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Abstract. This study is devoted to improving the efficiency of the nu-
merical methods for solving the pseudo-differential parabolic equation
of diffraction theory. A rational approximation on an interval is used in-
stead of the Padé approximation in a vicinity of a point. The relationship
between the pseudo-differential propagation operator, variations of the
refractive index, and the maximum propagation angle is established. It
is shown that using the approximation on an interval is more natural for
this problem and allows using a more sparse computational grid than
when using the local Padé approximation. The proposed method differs
from the existing ones only in the coefficients of the numerical scheme
and does not require significant changes in the implementations of the
existing numerical schemas. The application of the proposed approach
to the tropospheric radio-wave propagation and underwater acoustics
is provided. Numerical examples quantitatively demonstrate the advan-
tages of the proposed approach.

Keywords: Wave propagation · Helmholtz equation · Parabolic equa-
tion · Diffraction · Rational approximation

1 Introduction

A wide class of wave propagation problems can be effectively tackled by the
parabolic equation (PE) method [13, 6] and its wide-angle higher-order approxi-
mations. Initially, the PE method was proposed by Leontovich and Fock [12] for
tropospheric radio-wave propagation problems. PE method allows handling vari-
ations of the tropospheric refractive index, irregular terrain, rough sea surface
[13], vegetation [23] and backscattering [20, 30]. There are works on the appli-
cation of the PE method in a substantially three-dimensional urban environ-
ment [15]. Numerical methods for solving PE have been particularly developed
in computational underwater acoustics studies [7, 5, 26]. Wide-angle approxima-
tions and higher-order finite-difference numerical schemas were developed. In
modern studies, the PE method is usually considered as the one-way Helmholtz
equation, which is the generalization of the standard Leontovich-Fock PE [10].
This method is also widely used in geophysics [19], optics [3] and quantum me-
chanics [28]. The use of the principle of universality of mathematical models
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[25] promotes the mutual exchange of numerical methods for the PE between
different subject areas.

The wide popularity of the PE method in the wave propagation studies is
due to its strict deterministic nature and, at the same time, its high computa-
tional efficiency. Several computational programs for various purposes have been
developed on the basis of the PE method: AREPS [4], PETOOL [21], RAM [24],
CARPET [11]. At the same time, the problem of developing fast and reliable
numerical schemas for solving PE remains relevant. Most of the works on the nu-
merical solution of the PE are purely theoretical in nature and do not take into
account the features of using these numerical algorithms in complex software
systems. It is important not only to develop an efficient numerical algorithm but
also to determine the limits of its applicability depending on the input data. At
the same time, these algorithms should work autonomously, without an expert’s
intervention. Suitable artificial parameters of numerical schemas, such as the
grid steps and approximation order, should be selected automatically based on
the input data and the required accuracy [16].

To solve the above mentioned problems, a deep theoretical analysis of the nu-
merical scheme is required. In this paper, we analyze the structure of the pseudo-
differential propagation operator, which enables us to establish the relationship
between the input parameters of the algorithm and the required approximation
accuracy. This analysis allowed us to choose a more suitable approximation of
the propagation operator than the existing ones.

The paper is organized as follows. The next section briefly describes the math-
ematical formulation of the problem. Section 3 is devoted to the development
and analysis of various rational approximations of the propagation operator.
Section 4 analyzes the results of numerical simulations for various propagation
scenarios.

2 Problem statement

Complex wave field component ψ(x, z) follows the two-dimensional Helmholtz
equation

∂2ψ

∂x2
+
∂2ψ

∂z2
+ k2n2(x, z)ψ = 0, (1)

where n(x, z) is the refractive index of the medium, k = 2π/λ is the wavenum-
ber, λ is the wavelength. The schematic description of the problem under con-
sideration is shown in Fig.1. Depending on the specifics of a particular task,
function ψ is subject to the impedance boundary condition [13] or transparent
boundary condition [8, 27, 18] on the lower and upper boundaries of the compu-
tational domain. The wave process is generated by the initial Dirichlet condition
of the form

ψ(0, z) = ψ0(z)
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with known function ψ0(z), which corresponds to the radiation pattern of
the source. Depending on the specific task, function ψ can respond to the elec-
tromagnetic field [13] or the acoustic pressure field [6].

z

upper boundary condition

n(x,z): refractive index
radiation source pattern

x0 lower boundary condition

Fig. 1. Schematic description of the considered problem.

