
Revolve-Based Adjoint Checkpointing for
Multistage Time Integration?

Hong Zhang1 and Emil Constantinescu1

Mathematics and Computer Science Division
Argonne National Laboratory, Lemont, IL 60439

{hongzhang,emconsta}@anl.gov

Abstract. We consider adjoint checkpointing strategies that minimize
the number of recomputations needed when using multistage timestep-
ping. We demonstrate that we can improve on the seminal work based on
the Revolve algorithm. The new approach provides better performance
for a small number of time steps or checkpointing storage. Numerical re-
sults illustrate that the proposed algorithm can deliver up to two times
speedup compared with that of Revolve and avoid recomputation com-
pletely when there is sufficient memory for checkpointing. Moreover, we
discuss a tailored implementation that is arguably better suited for ma-
ture scientific computing libraries by avoiding central control assumed
in the original checkpointing strategy. The proposed algorithm has been
included in the PETSc library.

Keywords: Adjoint checkpointing, · multistage timestepping · Revolve.

1 Introduction

Adjoint computation is commonly needed in a wide range of scientific problems
such as optimization, uncertainty quantification, and inverse problems. It is also
a core technique for training artificial neural networks in machine learning via
backward propagation. The adjoint method offers an efficient way to calculate
the derivatives of a scalar-valued function at a cost independent of the number of
the independent variables. In the derivative computation, the chain rule of differ-
entiation is applied starting with the dependent variables and propagating back
to the independent variables; therefore, the computational flow of the function
evaluation is reversed. But the intermediate information needed in the reverse
computation may not be available and must be either saved beforehand or re-
computed. When the storage is insufficient for all the intermediate information,
one can checkpoint some selected values and recompute the missing informa-
tion as needed. This approach gives rise to the adjoint checkpointing problem,

? This work was supported in part by the U.S. Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing Research, Scientific Discovery through
Advanced Computing (SciDAC) program through the FASTMath Institute under
Contract DE-AC02-06CH11357 at Argonne National Laboratory.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

2 H. Zhang, E. Constantinescu

which aims to minimize the recomputation cost, usually in terms of number of
recomputed time steps, given limited storage capacity. Griewank and Walther
proposed the first offline optimal checkpointing strategy [4] that minimizes the
number of recomputations when the number of computation steps is known a pri-
ori. The algorithm was implemented in a software called Revolve and has been
widely used in automatic differentiation tools such as ADtool, ADOL-C, and
Tapenade. Many follow-up studies have addressed online checkpointing strate-
gies for cases where the number of computation steps is unknown [5, 9, 10], and
multistage or multilevel checkpointing strategies [2, 1, 7] have been developed for
heterogeneous storage systems (e.g., devices with memory and disk). A common
assumption used in developing these algorithms is that memory is considered to
be limited and the cost of storing/restoring checkpoints is negligible.

While the problem has been well studied in the context of reversing a se-
quence of computing operations explicitly, time-dependent problems are often
used to model the general stepwise evaluation procedures [4] because of their
common sequential nature. In addition, time-dependent differential equations
are ubiquitous in scientific simulations, and in their adjoint computation, a time
step can be considered as the primitive operation in the sequence to be reversed.

In this paper, we show that the classical Revolve algorithm can be improved
when multistage time integration methods such as Runge–Kutta methods are
used to solve differential equations. A simple modification to the algorithm and
the checkpointing settings can lead to fewer recomputations. Performance of the
proposed algorithm is demonstrated and compared with that of Revolve.

2 Revisiting optimality of classic checkpointing strategy
for multistage methods

Here we discuss the adjoint method applied to functionals with ordinary differ-
ential equation (ODE) constraints such as u̇ = F (u). Previous studies assume
implicitly or explicitly that only the solution is saved if it is marked as a check-
point, as opposed to saving the intermediate stages for the corresponding time
step. However, the optimal scheduling based on this assumption will not always
work best for all timestepping methods, especially multistage methods.

Multistage schemes, for example, Runge–Kutta methods, have been popular
in a wide range of applications; their adjoint counterparts are implemented by
fatode [12] and have recently been used by the open source library PETSc [3,
11]. An s-stage explicit Runge–Kutta (ERK) method is

Ui = un +

i−1∑
j=1

hn aij F (Uj), i = 1, · · · , s,

un+1 = un +

s∑
i=1

hn bi F (Ui).

