree. We also provide an option that forces 
the algorithm to simulate the worst case by evaluating kapprox and ignoring the result 
regardless of how it compares to the running value for K, leading to both k and kapprox 
being called for each node pair. Although this option would not be used in practice, it 
is useful for testing purposes and providing a bound on the worst case. 

It should be noted that the NetworkX package specifically or a Python implementa-
tion in general will likely have lower performance than an implementation in a com-
piled language such as C++. We are aware of these limitations, but as described earlier, 
using NetworkX provides the convenience of being able to work in a complete graph 
analytics package. The simplicity of our modifications to the original algorithm make 
them easy enough to employ in an implementation in any language where the user has 
access to the necessary graph libraries. The performance gains should be comparable 
to what we see using NetworkX, but the exact speedup will depend on the relative com-
putational expense of the max flow and shortest path calculations. 

5 Results 

Here we compare the performance of our algorithm against the original and approxi-
mate algorithms for several types of graphs. We start with a collection of random graphs 
of varying sizes and densities generated using three different well-known models. We 
then apply our method to a set of graphs generated from a real-life anonymized social 
network, starting with the largest embedded 3-component and ending with the largest 
embedded 7-component. This social network example includes several intermediate 
graphs generated during the iterative process used to find these embedded components. 

In all these benchmarks, the reported times for our method include the overhead 
associated with choosing an appropriate starting node vs. We used up to 10 trial nodes 
(ntrial) and 100 target nodes (ntarget). If there are fewer than 10 nodes with d(v) equal to 
d, all minimum-degree nodes are used. 

We also address two issues raised earlier. The first regards the dependence of the 
run time on the choice of the source node vs. The second concerns the overhead associ-
ated with the worst case where kapprox is always less than the running value for K and 

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_41

https://dx.doi.org/10.1007/978-3-030-77961-0_41


7 

the evaluation of the exact algorithm for the local node connectivity can never be 
avoided. All timings are obtained running the benchmarks with Python 3.6.4 and Net-
workX 2.1 on a 1.8 GHz Intel Core i5 with 8 GB 1600 MHz DDR3. 

5.1 Random Graphs 

We present benchmark results for graphs generated using the Barabasi-Albert [17], 
Erdös-Renyi [18] and Watts-Strogatz [19] models for a range of graph sizes and edge 
counts in Tables 2-4, respectively. The Barabasi-Albert model generates scale-free net-
works in which the degree distribution of the nodes follows a power-law of approxi-
mately k-3. This is accomplished using a preferential attachment model whereby nodes 
of higher degree are more likely to be assigned new edges. The Erdös-Renyi model 
produces random graphs where each potential edge in the graph is independently cre-
ated with a fixed probability. The Watts-Strogatz model creates graphs having small-
world properties by starting with a ring lattice where each node is connected to a given 
number of neighbors and then rewiring the edges with a given probability. Keep in 
mind that rerunning the examples will produce different results since new graphs will 
be randomly generated and there is a variation in run time even when working with the 
same graphs. 

Table 2. Performance of original and fast algorithms for random Barabasi-Albert graphs using 
seed equal to 1456789356 + n + m. The model parameters n and m are the number of nodes and 
number of edges from the newly added node to existing nodes as the graph is grown, respectively. 
|E| is the number of edges in graph, K is the node connectivity, tapprox, tfast and torig are the times 
taken by approximate, fast and original algorithms, respectively, to find the node connectivity 
and speedup is the ratio torig / tfast. All times reported in seconds.  

n m |E| K tapprox  tfast torig speedup 
1,000 4 3,984 4 0.10 0.36 15.31 42.53 
1,000 6 5,964 6 0.17 0.45 21.06 46.80 
1,000 8 7,936 8 0.24 0.75 28.07 37.43 
1,000 10 9,900 10 0.32 1.30 31.14 23.95 
2,000 4 7.984 4 0.31 0.75 52.31 69.75 
2,000 6 11,964 6 0.46 1.08 69.72 64.56 
2,000 8 15,936 8 0.63 1.43 98.15 68.64 
2,000 10 19,900 10 1.30 1.99 120.26 60.43 
4,000 4 15,984 4 0.91 1.67 238.77 142.98 
4,000 6 23.964 6 1.30 2.68 332.70 124.14 
4,000 8 31,936 8 1.91 3.15 373.17 118.47 
4,000 10 39,900 10 2.68 4.86 446.49 91.87 
8,000 4 31.984 4 2.88 3.97 851.88 214.58 
8,000 6 47,964 6 2.65 4.48 1,170.44 261.26 
8,000 8 63,936 8 4.86 6.92 1,470.57 212.51 
8,000 10 79,900 10 5.81 8.95 1,747.80 195.28 
16,000 4 63,984 4 5.90 8.22 3,496.00 425.30 
16,000 6 95,964 6 7.97 11.31 4,692.47 414.90 
16,000 8 127,936 8 15.83 20.85 5,941.14 284.95 
16,000 10 159,900 10 14.05 19.52 7,250.68 371.45 
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Table 3. Performance of original and fast algorithms for random Erdös-Renyi graphs using seed 
equal to 1456789356 + n + 1000*p. The model parameters n and p are the number of nodes and 
probability of edge creation, respectively. |E| is the number of edges in graph, K is the node 
connectivity, tapprox, tfast and torig are the times taken by approximate, fast and original algorithms, 
respectively, to find the node connectivity and speedup is the ratio torig / tfast. All times reported 
in seconds. 

