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Abstract. The paper proposes the concept of eliminating the explicit computation 

of singular integrals appearing in the parametric integral equation system (PIES) 

used to simulate the steady-state temperature field distribution. These singulari-

ties can be eliminated by regularizing the PIES formula with the auxiliary regu-

larization function. Contrary to existing regularization methods that only elimi-

nate strong singularities, the proposed approach is definitely more comprehen-

sive due to the fact that it eliminates all strong and weak singularities. As a result, 

all singularities associated with PIES's integral functions can be removed. A prac-

tical aspect of the proposed regularization is the fact that all integrals appearing 

in the resulting formula can be evaluated numerically with a standard Gauss-Le-

gendre quadrature rule. Simulation results indicate the high accuracy of the pro-

posed algorithm. 

Keywords: computational methods, regularized PIES, singular integrals,  

potential problems 2D, Bézier curves 

1 Introduction 

One of the most significant problems to be faced during computer implementation of 

parametric integral equation system (PIES) is the evaluation of singular integrals. Their 

presence is related to the fact that PIES is based on the analytical modification of the 

conventional boundary integral equation (BIE). This modification, previously pre-

sented for various types of differential equations [1-3], is aimed to include analytically 

the shape of the boundary problem directly in the obtained PIES formula. As a result, 

in opposite to finite and boundary element methods (FEM, BEM), PIES’s solutions of 

boundary value problems are obtained without domain or boundary discretization. Fi-

nally, we can introduce some alternative representations of the boundary shape. In the 

case of 2D problems, it is particularly promising to define the boundary with parametric 

curves, e.g. Bézier curves. Hence, instead of a mesh of boundary elements with their 

nodes, we can use parametric curves of different degrees defined by a relatively small 

set of control points. Moreover, the obtained formal separation between the declared 

boundary and boundary functions in PIES allows to approximate the boundary func-

tions by effective Chebyshev series. 
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The presence of singular integrals is a common problem both for BIE and PIES 

methods and is related to their integral kernels dependent on the distance between the 

so-called source and field points. In the case when these points are close to each other, 

this distance tends to zero and the kernels are singular. The degree of singularity de-

pends on the form of the kernel functions. Accurate evaluation of singular integrals 

plays a crucial role in the overall accuracy of solutions of boundary value problems. 

This is even more difficult because the direct evaluation of singular integrals by the 

popular Gauss-Legendre (G-L) quadrature may result in an unacceptable accuracy deg-

radation. Due to the importance of the problem, there is an extremely rich literature on 

this subject with many algorithms for evaluation of the singular integrals. They are 

mainly dedicated to BEM, among which we can mention nonlinear transformations [4-

6], adaptive subdivision [7], variable transformation [8], semi-analytical methods 

[9,10], as well as quadrature methods [11]. One of the most promising are regularization 

methods [12-15]. 

This paper proposes a new algorithm to eliminate weakly and strongly singular in-

tegrals in PIES. The algorithm is based on the regularization of the PIES formula using 

the auxiliary regularizing function with regularization coefficients. As a result, all ob-

tained regularized integrals are no longer singular and can be evaluated by the standard 

G-L quadrature. To demonstrate the capability and accuracy of the proposed scheme 

we present two simulation examples. 

2 The singular formulation of the PIES 

The paper deals with the prediction of the steady-state temperature field distribution 

inside the 2D domain   and on the boundary  . The model formulation is based on 

the linear boundary value problem for the Laplace equation 
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with Dirichlet u  and Neumann p  boundary conditions, as shown in Fig. 1a. 

In the case of practical problems defined for more complex geometries and boundary 

conditions, we need to use numerical computational methods, for example finite ele-

ment method (FEM) or boundary element method (BEM). Fig. 1b shows modeling of 

the domain   by FEM with finite elements. A similar discretization strategy is related 

to BEM, but refers only to the boundary   as shown in Fig. 1c. Such modeling has 

gained wide popularity, but in practice it requires to generate a significant number of 

elements as well as algebraic equations. 
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Fig. 1. Problem’s domain, boundary shape and boundary conditions (a), modeling of a 2D do-

main with finite elements (b) and its boundary with boundary elements (c), definition of the 

boundary with Bézier curves in relation to the parametric reference system in PIES (d). 

Here, to overcome some of the limitations observed in the case of FEM and BEM, an 

alternative approach for solving boundary value problems, called as PIES, is used. The 

PIES has several advantages and we can identify them as: 

 The prediction of the temperature field in the interior of the domain, similar to BIE, 

is obtained via the analysis of the problem only on the boundary of that domain. This 

reduces the mathematical dimension of the problem under analysis by one. 

