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Abstract. This work proposes a new fuzzy logic based high resolution
(HR), total variation diminishing (TVD) scheme in finite volume frame-
works to compute an approximate solution of the shallow water equations
(SWEs). Fuzzy logic enhances the execution of classical numerical algo-
rithms. To test the effectiveness and accuracy of the proposed scheme,
the dam-break problem is considered. A comparison of the numerical re-
sults by implementing some classical flux limiting methods is provided.
The proposed scheme is able to capture both smooth and discontinuous
profiles, leading to better oscillation-free results.
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1 Introduction

Shallow-water equations are frequently employed in the situations which involve
the modelling of water flow corresponding to various water bodies such as lakes,
rivers, reservoirs, and other such variants in which the fluid depth metric is sig-
nificantly smaller than the horizontal length metric [14, 15, 21]. The standard
SWEs (also known as the Saint Venant equations), were initially introduced
about one and a half century ago and still these equations are used in various
applications [13, 11, 12]. For many practical, real-life models, such as dam-break
problems, flood problems, etc., these equations are frequently used. The solu-
tions to such systems are generally non-smooth and produce discontinuities also,
so it is essential to have a robust, efficient, and accurate numerical strategy for
the Shallow water system and related models. Finite-volume schemes are among
the most popular tools to tackle such situations.
The particular case in which SWEs are inviscid in nature, lead to an hyperbolic
system of equations, and all the robust numerical strategies [10, 9] that have
been constructed for hyperbolic conservation laws can be implemented to such
equations. From a mathematical standpoint, the hyperbolic equations are well
known to admit discontinuous solutions, and their numerical integration is ex-
pected to compute such discontinuities sharply and without oscillations. Based
on the classical HR-TVD flux limiting schemes, this work addresses a new hybrid
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flux limiting method [22, 17, 7], which is used in this work to approximate the
flow components at the midpoints of cell edges inside the control volumes of a
computational domain. Hyperbolic conservation laws govern SWEs. By defining
the SWEs with this broader class of equations, the opportunity to exploit the
set of techniques and mathematical tools previously established for these com-
putationally complicated situations opens up [14, 13, 12].
Motivation behind fuzzy-logic based approach: The fuzzy logic theory has evolved
in a number of ways since Zadeh’s introduction of fuzzy set theory. Fuzzy logic
theory is now commonly used in fluid mechanics, control engineering, informa-
tion processing, artificial intelligence, strategic planning, and other fields[6, 5].
Fuzzy control problems have made significant progress in recent decades being
one of the most popular frameworks of fuzzy sets and fuzzy logic. The fuzzy-
logic-based control has been commonly used in machine engineering, intelligence
control, system recognition, image classification, neural networks, and other ar-
eas. In contrast to traditional crisp control, fuzzy logic controller will more ac-
curately model physical reality in a linguistic format, allowing for more efficient
method of achieving intelligent management in engineering settings. In Fuzzy
mathematics, the concept of fuzzy logic is quite unique as compared to the clas-
sical logic, as fuzzy logic works more like the human way of reasoning. In other
words, fuzzy logic approach is more easy and understandable. Fuzzy logic has
many applications in almost are the industries related to various commercial and
practical purposes. In artificial intelligence, Fuzzy Logic helps in simulating the
human oriented cognitive processes.
The hybrid method’s main merit is its optimized construction using an entirely
different concept from fuzzy logic [5], which makes it better than the classical
limiters. The optimized fuzzy flux limited scheme is implemented into a one-
dimensional structured finite volume model to approximate the shallow water
flows. This work concentrates on the optimization of classical numerical methods
for observing the behavior of Dam-Break Problem governed by one-dimensional
shallow water equation in which discontinuities are present and are important
to model. The computational results of the SWEs with the proposed scheme
is assessed by experimenting with the dam-break problem [4, 8]. The proposed
scheme results are compared with those obtained from the classical minmod
scheme and the monotonized-central (MC) scheme for validation.
The work is further structured as follows. The numerical ow model is explained
in the Section 2. In the Section 3, the hyperbolic numerical approach is ex-
plained. In the frame of uniform mesh and finite volume methods, the proposed
new scheme with a brief discussion on fuzzy logic cocepts is introduced in the
Section 4. After that, a numerical assessment is shown in the Section 5. Further,
the work is concluded with some remarks and the scope of future work in the
Section 6.
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Shallow Water Equations 3