(1)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

Revolve-Based Adjoint Checkpointing for Multistage Time Integration 3

The discrete adjoint of ERK is

λs,i = hnf
T
u (Ui)

biλn+1 +

s∑
j=i+1

aji λs,j

 , i = s, · · · , 1

λn = λn+1 +

s∑
j=1

λs,j ,

(2)

where λ is the adjoint variable that carries the sensitivity information.
To perform an adjoint step of an ERK scheme, one needs all the stage values

from the corresponding forward time step according to the sensitivity equation
(2). When using Revolve, this is achieved by implementing an action named
youturn, which takes a forward step followed immediately by an adjoint step.
Figure 1a shows that an adjoint step in the reverse run is always preceded by a
forward step. Ideally if one checkpointed the solution at every time step, m− 1
recomputations would still be required in order to adjoin m time steps. If one
checkpointed the stage values instead of the solution for all the time steps, how-
ever, no recomputation would be needed in the ideal case, and fewer recompu-
tations may be expected for other cases.

Based on this observation, we extend the existing optimal offline checkpoint-
ing scheme to the case where both the solution and stage values are saved.
Although saving more information at each time step yields fewer allowed check-
points, we show that the extended schemes may still outperform the original
schemes in certain circumstances, depending on the total number of time steps
to be adjoined.

3 Modified offline checkpointing scheme

For convenience of notation, we associate the system solution at each time step
with an index. The index of the system solution starts with 0 corresponding
to the initial condition and increases by 1 for each successful time step. In the
context of adaptive timestepping, a successful time step refers to the last actual
time step taken after several attempted steps to determine a suitable step size.
Therefore, the failed attempts are not indexed. The adjoint integration starts
from the final time step and decreases the index by 1 after each reverse step
until reaching 0.

An optimal reversal schedule that is generated by Revolve yields a minimal
number of recomputations for a given number of 10 time steps and 3 checkpoints
is shown in Figure 1a. During the forward integration, the solutions at time index
0, 4 and 7 are copied into checkpoints 0, 1, and 2, respectively. After the final
step 9 → 10 is finished, the adjoint sensitivity variables are initialized, and the
adjoint calculation starts to proceed in the backward direction. The solution and
stage values at the last time step are accessible at this point, so the first adjoint
step can be taken directly. To compute the adjoint step 9 → 8, one can obtain
the forward solution at 9 and the stage values by restoring the checkpoint 2

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

4 H. Zhang, E. Constantinescu

0 1 2 3 4 5 6 7 8 9 10 7 8 9

7 8 4 5 6 7 5 6 4 5

0 1 2 3 4 2 3 1 2 0 1

(a) Checkpoint only of solutions.

0 1 2 3 4 5 6 7 8 9 10 8 9

7 8 5 6 7 5 6 4 5

1 2 3 4 2 3 1 2 0 1

(b) Checkpoint of both solutions and stage values (denoted by dots).

Fig. 1: From left to right, top to bottom: the processes controlled by (a) Re-
volve and (b) modified Revolve. The up arrow and down arrow stand for the
“store” operation and “restore” operation, respectively. When a stack is used
for holding the checkpoints, the arrows with solid lines correspond to push and
pop operations. The down arrow with a dashed line indicates to read the top
element on the stack without removing it. Adapted from [11].

and recomputing two forward steps. The checkpoint 2 can be discarded after the
adjoint step 8→ 7 so that its storage can be reused in the following calculation.

This schedule results from calling the Revolve routine repeatedly and imple-
menting the actions determined. The return value of Revolve indicates the call-
ing program to perform one of the actions including advance, takeshot (store),
restore, firsturn, and youturn, which are explained in [4] and briefly summa-
rized in Table 1.

The main modification we made is to change every checkpoint position by
adding 1 to the index and save the stage values, which are used to compute
the solution. For example, if the original revolve algorithm determines that the
solution at time index i should be checkpointed, we will save the solution at
time index i+ 1 and the stage values for the time step i→ i+ 1 as a combined
checkpoint with index i+ 1. The actions prescribed by Revolve are essentially
mapped to a series of new but similar actions to guarantee the optimality for

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

Revolve-Based Adjoint Checkpointing for Multistage Time Integration 5

Table 1: Revolve nomenclature.