 Only the boundary of the domain needs to be defined. The boundary in PIES is pa-

rameterized and described in a very general way as a closed parametric curve (e.g. 

Bézier and NURBS curves). Fig. 1d shows practical definition of the boundary from 

Fig. 1a by joining 4 Bézier curves of degree 3. Bézier curves allow for intuitive 

description of the boundary using only control points and it is more effective than 

the classical discretization with boundary elements in BEM. 

 The boundary description with Bézier curves is analytically included into the PIES 

formula used to find solutions on the boundary of the problem. For the Laplace equa-

tion this formula is written as [2] 
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Formula (2) is not specified directly on the boundary, as is the case of classical BIE, 

but on a straight line representing a projection of boundary segments represented by 

by n  Bézier curves into parametric reference system dependent on parameter s , as 
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shown in Fig. 1d. Moreover 0s  is the co-called source point located in the same 

parametric reference system and )(sJ j  is the Jacobian of transformation from Car-

tesian to parametric coordinates. The Jacobian is determined for all Béziera curves 

by the following formula 
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 Integral kernels in (2) represented in the form 
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include analytically in their mathematical formalism the boundary shape generated 

by Bézier curves by following relations 
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where functions )( 0slΓ , )(sjΓ  describe Bézier curves that contain the co-called 

source point denoted as 0s  and the field point denoted as s , while (s))1(
jn , (s))2(

jn  

are the normals to the curves. 

 The declaration of Bézier curves in formula (2) is separated from the boundary func-

tions )(su j  and )(sp j  describing in the physical interpretation temperature and flux 

on the boundary. In this paper they are approximated by Chebyshev series 
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where 
(k)
ju , (k)

jp  denote the coefficients of the series, K  is the adopted number of 

terms of the series, whereas )(sT
(k)
j  represent the Chebyshev polynomials defined 

in the parametric reference system in PIES. 

 It should be noted, that the form of boundary functions (5) is completely independent 

from the Bézier curves used to describe the boundary. This is the essence of the 

formal separation of the boundary shape from the representation of the problem on 

the boundary in PIES. The direct incorporation of the boundary shape in functions 

(2) through kernels (3) is the main advantage of PIES compared to traditional BIE. 

As a result, the proposed PIES is characterized by the fact that its numerical solution 

does not require, in contrast to the BEM, discretization at the level of the aforemen-

tioned boundary declaration as well as the discretization of the boundary functions. 

 Having the solutions on the boundary, in the second step we can obtain from them 

the solutions inside the domain using an additional integral identity represented by 

formula (10). There is no need to define a representation of the domain, so we have 
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the possibility to find such solutions at any point and at the same time we can freely 

refine their resolution. 

3 Elimination of singularities from PIES through the 

regularization 

We want to eliminate the singularities from the integral functions ),( 0
* ssUlj , ),( 0

* ssPlj  

through the regularization applied to (2). The presence of the singularities in (2) de-

pends on the distance between the source 0s  and the field s  points. If this distance is 

significant then the kernels ),( 0
* ssUlj  and ),( 0

* ssPlj  are easily numerically integrable 

with standard numerical methods, e.g. with the G-L quadrature rule. However, when 

this distance goes to zero 0ss  , the integral functions become singular and the values 

of such integrals tend to infinity. We can identify weak (logarithmic) singularity in 

),( 0
* ssUlj  and strong singularity in ),( 0

* ssPlj . The direct application of the G-L quad-

rature to evaluate the singular integrals produces large errors. In previous studies, we 

evaluated the strongly singular integrals analytically, whereas the weakly singular ones 

with singular points isolation. Finally, these integrals have been evaluated with satis-

factory accuracy, but at the expense of additional complexity. 

In order to regularize PIES represented by (2), we introduce below an auxiliary for-

mula (2) but with other boundary functions marked as )(ˆ su j , )(ˆ sp j  
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Next, we assume that )(ˆ su j  takes the following form 

 ),())( -)()(()(ˆ
000 susssAsu lljlj  ΓΓ  (7) 

together with its directional derivative along to the normal vector to the boundary 
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Function (7) is arbitrarily chosen to satisfy Laplace’s equation. After subtracting (6) 

from (2), we get the final formula for the regularized PIES 
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After solving (9), we obtain solutions )(su j  and )(sp j  on the boundary in the form 

of the Chebyshev series (5). Having these solutions on the boundary, in the second step 

we can obtain solutions inside the domain at point x  using the following integral 

identity 
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Formula (10), similarly as (9), includes analytically the boundary generated by Bézier 

curves via following kernels 
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where 
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11 sΓx j- , )()2(

22 sΓx j .  

To determine the solution in the domain, only coefficients 
(k)
ju  and (k)

jp  for every Bé-

zier curve which model the boundary have to be taken into account in (10). 