Step-by-step solution with longitudinal step ∆x for the outgoing waves can
be written using the pseudo-differential propagation operator as follows [13]

un+1 = exp
(
ik∆x

(√
1 + L− 1

))
un, (2)

where

un(z) = u(n∆x, z),

Lu =
1

k2
∂2u

∂z2
+
(
n2(x, z)− 1

)
u,

u(x, z) = e−ikxψ(x, z). (3)

3 Approximation of the propagator

Using the definition of a pseudo-differential operator [29], we can rewrite prop-
agation operator (2) using the Fourier transform as follows

ũn+1(kz) = exp

(
ik∆x

(√
1− k2z

k2
+ (n2(x, z)− 1)− 1

))
ũn(kz), (4)
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where

ũn(kz) =
1√
2π

+∞∫
−∞

un(z)e−ikzzdkz, (5)

un(z) =
1√
2π

+∞∫
−∞

ũn(kz)e
ikzzdz. (6)

The physical meaning of the Fourier transform (5)-(6) is the decomposition
of a vertical wavefront un into plane waves. Vertical wavenumber kz is related
to the angle between the plane wave direction and the positive x-axis direction
θ (propagation angle) as follows

kz = k sin θ.

Next, we use a rational approximation of order [n/m]

exp
(
ik∆x

(√
1 + ξ − 1

))
≈

1 +
∑m
l=1 ãlL

l

1 +
∑n
l=1 b̃lL

l
=

p∏
l=1

1 + alξ

1 + blξ
, (7)

where

ξ = −k
2
z

k2
+
(
n2(x, z)− 1

)
. (8)

The selection of coefficients and the properties of this approximation will be
clarified in the next subsections.

Taking into consideration p-1 new temporary functions ṽl(z), expression (4)
can be approximately rewritten as follows



(
1 + b1

(
−k

2
z

k2 + n2 − 1
))

ṽn1 =
(

1 + a1

(
−k

2
z

k2 + n2 − 1
))

ũn−1(
1 + bl

(
−k

2
z

k2 + n2 − 1
))

ṽnl =
(

1 + al

(
−k

2
z

k2 + n2 − 1
))

ṽnl−1 l = 2 . . . p− 1

. . .(
1 + bp

(
−k

2
z

k2 + n2 − 1
))

ũn =
(

1 + ap

(
−k

2
z

k2 + n2 − 1
))

ṽnp−1.

(9)
Applying the inverse Fourier transform to each line of the system (9), we ob-

tain the following system of one-dimensional second-order differential equations
(1 + b1L) vn1 = (1 + a1L)un−1

(1 + blL) vnl = (1 + alL) vnl−1 l = 2, . . . , p− 1

. . .

(1 + bpL)un = (1 + apL) vnp−1.

(10)
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System (10) can be solved sequentially from top to bottom. Next, we use the
Numerov method [18] with transverse grid step ∆z to approximate the second
derivative. Then, each line of system (10) can be numerically solved by the
tridiagonal matrix method in linear time.

Note that the overall complexity of the propagation algorithm is

O
(xmax
∆x

· zmax
∆z

· p
)
,

where xmax and zmax are longitudinal and transverse sizes of the computa-
tional domain respectively.

3.1 Padé approximation

Lets now return to the features of approximation (7). In [5] it is proposed to use
the Padé approximations [2] to calculate the coefficients al and bl of expansion
(7). This approach is called the split-step Padé method. The basis of the Padé
approximation is the expansion of the function in the vicinity of the point ξ = 0
according to the Taylor series. Then the coefficients of the Taylor expansion are
recalculated into al and bl using specially elaborated numerical methods [2]. It is
important that the approximation obtained in this way is localized at a specific
point (ξ = 0).

We introduce the absolute error of approximation of the propagation operator
at each longitudinal step

R(ξ, a1 . . . ap, b1 . . . bp, ∆x) = | exp
(
ik∆x

(√
1 + ξ − 1

))
−
∏p
l=1 1 + alξ∏p
l=1 1 + blξ

|.

In all further examples, we consider the absolute approximation error equal
to 10−3 to be acceptable. Note that this error refers to a single step along the
longitudinal coordinate, and it accumulates during the step-by-step propagation.

To assess the quality of Padé approximation of the propagator, we consider
the dependence of the absolute error of the approximation R on the value ξ for
various approximation parameters shown in Fig. 2. As expected, the maximum
precision of the Padé approximation is achieved near the point ξ = 0, monoton-
ically decreasing as we move away from it. It is clearly seen that an increase in
the order of approximation and a decrease in the step ∆x lead to a more precise
approximation on a larger interval.