Revolve actions

restore copy the content of the checkpoint back to the solution
takeshot(store) copy the solution into a specified checkpoint
advance propagate the solution forward for a number of time steps
youturn take one forward step and then one reverse step for adjoint
firsturn take one reverse step directly for adjoint

Revolve parameters

check number of checkpoint being stored
capo beginning index of the time step range currently being processed
fine ending index of the time step range currently being processed
snaps upper bound on number of checkpoints taken

Table 2: Mapping the Revolve output to new actions.

Revolve action New action in modified Revolve

restore to solution i copy checkpoint to solution i + 1 and the stages
store solution i copy solution i + 1 and the stages into a specified checkpoint
advance from i to j propagate the solution from i + 1 to j + 1
youturn take one reverse step directly

the new checkpointing settings. Table 2 enumerates the mapping we conduct in
the modified scheme.

The adjoint of every time step except the last one always starts from a “re-
store” operation, followed by recomputations from the solution restored. Since
the positions of all checkpoints are shifted one time step forward, one fewer re-
computation is taken in the recomputation stage before computing an adjoint
step. This observation leads to the following proposition for this modified Re-
volve algorithm.

Proposition 1. Assume a checkpoint is composed of stage values and the re-
sulting solution. Given s allowed checkpoints in memory, the minimal number
of extra forward steps (recomputations) needed for the adjoint computation of m
time steps is

p̃(m, s) = (t− 1)m−
(
s+ t

t− 1

)
+ 1, (3)

where t is the unique integer (also known as repetition number [4]) satisfying(
s+t−1
t−1

)
< m ≤

(
s+t
t

)
.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

6 H. Zhang, E. Constantinescu

Proof. Griewank and Walther proved in [4] that the original Revolve algorithm
would take

p(m, s) = tm−
(
s+ t

t− 1

)
(4)

extra forward steps. According to the observation mentioned above, one can
save m− 1 extra forward steps by using the modified scheme. We can prove by
contradiction that no further savings are possible.

If a schedule that satisfies the assumption takes fewer recomputations than
(3), one can move all the checkpoints backward by one step and change the
content of the checkpoints to be solutions only. The resulting scheme will cause
m− 1 extra recomputations by construction, thus the total number of recompu-
tations will be less than tm−

(
s+t
t−1

)
. This contradicts with the optimality result

proved in [4].

We remark that the modification can also be applied to the online algorithms
in [9, 5, 10] and to the multistage algorithms in [8]. The saving in recomputations
is always equal to the total number of steps minus one, given the same amount
of allowable checkpoints.

The choice of using modified or original algorithms clearly results from the
tradeoff between recomputation and storage. Given a fixed amount of storage
capacity, the choice depends solely on the total number of time steps since the
recomputations needed can be determined by these two factors according to
Proposition 1. For example, we suppose there are 12 allowed checkpoints if we
save only the solution, which means 6 checkpoints are allowed if we add one stage
to the checkpoint data and 4 checkpoints for adding two stages. Figure 2 shows
the relationship between the recomputations and the total number of steps for
these different options. In this example, the crossover point at which saving the
stages together with the solution leads to fewer recomputations than saving only
the solution occurs when 224 and 41 steps are taken for the two illustrated sce-
narios (saving one additional stage and two additional stages, respectively). Fur-
thermore, the number of stages saved, determined by the timestepping method,
has a significant impact on the range of number of time steps in which the former
option is more favorable; for methods with fewer stages, the range is generally
larger (compare 224 with 41).

Consequently, one can choose whether or not to save stage values in order
to minimize the recomputations for discrete adjonit calculation. The optimal
choice depends on the number of steps, the number of stages of the timestepping
algorithm, and the memory capacity.