4 Numerical implementation 

In order to use (9) for simulating stationary temperature field, the collocation method 

[16] is applied. The collocation points are placed in the parametric domain of Bézier 

curves and represent by points 0s . Writing (9) at the collocation points, we obtain a 

system of algebraic equations approximating PIES with the size determined by the 

number of parametric curves modeling the boundary and the number of terms in the 

approximating series (5) on individual curves. 
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In the absence of regularization and direct application of formula (2) for the solution of 

the problem on the boundary, all integrals on the main diagonals of matrices H and G 

are singular. The proposed regularization eliminates these singularities and the new 

formulas for non-singular integrals on the main diagonal in (12) on the basis of (9) are 

as follows 
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Non-diagonal elements in (12) are calculated on the basis of the following integrals 
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Integrals (15) and (16) are non-singular and have the same form both for (2) and (9). 

The complete algorithm for solving the regularized PIES is listed below.  

 

Regularized PIES algorithm 

_________________________________________________________________ 

Read boundary input data (control points of n  Bézier segments) 

Read boundary conditions 

1: for nl ,1  do //loop over Bézier segments 

2:     for nj ,1  do //loop over Bézier segments 

3:        if ji   then 

4:          for 1,0  Kk  do //loop over Chebyshev series 

5:            for Kc ,1  do //loop over collocation points 
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6:                for ne ,1  do //loop over Bézier segments 

7:                  
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9:                end for 

10:            end for 

11:          end for 

12:          add submatrix ][ )(kc
llg  to ][ llg  and ][ )(kc

llh  to ][ llh  

13:       else  

14:          for 1,0  Kk  do //loop over Chebyshev series 

15:              for Kc ,1  do //loop over collocation points 

16:                  )()(),(][ )()()()(
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18:              end for 

19:          end for 

20:          add submatrix ][ )(kc
ljg  to ][ ljg  and ][ )(kc

ljh  to ][ ljh  

21:       end if 

22:       add submatrix ][ ljg  to G and ][ ljh to H 

23:    end for 

24: end for 

25: applying boundary conditions 

26: transform      pGuH   into     bxA   

27: solve system of equations     bxA    

____________________________________________________________________ 

5 Verification of the approach 

The regularization is validated on two examples having analytical solutions. Below, we 

show how to generate the boundary by Bézier curves and investigate the influence of 

the minimal distance between the collocation point and the quadrature node on the sta-

bility of diagonal integrals and overall accuracy of PIES. 

5.1 Example 1 

We consider a stationary temperature distribution governed by the Laplace equation in 

a wrench. As shown in Fig. 2a, the boundary is generated by 14 Bézier curves. Among 

them, 9 are linear being simply straight lines between two end points. The remaining 5 
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are the cubic ones each defined by 4 control points and used to define curvilinear parts 

of the boundary. 

a) 

 
b) 

 
 

 

Fig. 2. The boundary of the problem for example 1 defined by Bézier curves together with the 

analyzed cross-section of the domain solutions (a), distribution of 5 collocation points (red x) 

and 27 nodes of the G-L quadrature (black +) in the parametric reference system and after  

mapping to the boundary (b). 

We assume that the expected distribution of temperature on the boundary and inside 

the domain is described by the following function that depends on the Cartesian coor-

dinates 
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The value of function (17) is specified on the boundary in the form of Dirichlet bound-

ary conditions, while its normal derivative 
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represents the expected analytical solutions on the boundary. 
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In order to solve the problem on the boundary by (9), we place 5 collocation points 

at roots of the Chebyshev polynomials of the second kind within the parametric domain 

of each Bézier cuve. The nodes of the G-L quadrature of degree 27 are defined in the 

same parametric domain. Due to full parameterization of the boundary, we can freely 

choose the positions of the collocation points and quadrature nodes identified with 0s  

and s  in (9) and also in (2). Their mutual distribution in the parametric domain reference 

system 0, ss  and after mapping to each of the 14 Bézier curves is shown in Fig. 2b. It 

should be noted that formula (2) is singular for every collocation point. The proposed 

regularization eliminates this problem. 

Below, we examine how the distance between collocation points and quadrature 
nodes influences the stability of the integrals on the diagonal for formula (2) and the 

regularized one (9). Fig. 2b indicates the coverage for the central collocation point 

5.00 s  exactly with the central quadrature node for each Bézier curve. We decide to 

move this collocation point to study the influence of the minimum distance between 

0s  and s  on stability of these integrals. Fig. 3 presents a summary of this analysis. 

 

Fig. 3. The influence of the minimal distance between the collocation point and the quadrature 

node on the stability of diagonal integrals for (2) (a) and (9) (b). 