3.2 Rational approximation on an interval

One can clearly see from expression (8) that the value of ξ is affected by the
propagation angle θ and the variations of the refractive index n(x, z). In the
case of a homogeneous medium ξ ∈ [− sin2 θmax, 0], where θmax is the maximum
propagation angle, which can be estimated based on the geometry of a partic-
ular problem. Table 1 shows how the interval size increases depending on the
maximum propagation angle.
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Fig. 2. Dependence of the Padé approximation error on the value ξ for various approx-
imation orders ([4/4] and [7/7]) and longitudinal grid steps ∆x (15λ and 30λ).

Table 1. The maximum propagation angle θmax and the value of the interval, on which
the approximation should be performed.

θmax,
◦ 1 2 5 10 20 45 90

Interval [-sin2 θmax, 0] [-0.0003,0] [-0.001,0] [-0.008,0] [-0.03,0] [-0.1,0] [-0.5,0] [-1.0,0]

Let’s assume that the values of the function n2(x, z) − 1 belong to the set
[tmin, tmax]. Then ξ ∈ [− sin2 θmax + tmin, tmax].

Thus, we naturally come to the necessity of constructing an approximation
of function (7) on the interval instead of a local approximation in the vicinity
of point ξ = 0. Next, we consider the following two rational approximations on
an interval, implemented in the Chebfun library [1]: Clenshaw-Lord method [2]
(chebpade function in Chebfun) and the rational interpolation in the Chebyshev
roots [22] (ratinterp function in Chebfun). Clenshaw-Lord method is based on
the Chebyshev series expansion instead of the Taylor series, thus it is also known
as Chebyshev-Padé method.

Fig. 3 demonstrates the dependence of the absolute approximation error R on
the propagation angle θ for the Padé approximation, Clenshaw-Lord approxima-
tion, and interpolation in Chebyshev roots. In all three cases, the approximation
order is [7/7], ∆x = 200λ, so all three considered configurations are computa-
tionally equivalent. It is clearly seen that with the selected parameters, the Padé
approximation can provide the required accuracy only for propagation angles up
to 6◦. Approximation on the interval, in turn, allows one to take into account
the propagation angles up to 10◦ with the same approximation order and the
value of ∆x. The local nature of the Padé approximation is clearly observable.
Namely, it has excessive accuracy at small propagation angles, while the accu-
racy monotonically decreases with increasing propagation angle. The error of the
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Clenshaw-Lord approximation and interpolation in Chebyshev nodes does not
exceed the threshold for the entire interval [0; 10◦]. At the same time, the latter
gives slightly better accuracy, so we will use it in all further examples.
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Pade

Clenshaw-Lord

Rational interpolation

Fig. 3. Dependence of the approximation error R on the propagation angle for the
Padé approximation, Clenshaw-Lord approximation, and rational interpolation in the
Chebyshev roots. In all cases ∆x = 200λ, rational approximation order is [7/7].

4 Numerical results and discussion

This section presents the results of numerical simulation obtained by the pro-
posed method of rational interpolation and Padé approximation. An implemen-
tation of the rational interpolation method from the Chebfun library [1] was
used. The rest of the functionality, including the step-by-step numerical scheme
and transparent boundary conditions, is implemented in the Python 3 library
[14] developed by the author.

4.1 Radio-wave propagation

In the first example, we consider the diffraction of the electromagnetic waves on
an impenetrable wedge located on a perfectly conductive surface. A transparent
boundary condition is established at the upper boundary of the computational
domain. Problems with such geometry arise when computing the tropospheric
radio-wave propagation over irregular terrain [13]. The Gaussian horizontally
polarized antenna [13] is located at an altitude of 150 m above the surface
and emits a harmonic signal at a frequency of 3 GHz. A 150 m high wedge is
located at a distance of 3 km from the source of radiation. The wedge is modeled
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by a staircase approximation. The results obtained by the Padé approximation
method and the proposed method are shown in Fig. 4 and 5. It is clearly seen that
for the selected longitudinal grid step ∆x = 25λ, the proposed method yields a
correct result with an approximation order of [4/5]. At the same time, to achieve
the same accuracy using the Padé approximation with the same grid size, the
order of [10/11] is required. Using the order of [4/5] for the Padé approximation
leads to incorrect results in the diffraction zone behind the obstacle at large
propagation angles. Thus, in this example, the proposed method is more than
twice as fast as the Padé approximation. The dependence of the approximation
error on the propagation angle, depicted in Fig. 6, confirms these conclusions.

It should be noted that the transparent boundary condition [17, 9] originally
developed for Padé approximations also works correctly for the proposed numer-
ical scheme. However, this experimental observation requires further mathemat-
ical analysis.
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−120 −100 −80 −60 −40 −20

Fig. 4. Diffraction on the impenetrable wedge. Spatial distribution of the field ampli-
tude (20 log |ψ(x, z)|).In all examples ∆x = 25λ, ∆z = 0.25λ.