Moreover, when using the modified Revolve algorithm, we can save fewer
stages than a timestepping method actually has, if the last stage of the method is
equal to the solution at the end of a time step. For instance, the Crank–Nicolson
method, which can be cast as a two-stage Runge–Kutta method, requires storing
only one stage with the solution corresponding to the solutions at the beginning
and the end of a time step. Many classic implicit Runge–Kutta methods have
such a feature that enables further improvement of the performance.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

Revolve-Based Adjoint Checkpointing for Multistage Time Integration 7

0 10 20 30 40 50
Number of time steps

0

20

40

60

80

100

E
xt

ra
 re

co
m

pu
ta

tio
ns

13

save solution
save solution + 3 stages

0 10 20 30 40 50
Number of time steps

0

20

40

60

80

100

E
xt

ra
 re

co
m

pu
ta

tio
ns

41

save solution
save solution + 2 stages

Fig. 2: Comparison in terms of recomputation effort for including different num-
bers of stages (0,1,and 2) in the checkpoint data. It is assumed that up to 12
solution vectors or stage vectors can be stored in both forward integration and
adjoint integration. Adapted from [11].

4 Using Revolve in the discrete adjoint calculation

The Revolve library is designed to be an explicit controller for conducting for-
ward integration and adjoint integration in time-dependent applications. The
interface requires the user to provide procedures such as performing a forward
and backward step and saving/restoring a checkpoint. Thus, incorporating Re-
volve in other simulation software such as PETSc can be intrusive, or even
infeasible, especially when the software has its own adaptive time step control
and an established framework for time integration. To mitigate intrusion, we use
Revolve in a different way in the sense that its role becomes more of a “con-
sultant” rather than a “controller.” Algorithm 1 describes the workflow for the
adjoint calculation with checkpointing. The parameters capo, fine, and check

are updated internally by Revolve. See Table 1 for descriptions of these pa-
rameters. A counter stepstogo for the number of steps to advance is computed
from these variables. We insert calls to Revolve only before a forward step
is taken when stepstogo is not zero, so as to preserve the original integration
process, which is represented by forwardSweep. This trick is also applied to the
adjoint sweep. One can verify that the resulting schedule is equivalent to the one
generated by calling Revolve repeatedly (the “controller” mode) based on the
following observations:

– If Revolve asks to store a checkpoint (takeshot), it will return either
advance or youturn (firsturn) in the next call.

– In the adjoint sweep, it is always required to restore a checkpoint and re-
compute one or more steps from this point.

The checkpointing scheme using the modified Revolve algorithm is depicted in
Algorithm 2. A main difference from Algorithm 1 is that the call to Revolve is
lagged because the positions of all the checkpoints have been shifted. We note

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

8 H. Zhang, E. Constantinescu

Algorithm 1 Adjoint checkpointing for a sequence of m time steps.

Initialize global variables capo← 0, fine← m, check ← −1, snaps← s
Initialize global variable stepstogo← 0 . steps to recompute in the adjoint sweep
Initialize Revolve with capo, fine, check, and snaps
state← forwardSweep(0,m, state) . forward sweep
adjstate← adjointStep(adjstate) . reverse last step directly
for i← m− 1 to 1 do . adjoint sweep

whatodo← revolve(check,capo,fine,snaps)
Assert(whatodo=restore) . always start from restoring a checkpoint
state, restoredind← restore(check) . get the index of the restored checkpoint
state← forwardSweep(restoredind, i− restoredind, state) . recompute from

the restored solution
adjstate← adjointStep(adjstate)

end for
function forwardSweep(ind, n, state) . advance n steps from the ind-th point

for i← ind to ind + n− 1 do . Revolve returns youturn/firsturn at the end
revolveForward(state)
state← forwardStep(state)

end for
return state

end function
function revolveForward(state) . query Revolve and take actions

if stepstogo = 0 then
oldcapo← capo
whatodo← revolve(check,capo,fine,snaps)
if whatodo = takeshot then

store(state, check) . store a checkpoint
oldcapo← capo
whatodo← revolve(check,capo,fine,snaps)

end if
if whatodo = restore then

restore(state, check) . restore a checkpoint
oldcapo← capo
whatodo← revolve(check,capo,fine,snaps)

end if
Assert(whatodo=advance || whatodo=youturn || whatodo=firsturn)

stepstogo← capo− oldcapo
else

stepstogo← stepstogo− 1
end if

end function

that reducing the counter stepstogo by one in the loop for adjoint sweep reflects
the fact that one fewer recomputation is needed for each adjoint step.

Both Algorithms 1 and 2 are implemented under the TSTrajectory class in
PETSc, which provides two critical callback functions TSTrajectorySet() and
TSTrajectoryGet(). The former function wraps revolveForward in for-

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

Revolve-Based Adjoint Checkpointing for Multistage Time Integration 9

Algorithm 2 Adjoint checkpointing using the modified Revolve algorithm.