2 Numerical model: One-dimensional Shallow water
Flows

In one space dimension, the SWEs [1] can be described in mathematical form
as:

qt + f(q)x = s, (1)

where

q =

 h

hu

 , f(q) =

 hu

hu2 + 1
2gh

2α

 , s(q) =

 0

−ghZx

 .

Here, the height of water is denoted as h(x, t), the fluid velocity as u(x, t), the
notation for acceleration due to gravity is g and the bottom surface function
is denoted by Z(x). As, the present work is concerned towards hyperbolic con-
servation laws, so this function Z(x) is taken to be zero. So, the Equation 1
becomes:

∂t

 h

hu

+ ∂x

 hu

hu2 + 1
2gh

2

 =

0

0

 . (2)

In this work, the finite-volume framework is used as it prevents any global trans-
formation in the conserved variables, so the overall scheme remains conservative
in nature. Here as illustrated in the upcoming sections, both space and temporal
discretizations are done in a higher-order accurate manner. A spatial reconstruc-
tion, called the MUSCL (Monotone Up-stream Centered Scheme for Conserva-
tion Laws) technique, has been considered to obtain higher order accuracy in
space.

3 Numerical approach: Flux limiting High Resolution
schemes

To formulate the finite-volume framework, the primary task is to discretize the
space domain in forms of smaller cells [xi−1/2, xi+1/2] (refer to the Figure 1),
which have a uniform spatial step of length ∆x, such that xi = ∆x(i + 1/2).
Similarly, the temporal domain is discretized into sub intervals [tn, tn+1] with
uniform step size ∆t, such that tn = ∆t(n). [xi−1/2, xi+1/2] denotes the ith

control volume, where xi = (i+1/2)∆x is the mid-point of this control volume. A
numerical integration of the nonlinear conservation laws, discussed in the Section
2 requires a finite volume Godunov method of upwind-type. A conservative form
related to the homogeneous equation 1 is written as:

qn+1
i = qni −

∆t

∆x

(
Fi+ 1

2
− Fi− 1

2

)
, (3)

where

qni ≈
1

∆x

∫ x
i+1

2

x
i− 1

2

q(x, tn)dx (4)
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Fig. 1: A spatial representation of the computational grid.

is the cell average corresponding to the spatial components, and Fi±1/2 denote
the numerical flux functions (temporal cell-averages), defined in the following
manner:

Fi− 1
2
≈ 1

∆t

∫ tn+1

tn
f(q(xi− 1

2
, t))dt. (5)

The important task in approximating such conservation laws is the proper se-
lection of the flux presented in the Equation 5. In general, this construction
demands the solutions of various Riemann problems at the cell interfaces.
In a finite-volume HR technique, the numerical flux is calculated by mixing a
lower and a higher order flux altogether. For f(q) = a(q) with positive speed a,
the mathematical form of the Lax-Wendroff technique is:

qn+1
i = qni − ν(qni − qni−1)− 1

2
ν(1− ν)(qni+1 − 2qni + qni−1), (6)

where ν = a.∆t/∆x is termed as the Courant number. It is an upwind scheme of
first-order along with an extra anti-diffusive term of second-order. The scheme
in the Equation 6 is second-order accurate, but it still does not follows the TVD
property. Therefore, the Equation 6 is further modified by introducing a limiting
function, say, φ to the term of second order in the following manner:

qn+1
i = qni − (qni − qni−1)

[
ν +

1

2
ν(1− ν)

(
φ(ri+ 1

2
)

ri+ 1
2

− φ(ri− 1
2
)