n p |E| K tapprox tfast torig speedup 
1,000 0.01 4,965 3 0.10 0.32 16.86 52.69 
1,000 0.02 9,988 8 0.31 0.52 34.84 67.00 
1,000 0.04 15,004 13 0.59 1.24 58.35 47.06 
2,000 0.01 20,019 6 0.61 1.30 113.60 87.38 
2,000 0.02 40,007 21 3.60 5.55 311.78 56.18 
4,000 0.03 59,761 35 8.58 13.07 648.37 49.61 
4,000 0.01 80,443 18 7.24 10.33 986.54 95.50 
4,000 0.02 159,306 51 58.99 64.49 3,648.42 56.57 
4,000 0.03 240,767 89 111.60 216.73 11,576.66 53.42 

Table 4. Performance of original and fast algorithms for random Watts-Strogatz graphs using 
seed equal to 1456789356 + n + k. The model parameters n and k are the number of nodes and 
number of neighbors to join in ring topology, respectively. Rewiring probability was set to 0.10 
for all graphs. |E| is the number of edges in graph, K is the node connectivity, tapprox, tfast and torig 
are the times taken by approximate, fast and original algorithms, respectively, to find the node 
connectivity and speedup is the ratio torig / tfast. All times reported in seconds. Incorrect result 
returned by approximate algorithm marked with *. 

n k |E| K tapprox tfast torig speedup 
1,000 5 2,000 2 0.23 0.38 11.00 28.95 
1,000 7 3,000 3 0.35 0.42 13.45 32.02 
1,000 9 4,000 5 0.50 0.75 18.72 24.96 
2,000 5 4,000 2 0.54 1.03 38.35 37.23 
2,000 7 6,000 3 0.81 0.84 50.69 60.35 
2,000 9 8,000 5 1.20 2.19 67.96 31.03 
4,000 5 8,000 2 1.23 1.95 129.42 66.37 
4,000 7 12,000 3 2.25 2.48 177.92 71.74 
4,000 9 16,000 5 3.73 5.71 215.24 37.70 
8,000 5 16,000 2 6.22 7.70 592.69 76.97 
8,000 7 24,000 3 6.09* 7.80 699.72 89.71 
8,000 9 32,000 4 9.34 8.27 841.16 101.71 
16,000 5 32,000 2 10.77 13.24 2,167.33 163.70 
16,000 7 48,000 3 15.98 16.77 2,488.67 148.40 
16,000 9 64,000 4 23.78 21.84 3,259.02 149.22 

 
For the Barabasi-Albert graphs, we observe speedups ranging from 24x to 425x, 

with the speedup increasing with the number of nodes and showing a weak dependence 
on the parameter m, which specifies the number of edges from the newly added node 
to existing nodes during the construction of the graph. For the Erdös-Renyi graphs, we 
obtained speedups ranging from 47x to 95x, with weak dependence on the graph size 
and reduced benefits at larger values of the edge creation probability. For the Watts-
Strogatz graphs, speedups ranged from 25x to 149x. We obtained noticeably weaker 
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gains for smaller graphs, but this might reflect the overhead in searching for vs. The 
performance gains also decrease as the parameter k, which sets the number of neighbors 
to join in the ring topology, is increased. 

Although there is considerable variation in the speedup when applying our algorithm 
to graphs created using different models and parameters, we consistently observe sig-
nificant gains of at least one order of magnitude reduction in run time. 

For the random graphs, we found that the approximate algorithm nearly always re-
turned the correct result while only taking 30-80% as long as our fast algorithm. While 
it is tempting to simply rely on the approximate algorithm, there is no guarantee of 
accuracy as seen in Table 4 and demonstrated in the next section. 