Fig. 3a shows that the diagonal integrals in (2) with the direct application of G-L quad-

rature are unstable. It is especially noticeable for the strongly singular one. In turn, Fig. 

3b shows that the diagonal integrals in (9) are stable for the full range of distances 

between the investigated collocation point and quadrature node. The presented results 

refer to one selected collocation point from the total number of 70 specified in Fig. 2b. 

Moreover, these behaviors and dependencies are analogous for all other points. It 

should be noted that the values of diagonal integrals in (2) and (9) are different due to 

the regularization. But at this point we are interested in forecasting overall computa-

tional stability rather than individual values. 

The regularization also allows for obtaining excellent accuracy of the problem under 

study. Fig. 4 shows the solution on the boundary obtained by (9) and in the domain by 
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identity (10) for the case when the minimal distance between the collocation point and 

the quadrature node is 1e-13. 

 

 

Fig. 4. The obtained solutions with the regularization on the boundary (a) and in the domain (b) 

when the minimal distance between the collocation point and the quadrature node is 1e-13. 

The results show excellent agreement with exact solutions (17-18) and confirm the 

strategy, which is independent from the representation of the boundary shape and the 

type of applied boundary conditions. 

5.2 Example 2 

We repeat the analysis given in example 1, but for more complicated shape of the 

boundary with another boundary conditions. We consider a stationary temperature dis-

tribution in a multiply connected domain shown in Fig. 5a. The inner and outer bound-

aries are described by linear Bézier curves. The geometry of the boundary is thus com-

pletely defined by a set of 31 control points. 
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a) 

 
b) 

 

 

Fig. 5. The boundary of the problem for example 2 defined by Bézier curves together with the 

analyzed cross-section of the domain solutions (a), distribution of 7 collocation points (red x) 

and 27 nodes in the G-L quadrature (black +) in the parametric reference system and after  

mapping to the boundary (b). 

We assume that Dirichlet boundary conditions are posed on the whole boundary. They 

are calculated on the basis of the following function 

 ).exp()cos(),( 2121 xxxxu   (19) 

Function (19) satisfies the Laplace equation and represents the expected analytical tem-

perature distribution inside the multiply connected domain. In turn, the normal deriva-

tive of (19) gives the reference analytical solutions of the problem on the boundary 

 .)exp()cos()exp()sin(
),(

221121
21 nxxnxx

dn

xxdu
  (20) 

Table 1 shows the influence of the minimal distance between collocation point and the 

quadrature node for accuracy of solutions on the boundary obtained by (9) and in the 

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_38

https://dx.doi.org/10.1007/978-3-030-77961-0_38


13 

domain by identity (10). The results are computed for 7 collocation points and 27 nodes 

of the G-L quadrature per Bézier curve. When analyzing the placement of these points 

and nodes shown in Fig. 5b, we can identify the cases with 0ss   and ss 0 . More-

over, as in example 1, the central collocation point coincides with the central quadrature 

node. Therefore, we again decide to move this point to determine the minimum dis-

tance, for which we observe the existence and stability of the solutions. 

Table 1. The influence of the minimal distance between collocation point and G-L quadrature 

nod for accuracy of solutions on the boundary and domain. 

Minimal distance  

between collocation  

and quadrature points 

2L  error norm [%] for  

solutions on the boundary 

2L  error norm [%] for  

solutions in the domain 

1e-2 0.396046 0.00730305 

1e-3 0.397675 0.00739621 

1e-4 0.398794 0.00741943 

1e-5 0.398975 0.00742293 

1e-6 0.398999 0.00742338 

1e-7 0.399002 0.00742344 

1e-8 0.399002 0.00742345 

1e-9 0.399002 0.00742345 

1e-10 0.399002 0.00742419 

1e-11 0.398997 0.00742788 

1e-12 0. 398991 0.00742783 

1e-13 0.400376 0.00770156 

0.0 0.399002 0.00742345 

 

The results again confirm the stability of solutions for the multi connected domain. We 

obtained the excellent accuracy of the regularized PIES for a very close distance be-

tween collocation points and quadrature nodes. 

6 Conclusions 

The results indicate the effectiveness of the proposed regularization. It avoids the use 

of complicated explicit methods for the evaluation of singular integrals and, on the other 

hand, provides a unified scheme for eliminating these singularities. The approach is 

also independent from the ways of declaring the boundary with the help of various 

curves that have already been used in PIES. In the paper, Bézier curves are chosen, but 

we can apply other ones, e.g. NURBS. Moreover, the separation of the boundary dec-

laration from the approximation of the boundary functions, as in the original PIES’s 

formula is preserved. Thanks to this, in the current paper the boundary functions could 

be approximated with an effective Chebyshev series.  
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