)]
, (7)

where the function ri+1/2 is defined as:

ri+ 1
2

=
qni − qni−1
qni+1 − qni

. (8)

A HR scheme is developed when the limiting function given in the Equation 8 is
positive [3]. To advance the solution in time, the numerical fluxes are calculated
as follows:

F (qi+ 1
2
) = f li+ 1

2
− φ(ri)

(
f li+ 1

2
− fhi+ 1

2

)
, (9)

here, f l resembles the low-resolution and fh resembles the high-resolution [17]
numerical flux functions.
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Theorem 1 (Harten’s Lemma). A numerical method can be formulated in
the incremental form as:

qn+1
i = qni − Cn

i−1/2∆q
n
i−1/2 +Dn

i+1/2∆q
n
i+1/2. (10)

If ∀n ∈ Z, and each integral value i, the coefficients follow the constraints pre-
sented as follows:

Cn
i+1/2 ≥ 0, (11)

Dn
i+1/2 ≥ 0, (12)

Cn
i+1/2 +Dn

i+1/2 ≤ 1, (13)

then such a numerical scheme is TVD.

For the implementation of flux limiters [11] in the numerical scheme, the recon-
struction step should obey an additional TVD property given as:

φsweby(r) = max{0,min{2r, 2}}. (14)

Table 1 gives a quick introduction to some of the commonly used flux limiters.

Table 1: Some TVD flux limiting functions.

Limiter Representation Remarks

Minmod max(0,min(r, 1)) Roe, 1986 [20]

Superbee max(0,min(2r, 1),min(r, 2)) Roe, 1986 [20]

Van Albada r(r+1)

r2+1
Van Albada, et al., 1982 [3]

Monotonized Central max(0,min(min(2r, (1 + r)/2, 2))) Van Leer, 1977 [11]

Van Leer r+|r|
1+|r| Van Leer, 1974 [21]

For a detailed theory refer to the citations provided with each limiter in the
Table 1. Further, a graphical representation of these flux limiters is shown in the
Sweby’s TVD region [19], as seen in the Figure 2. The present work highlights
a fundamental idea to modify and optimize the classical limiters to enhance the
overall numerical outputs.

4 Development of the New Flux Limiter scheme

The present algorithm consists of optimizing a specic classical ux limiter to form
a better hybrid alternative. Many flux limiters are available in the literature to
prevent discontinuities [7]. To optimize the classical schemes, some important
concepts from the literature of Fuzzy mathematics are also required.
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Fig. 2: Graphical representation of the classical Flux Limiters mentioned in the Table
1.

Fuzzy sets: A fuzzy set is basically a classical (crisp) set having a special prop-
erty, which allows each member of the considered universal set to get connected
with this crisp set by a suitable intensity (called membership value). The mem-
bership intensity depends on the degree of compatibility of a particular element
with the crisp set. The most commonly used set for membership degrees in fuzzy
sets is [0, 1], however this set restricts to the discrete values {0, 1} for a crisp set.
Mathematically, for a classical set T in the universe of discourse U, a fuzzy set
A could be presented as follows: A = {(x, µ(x)) | x ∈ T}, where the membership
function µ sends the members of the classical set T to the closed interval [0, 1].

Fuzzy Linguistics: These are known as the fuzzy variables originated through
a special domain consisting of words, it’s members are also known as the linguis-
tic entities in the context of Fuzzy mathematics. These variables help to associate
the elements of the universal set with a suitable membership value, using which a
relationship of that element could be defined with the concerned fuzzy set [5]. As
fuzzy values capture measurement uncertainties as a consequence of initial data
sets, these are much more adaptive than the crisp variables to real-life models.