5.2 Social Network Example 

Table 5 contains the results of benchmarks for subgraphs extracted from a large social 
network. The performance gains, while still significant, are less dramatic than those 
obtained when applying our fast algorithm to the random graphs. They range from a 5x 
speedup for the largest 7-component to 31x for the largest pre-5-component, the penul-
timate graph generated during the iterative search for the largest 5-component [20]. The 
fast algorithm did extremely well for the most challenging problem, reducing the time 
to find the connectivity for the largest 3-component from nearly eight hours to about 
17 minutes. Most importantly though, our algorithm produced the correct result 
whereas the approximate algorithm underestimated the connectivity for seven out of 
the eight graphs tested. 

Table 5. Performance of original and fast algorithms on subgraphs of large social network. Nam-
ing convention for graphs: X-comp is the largest k-component in graph and pre-X is the largest 
graph found in last step of iterative process during search for k-component. K is the true node 
connectivity and Kapprox is the connectivity reported by the approximate algorithm; |V| (equivalent 
to n in the random graph models in tables 2-4) and |E| are the number of nodes and edges; tapprox, 
tfast and torig are the times taken by approximate, fast and original algorithms; speedup is the ratio 
torig / tfast. All times reported in seconds. 

graph K Kapprox |V| |E| tapprox tfast torig speedup 
7-comp 7 5 542 3,704 0.37 2.75 14.20 5.16 
pre-7 6 6 573 3,889 0.77 1.02 15.82 15.51 
6-comp 6 4 3,089 19,002 13.97 69.59 468.29 6.73 
pre-6 5 3 3,636 22,166 12.50 45.51 520.58 11.44 
5-comp 5 3 9,864 53,732 38.39 210.85 2653.61 12.59 
pre-5 4 3 9,923 53,996 37.02 79.87 2508.79 31.41 
4-comp 4 2 19,948 94,630 41.15 518.87 9540.75 18.39 
3-comp 3 1 37,938 150,453 109.03 1017.04 28351.48 27.88 

 

5.3 Dependence on Choice of Starting Node 

The performance of the fast algorithm depends critically on the frequency with which 
the exact local node connectivity calculation can be avoided. We found, particularly for 
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the subgraphs extracted from the social network, that this frequency in turn depends on 
the choice of starting node vs. 

Let nk(vs) be the number of evaluations of k given vs. Figure 2 shows the run time as 
a function of nk(vs) for the fast algorithm applied to the largest 6-component using all 
451 minimal degree nodes (d = 6) as starting points. The time varies from 51 seconds 
to 552 seconds, with the corresponding values of nk(vs) equal to 199 and 2,996, respec-
tively. Although the run time tracks closely with nk(vs), there is still some variation. For 
example, using the starting node that maximized nk(vs) with a value of 3,079, the run 
time was only 479 seconds. While long compared to the best cases, this is still consid-
erably less than the longest run time. At the other end of the spectrum, there can be a 
30% variation in run time for starting nodes with the same or nearly the same value for 
nk(vs). This spread reflects the fact that the overall run time depends not only on nk(vs), 
but also in the variation in the time needed to execute k for different node pairs. 

 
Fig. 2. Dependence of the fast algorithm performance on choice of starting node (vs) when ap-
plied to the largest 6-component in large social network. Each marker represents one of the 451 
minimal degree (d = 6) nodes. nexact is the number of calls to k and tfast is the time required by the 
fast algorithm. 

These results reaffirm the importance of carefully selecting vs. In this particular case, 
nearly 80% of the starting nodes lead to performance that is at least 4x better than the 
original algorithm. Evaluating even a small number of choices for vs before launching 
the full calculation drastically reduces the likelihood of a poor outcome. 

5.4 Worst-case Performance 

Here we compare the worst-case performance of our algorithm against the standard 
algorithm for a collection of random graphs. As noted in the previous section, the choice 
for vs affects the run time in two ways – the number of calls that must be made to k and 
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the variation in the computational expense of evaluating k for different node pairs. To 
allow for a fair comparison, each pair of runs using the original and fast algorithms is 
done using the same choice for vs. 

The results are shown in Table 6. To simulate the worst case, we evaluate kapprox as 
usual, but then ignore the result and require that k still be executed. We find that the 
fast algorithm takes at most a few percent longer than the original algorithm, although 
in several instances we measured it to be slightly faster. Since the worst case basically 
involves running the original algorithm plus the overhead associated with the execution 
of kapprox, this finding can be attributed to the natural variability in runtime. 
 