Initialize global variables capo← 0, fine← m, check ← −1, snaps← s
Initialize global variable stepstogo← 0
Initialize Revolve with capo, fine, check, and snaps
state← forwardSweep(0,m, state)
adjstate← adjointStep(adjstate)
for i←M − 1 to 1 do

restoredind← revolveBackward(state) . always restore a checkpoint
state← forwardSweep(restoredind, i− restoredind, state)
adjstate← adjointStep(adjstate)

end for
function forwardSweep(ind, n, state)

for i← ind to ind + n− 1 do
state← forwardStep(state)
revolveForward(state)

end for
return state

end function
function revolveBackward(state)

whatodo← revolve(check,capo,fine,snaps)
Assert(whatodo = restore)
state, restoredind← restore(check)
stepstogo← max(capo− oldcapo− 1, 0) . need one less extra step since stage

values are saved
return restoredind

end function

wardSweep. The latter function wraps all the statements before adjointStep
in the for loop. This design is beneficial for preserving the established workflow
of the timestepping solvers so that the impact to other PETSc components such
as TSAdapt (adaptor class) and TSMonitor (monitor class) is minimized.

PETSc uses a redistributed package 1 that contains a C wrapper of the orig-
inal C++ implementation of Revolve. The parameters needed by Revolve
can be passed through command line options at runtime. Additional options are
provided to facilitate users monitoring the checkpointing process. Listing 1.1 ex-
hibits an exemplar output for -ts trajectory monitor -ts trajectory view

when using modified Revolve to reverse 5 time steps given 3 allowable check-
points.

By design, PETSc is responsible for the manipulation of checkpoints. A
stack data structure with push and pop operations is used to conduct the actions
decided by the checkpointing scheduler. The PetscViewer class manages deep
copy between the working data and the checkpoint, which can be encapsulated in
either sequential or parallel vectors that are distributed over different processes.

In addition to the offline checkpointing scheme, PETSc supports online
checkpointing and multistage checkpointing schemes provided by the Revolve

1 https://bitbucket.org/caidao22/pkg-revolve.git

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

10 H. Zhang, E. Constantinescu

package, and the modification proposed in this paper has been applied to these
schemes as well. Therefore, checkpoints can be placed on other storage media
such as disk. For disk checkpoints, the PetscViewer class offers a variety of for-
mats such as binary and HDF5 and can use MPI-IO on parallel file systems for
efficiency.

TSTrajectorySet: stepnum 0, time 0. (stages 1)

TSTrajectorySet: stepnum 1, time 0.001 (stages 1)

Store in checkpoint number 0 (located in RAM)

Advance from 0 to 2

TSTrajectorySet: stepnum 2, time 0.002 (stages 1)

TSTrajectorySet: stepnum 3, time 0.003 (stages 1)

Store in checkpoint number 1 (located in RAM)

Advance from 2 to 4

TSTrajectorySet: stepnum 4, time 0.004 (stages 1)

TSTrajectorySet: stepnum 5, time 0.005 (stages 1)

First turn: Initialize adjoints and reverse first step

TSTrajectoryGet: stepnum 5, stages 1

TSTrajectoryGet: stepnum 4, stages 1

Restore in checkpoint number 1 (located in RAM)

Advance from 2 to 3

Skip the step from 2 to 3 (stage values already checkpointed)

Forward and reverse one step

TSTrajectoryGet: stepnum 3, stages 1

Restore in checkpoint number 1 (located in RAM)

Forward and reverse one step

Skip the step from 2 to 3 (stage values already checkpointed)

TSTrajectoryGet: stepnum 2, stages 1

Restore in checkpoint number 0 (located in RAM)

Advance from 0 to 1

Skip the step from 0 to 1 (stage values already checkpointed)

Forward and reverse one step

TSTrajectoryGet: stepnum 1, stages 1

Restore in checkpoint number 0 (located in RAM)

Forward and reverse one step

Skip the step from 0 to 1 (stage values already checkpointed)