Fuzzy Modifiers: Fuzzy modifiers are an important ingredient in the con-
struction of the new limiter. Fuzzy hedges fine tune the interpretation of the
given data by modifying the membership units for the related fuzzy sets. Corre-
sponding to the fuzzy set A defined above, several commonly used fuzzy hedges
are: the Dilation modifier ({(y, p

√
(µ(y))) | y ∈ U}), the Concentration modifier

({(y, (µ(y))p)) | y ∈ U}) [12], here p is some arbitrary real value.
Further this section comprises of enhancing the classical limiters to establish a
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Shallow Water Equations 7

new limiter. The procedure in this section is centered on how to use suitable fuzzy
modifier operations to fine-tune parameter settings in the classical flux-limited
schemes.

Formulation of the new hybrid flux limiter: For this work, an optimization
of the most commonly used monotonized central (MC) limiter is shown. The MC
limiter in the sense of a piecewise function is:

φ(r) =



0, r ≤ 0

2r, 0 < r ≤ 1/3

1
2 (1 + r), 1/3 < r ≤ 3

2, else.

(15)

This is improvised by assigning the concentration modifier function of intensity
p = 6 and p = 8 to the smooth and extrema regions respectively, and other parts
are kept the same [17]. So, the hybrid limiter turns out to be:

φ(r) = max

(
0,min

(
min

( 2
3 ( 9−3r

8 )6 + 2 3r−1
8

( 9−3r
8 )6 + 3r−1

8

, 2,
2
3 (3r)6

(1− 3r) + (3r)6

)))
. (16)

The hybrid flux limiter is shown in the Figure 3. This procedure opens up in-
finitely many choices for the flux limiter functions in the context of Fuzzy Math-
ematics [18, 22]. To show the performance of the hybrid fuzzy limiter presented

Fig. 3: The hybrid fuzzy flux limiter.

in the Equation 16, the Shallow water problem, written as the Equation 2 is
approximated in the upcoming section.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_39

https://dx.doi.org/10.1007/978-3-030-77961-0_39


8 Ruchika Lochab, Vivek Kumar

5 Numerical Validation: Using Dam break problem

For the numerical computations in this section, the classical limiter functions: the
Min-Mod and the MC limiters have been utilised to compare the approximate
results obtained from the proposed hybrid limiter. The flux limiting techniques
are based on a deterministic finite volume solver. For computational puposes,
MATLAB 2015b version has been used with macOS Mojave, RAM 8 GB and
2.3 GHz Intel Core i5.
Throughout this section of numerical validation, the acceleration due to gravity
is set to g = 9.81 and the standard SI measuring units corresponding to the
physical quantities (like s (seconds), kg (kilograms), m (meters), etc.) are omitted
in the discussion. For the space discretization, we have used uniform cartesian
grids.
To analyse the performance of the hybrid method discussed in this paper, let
qni be the numerically computed solution and q(xi, t

n) be the exact solution
corresponding to the ith control volume at the nth time stamp, thus the L1 error
norm, presented here by ‖en‖1 is written as:

‖en‖1 =

N∑
i=1

|q (xi, t
n)− qni |∆x. (17)

and the L∞ error norm, denoted by ‖en‖∞ is given as follows:

‖en‖∞ = max
1≤i≤N

|q (xi, t
n)− qni | . (18)

where N represents the computational points.

5.1 Dam break

In this section, the shallow problem (2) is computed to assess the proposed
solution scheme by using various test cases corresponding to the dam-break
scenario in a rectangle shaped domain having flat topography (i.e., Z(x) = 0,
refer 1). The computational domain is [−1, 1], and the step size is ∆x = 0.005.
In the next subsection, three test cases have been considered. The test case 1
corresponds to the Riemann problem in height profile, the test case 2 is basically
opposite of the test case 1, and the third test case represents a vacuum Riemann
problem.

Test case 1: The initial profile used for approximating this test situation of
the dam break problem is:

u(x, t = 0) = 0; h(x, t = 0) =

0.1, −1 < x ≤ 0

2, 0 < x ≤ 1.
(19)
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Fig. 4: Approximation results corresponding to the test case 1 obtained by the classical
limiter for N = 400 control volumes at final time t = 0.1.