Table 6. Performance of original and worst-case fast algorithm. K is the node connectivity; tworst-

case and torig are the times of the worst case for the fast algorithm and original algorithm, respec-
tively. For the worst-case, the fast algorithm was deliberately modified so that the exact local 
node connectivity was calculated for every node pair that was considered, even if the approximate 
node connectivity was greater than or equal to the running value for graph node connectivity. For 
each choice of model and parameters, test was run on five different random graphs. All times 
reported in seconds. 

Model K tworst-case torig speedup 
Barabasi-Albert (n=2000, m=4)  4 67.25 68.10 1.01 
Barabasi-Albert (n=2000, m=4) 4 67.48 66.44 0.98 
Barabasi-Albert (n=2000, m=4) 4 67.65 67.19 0.99 
Barabasi-Albert (n=2000, m=4) 4 68.08 66.78 0.98 
Barabasi-Albert (n=2000, m=4) 4 68.82 67.96 0.99 
Erdos-Renyi (n=1000, p=0.03) 13 57.87 57.45 0.99 
Erdos-Renyi (n=1000, p=0.03) 15 62.67 60.97 0.97 
Erdos-Renyi (n=1000, p=0.03) 12 55.81 55.29 0.99 

 

6 Discussion 

The main challenge going forward is improving the selection of the starting node vs. As 
we described earlier, finding the optimal choice would generally be prohibitively ex-
pensive since it requires running the full algorithm for every minimal degree node. Fur-
thermore, it’s not entirely obvious that a minimal degree node is the best option. Esfa-
hanian and Hakimi made this decision in order to minimize the number of calls to k. 
Choosing a starting node of higher degree might minimize the frequency with which 
kapprox is less than the running value for K, but these benefits could be offset by a larger 
number of calculations. Even within our current scheme, additional progress is possi-
ble. Our default is to select 10 trial starting nodes and evaluate kapprox for 100 different 
non-neighboring nodes. Increasing either ntrial or ntarget improves the odds of finding a 
good choice for vs, but also increases the overhead costs. To further complicate the 
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situation, the values that strike the right balance between the extra overhead and likeli-
hood of finding an optimal, or close to optimal, choice are probably dependent on the 
properties of the graph. 

Our work focuses on improving the performance of the general algorithm, but it 
should be kept in mind that there are several simple steps that should be taken before 
undertaking the more expensive calculations. Graphs with d equal to two have a maxi-
mum K of two and testing for articulation points – nodes whose removal results in a 
disconnected graph – quickly identifies graphs with K equal to one. 

There are several additional avenues for future work. Our proposed improvements 
are not limited to the Esfahanian and Hakimi algorithm and can easily be incorporated 
into other schemes that rely on the max flow calculation for determining node connec-
tivity [13, 21] or deciding if the node connectivity is at least k [21, 22]. We are also 
considering parallelization of the algorithm since the local node connectivity calcula-
tions can be done independently. One complication is that determining the validity of 
the shortest paths-based approximation depends on the running value for the overall 
graph node connectivity. This could be addressed by periodic synchronization between 
threads and backtracking when required. 

Another possible application is to the more difficult problem of identifying the k-
components of a graph. The method described by Moody and White [23] relies on the 
repeated execution of two computationally demanding steps: determining the connec-
tivity of a graph or subgraph and finding all minimum sized cut sets using Kanevsky’s 
algorithm [24]. Replacing the former with our faster implementation can yield imme-
diate performance gains, although the magnitude will depend on the relative amounts 
of time spent in the two steps. Our preliminary benchmarks indicate that the improve-
ments are modest, generally around 10-15%, but additional work remains to be done. 
Nonetheless, given the interest in k-components, especially from researchers in the so-
cial sciences [1-6], even small improvements will be welcome. 

In conclusion, our new graph node connectivity algorithm effectively leverages the 
performance of the fast approximation to the local node connectivity (kapprox) while still 
being guaranteed to give the correct result. Although there is significant variation in 
performance relative to the original algorithm, depending on the size and complexity 
of the graph, we find that in every instance there are unambiguous benefits. The worst-
case scenario, which we have not encountered in any test and that we can simulate only 
by forcing kapprox and k to be calculated for every node pair considered, only results in 
at most a few percent degradation in performance. 

The improved algorithm, test data and Jupyter notebook for running the benchmarks 
can be downloaded at https://github.com/sinkovit/node-connectivity-fast. 
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