TSTrajectoryGet: stepnum 0, stages 1

TSTrajectory Object: 1 MPI processes

type: memory

total number of recomputations for adjoint calculation = 2

Listing 1.1: Monitoring the checkpointing process in PETSc

5 Algorithm performance

To study the performance of our algorithm, we plot in Figure 3 the actual number
of recomputations against the number of time steps and compare our algorithm
with the classic Revolve algorithm. For a fair comparison, the same number of
checkpointing units is considered.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

Revolve-Based Adjoint Checkpointing for Multistage Time Integration 11

Figure 3 shows that our modified algorithm outperforms Revolve. For 30
checkpointing units and 300 time steps, modified Revolve clearly takes fewer
recomputations than does Revolve, with the maximum gap being 40 recompu-
tations. For 60 checkpointing units and 300 time steps, the savings with modified
Revolve are 186 recomputations. If the recomputation cost of a time step is
fixed, the result implies a speedup of approximately 1.5X in runtime for the
adjoint calculation. As the number of time steps further increases, Revolve is
expected to catch up with modified Revolve and eventually surpass modified
Revolve. Furthermore, when the number of time steps is small, which means
there is sufficient memory, no recomputation is needed with modified Revolve;
however, Revolve requires the number of recomputations to be at least as many
as the number of time steps minus one.

0 50 100 150 200 250 300
Number of time steps

0

100

200

300

400

500

600

E
xt

ra
 re

co
m

pu
ta

tio
ns

30 checkpointing units

Revolve
modified Revolve

0 50 100 150 200 250 300
Number of time steps

0

100

200

300

400

500

600

E
xt

ra
 re

co
m

pu
ta

tio
ns

60 checkpointing units

Revolve
modified Revolve

Fig. 3: Performance comparison between Revolve and modified Revolve. The
plotted data is computed for time integration methods with two stages.

Now we demonstrate the performance with a real example. In the experiment,
we consider the gradient calculation using an adjoint method to solve a PDE-
constrained optimization problem. The objective is to minimize the discrepancy
between the simulated result and observation data (reference solution):

minimize
U0

‖U(tf)−Uob(tf)‖2 (5)

subject to the Gray-Scott equations [6]

u̇ = D1∇2u− uv2 + γ(1− u)

v̇ = D2∇2v + uv2 − (γ + κ)v,
(6)

where U = [u v]T is the PDE solution vector. The settings of this example
follow [11]. The PDE is solved with the method of lines. The resulting ODE
is solved by using the Crank–Nicolson method with a fixed step size 0.5. A

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

12 H. Zhang, E. Constantinescu

centered finite-difference scheme is used for spatial discretization on a uniform
grid of size 128×128. The computational domain is Ω ∈ [0, 2]2. The time interval
is [0, 25]. The nonlinear system that arises at each time step is solved by using
a Newton-based method with line search, and the linear systems are solved by
using GMRES with a block Jacobi preconditioner.

Figure 4 shows that the runtime decreases as the allowable memory for check-
pointing increases for both schemes and that the best performance achieved by
modified Revolve is approximately 2.2X better than that by Revolve. When
memory is sufficient, modified Revolve requires no recomputation. Thus the es-
timated speedup of modified Revolve over Revolve would be approximately
2X provided the cost of the forward sweep is comparable to the cost of the
adjoint sweep. Another important observation is that the experimental results,
despite being a bit noisy, roughly match with the theoretical predictions. The
observable oscillation in timing can be attributed mostly to the fact that the cost
of solving the implicit system varies across the steps, which is not uncommon
for nonlinear dynamical systems.

6 Conclusion

With the abstraction of a sequence of time steps, the classic algorithm Revolve
provides optimal checkpointing schedules for efficient adjoint computation in
many scientific computations. However, it may yield suboptimal performance
when directly applied to multistage time integration methods.

In this paper we have considered checkpointing strategies that minimize the
number of recomputations under two assumptions: (1) the stage values of a
multistage method can be saved as part of a checkpoint, and (2) a stage vector
has the same size (therefore the same memory cost) with a solution vector.
By extending Revolve and redefining the content of a checkpoint, we derived
a modified Revolve algorithm that provides better performance for a small
number of time steps. The performance has been studied numerically. The results
on some representative test cases show that our algorithm can deliver up to 2X
speedup compared with Revolve and avoid recomputation completely when
there is sufficient memory for checkpointing.