Table 2: Error Analysis based on L1 norm for the test case 1

Final Time Minmod (MM) Monotonized-Central (MC) Proposed (New)

0.1 1.40e-03 1.12e-03 8.36e-04

0.05 1.36e-03 1.09e-03 1.02e-03

0.02 1.63e-03 1.45e-03 1.37e-03

Fig. 5: Approximation results corresponding to the test case 1 obtained by the proposed
limiter for N = 400 control volumes at final time t = 0.1.
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Table 3: Error Analysis based on L∞ norm for the test case 1

Final Time Minmod (MM) Monotonized-Central (MC) Proposed (New)

0.1 2.13e-01 1.86e-01 1.11e-01

0.05 1.95e-01 1.66e-01 1.05e-01

0.02 2.01e-01 1.97e-01 1.00e-01

Tables 2 - 3 provide the details of point-wise error analysis for the stan-
dard flux limiting functions and the proposed method for the L1 and the L∞
norms, and the Figures 4-5 present the computational results corresponding to
the classical MC limiter and the proposed limiting function for 400 computa-
tional points.
It is visible from the Figure 4 that the MC limiting function is able to grasp
the solution profile, although slight oscillations can still be seen. However, the
computational output appears to be improved for the hybrid limiter, as seen in
the Figure 5.

Test case 2 The following is the initial data profile for simulating this dam-
break test case:

u(x, t = 0) = 0; h(x, t = 0) =

2, −1 < x ≤ 0

0.1, 0 < x ≤ 1.
(20)

The MC limiter is clearly able to capture the solution structure, as shown
in the Figure 6, though minor perturbations can still be seen. Nevertheless, as
shown in the Figure 7, the numerical result for the hybrid limiter appears to be
improved.

Test case 3: The initial data for approximating this dam-break test case is:

h(x, t = 0) = 0.1; u(x, t = 0) =

−2, −1 < x ≤ 0

2, 0 < x ≤ 1.
(21)

Although slight disturbances can still be seen in the solution pattern, but the
MC limiter is clearly able to capture it, as shown in the Figure 8. However, as
can be seen in the Figure 9, the numerical result for the hybrid limiter appears
to be better.

5.2 CPU Time

The comparison of results obtained by various test cases has been the primary
focus in the Subsection 5.1. In terms of the CPU time taken by the various
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Fig. 6: Approximation results corresponding to the test case 2 obtained by the classical
limiter for N = 400 grid points at final time t = 0.1.

Fig. 7: Approximation results corresponding to the test case 2 obtained by the proposed
limiter for N = 400 grid points at final time t = 0.1.
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Fig. 8: Approximation results corresponding to the test case 3 obtained by the classical
limiter for N = 400 grid points at final time t = 0.1.

Fig. 9: Approximation results corresponding to the test case 3 obtained by the proposed
limiter for N = 400 grid points at final time t = 0.1.
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numerical integrations, the proposed scheme requires relatively more CPU time
in all of the test cases since the number of operations per time step involved
in calculating the fluxes across neighboring cells is greater than the standard
flux limiting schemes. Refer to the Table 4 for the comparison of CPU times for
various test cases considered in the Subsection 5.1.

Table 4: CPU time data in seconds (s)

CPU Time Test case 1 Test case 2 Test case 3

Monotonized-Central (MC) 2.08644s 2.11922s 1.40411s

Proposed (New) 2.40097s 2.47627s 1.71645s

6 Conclusion

In summary, we have presented a numerical formulation of SWEs using a fuzzy
logic based flux limiting scheme. The approach is based on the physical principles
and balance laws of classical fluid mechanics. The distinction between the clas-
sical and the proposed method lies in its main new ingredient: Fuzzy modifiers.
As future work, this strategy could be further extended to higher dimensional
SWEs. The proposed HR method is non-oscillatory, conservative, well balanced,
and suitable for shallow water models. The proposed flux limited method is ver-
ified against the benchmark dam-break problem with flat bottom topography.
Final results are comparable with the classical scheme and show good agreement
with analytical solutions also.
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