In addition, the implementation of our algorithm is tailored to fit into the
workflow of mature scientific computing libraries. Integrating our algorithm into
existing frameworks avoids using it as a centralized controller over the entire
workflow; thus, it becomes less intrusive to the application codes. The proposed
algorithm has been successfully employed in the PETSc library.

References

1. Aupy, G., Herrmann, J.: Periodicity in optimal hierarchical checkpointing schemes
for adjoint computations. Optimization Methods and Software 32(3), 594–624
(2017). https://doi.org/10.1080/10556788.2016.1230612

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

Revolve-Based Adjoint Checkpointing for Multistage Time Integration 13

0 20 40 60 80 100
Number of allowable checkpointing units

0

50

100

150

200

250

E
xt
ra
 re

co
m
pu

ta
tio

ns

50 time steps

Revolve
modified Revolve

(a) Theoretical predictions.

0 5 10 15 20 25
Allowable memory for checkpointing (MB)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
un

tim
e

fo
r t

he
 a

dj
oi

nt
 s

w
ee

p
(s

ec
on

ds
)

50 time steps

Revolve
modified Revolve

(b) Runtime for adjoint vs. checkpointing memory consumption.

Fig. 4: Comparison of the timing results of the adjoint calculation with the the-
oretical predictions for Revolve and modified Revolve. The Crank–Nicolson
method is used for time integration. It consists of two stages, but only the first
stage needs to be saved since the second stage is the same as the solution.

2. Aupy, G., Herrmann, J., Hovland, P., Robert, Y.: Optimal multistage algorithm
for adjoint computation. SIAM Journal on Scientific Computing 38(3), C232–C255
(2016)

3. Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin,
L., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Rupp, K.,
Smith, B., Zampini, S., Zhang, H., Zhang, H.: PETSc Users Manual. Tech. Rep.
ANL-95/11 - Revision 3.7, Argonne National Laboratory (2016)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

14 H. Zhang, E. Constantinescu

4. Griewank, A., Walther, A.: Algorithm 799: revolve: an implementation of
checkpointing for the reverse or adjoint mode of computational differenti-
ation. ACM Transactions on Mathematical Software 26(1), 19–45 (2000).
https://doi.org/10.1145/347837.347846

5. Heuveline, V., Walther, A.: Online checkpointing for parallel adjoint computation
in PDEs: application to goal-oriented adaptivity and flow control. In: Euro-Par
2006 Parallel Processing, Lecture Notes in Computer Science, vol. 4128. Springer
Berlin Heidelberg, Berlin, Heidelberg (2006). https://doi.org/10.1007/11823285

6. Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods
with general monotonicity and boundedness properties. Journal of Computational
Physics 225(2007), 2016–2042 (2007). https://doi.org/10.1016/j.jcp.2007.03.003

7. Schanen, M., Marin, O., Zhang, H., Anitescu, M.: Asynchronous two-
level checkpointing scheme for large-scale adjoints in the spectral-element
solver Nek5000. Procedia Computer Science 80, 1147–1158 (2016).
https://doi.org/10.1016/j.procs.2016.05.444

8. Stumm, P., Walther, A.: MultiStage Approaches for Optimal Offline Check-
pointing. SIAM Journal on Scientific Computing 31(3), 1946–1967 (2009).
https://doi.org/10.1137/080718036

9. Stumm, P., Walther, A.: New algorithms for optimal online check-
pointing. SIAM Journal on Scientific Computing 32(2), 836–854 (2010).
https://doi.org/10.1137/080742439

10. Wang, Q., Moin, P., Iaccarino, G.: Minimal repetition dynamic checkpointing al-
gorithm for unsteady adjoint calculation. SIAM Journal on Scientific Computing
31(4), 2549–2567 (2009). https://doi.org/10.1137/080727890

11. Zhang, H., Constantinescu, E.M., Smith, B.F.: PETSc TSAdjoint: a discrete
adjoint ODE solver for first-order and second-order sensitivity analysis. CoRR
abs/1912.07696 (2020), http://arxiv.org/abs/1912.07696

12. Zhang, H., Sandu, A.: FATODE: a library for forward, adjoint, and tangent linear
integration of ODEs. SIAM Journal on Scientific Computing 36(5), C504–C523
(oct 2014). https://doi.org/10.1137/130912335

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_37

https://dx.doi.org/10.1007/978-3-030-77961-0_37