4.2 Propagation in a shallow water

In the following example, we will consider diffraction on a permeable wedge lo-
cated on a permeable surface. Similar problems arise when calculating the acous-
tic pressure field in an inhomogeneous underwater environment. The source of
50 Hz acoustic waves is located at a depth of 50 m. The upper surface between
water and air is considered smooth. The wedge and the surface on which it is
located are modeled by spatial variations of the refractive index n. The field
is calculated simultaneously in water and sediment, and a transparent bound-
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Fig. 5. Diffraction on the impenetrable wedge. Distribution of the field amplitude
(20 log |ψ(x, z)|) at the height of 5 m.
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Fig. 6. Diffraction on the impenetrable wedge. Dependence of the approximation error
on the propagation angle for the Padé approximation and rational interpolation, ∆x =
25λ.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_35

https://dx.doi.org/10.1007/978-3-030-77961-0_35
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ary condition is set at the lower boundary. The refractive index in this case is
expressed as follows

n2(x, z) =

(
c0

c(x, z)

)2

,

where c(x, z) is the sound speed, c0 = 1500 m/s is the reference sound speed.
Constant c0 can be chosen arbitrary, based on the fact that the wave number in
this case is expressed as k0 = 2πf/c0. In this example, the sound speed in the
water is 1500 m/s, in the sediment and inside the wedge is 1700 m/s. Additional
damping of 0.5 dB per wavelength is also posed inside the sediment and wedge.
For the sake of simplicity, we do not consider variations of the density in this
paper, although this should be done in the future works. For the peculiarities
of the mathematical formulation of computational hydroacoustics problems, we
refer the reader to [6].

The results of the numerical simulation are shown in Fig. 7 and 8. The pro-
posed scheme requires the use of the approximation order of [2/3] when ∆x = 6λ,
∆z = 0.03λ, while the split-step Padé method for the same computational grid
requires the order of [5/6], that is, twice the computational cost. The approxi-
mation was based on the segment ξ ∈ [−0.23, 0]. The dependence of the approx-
imation error on ξ is shown in Fig. 9.
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Fig. 7. Diffraction by the penetrable wedge. Spatial distribution of the field amplitude
(20 log |ψ(x, z)|). In all examples ∆x = 6λ, ∆z = 0.03λ.

4.3 Analysis of the computational grid density

In the last example, we demonstrate how the required density of the computa-
tional grid changes with increasing the maximum propagation angle θmax for the

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_35

https://dx.doi.org/10.1007/978-3-030-77961-0_35


Chebyshev-type rational approximations 11

60 80 100 120 140
Range (km)

−60

−50

−40

−30

20
lo

g 
u 

 (d
B)

Rational interpolation-[2/3]
Pade-[2/3]
Pade-[5/6]

Fig. 8. Diffraction by the penetrable wedge. Distribution of the field amplitude
(20 log |ψ(x, z)|) at the depth of 50 m. The difference between the rational interpo-
lation of the order of [2/3] and the Padé approximation of the order of [5/6] is not
distinguishable.
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Fig. 9. Diffraction by the penetrable wedge. Dependence of the approximation error
on ξ for Padé approximation and rational interpolation, ∆x = 6λ.
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Padé approximation and the proposed method. For both methods, an approxi-
mation order of [7/8] is used. We require that at a distance of xmax = 105λ from
the source, an absolute error should not exceed tol = 10−3. Than, following [16],
we can compute the optimal value of ∆x by solving the following minimization
problem

nx =
xmax
∆x

→ min

under condition

max
ξ∈[− sin2 θmax,0]

R(ξ, a1 . . . ap, b1 . . . bp, ∆x) · nx < tol.

The last expression is obtained based on the assertion that the error R ac-
cumulates at each step, and the total number of steps is nx. Table 2 shows the
minimization results for the maximum propagation angles θmax, equal to 3◦,
10◦, 20◦, 45◦, 60◦ and 80◦. It can be seen that the proposed method makes
it possible to use a much more sparse computational grid. Interestingly, that
for propagation angles of 60◦ and 80◦ the specified algorithm could not find
reasonable values of ∆x for the Padé approximation method at all.

We are to keep in mind that a more rigorous mathematical error analysis of
the proposed numerical scheme should be carried out in the future.

Table 2. Optimal values of the longitudinal grid step ∆x for Padé approximation and
rational interpolation (larger is better). The order of approximation in both cases is
equal to [7/8]. ’-’ indicates that the target accuracy was not achieved at reasonable
values of ∆x.

Propagation angle θ 3◦ 10◦ 20◦ 45◦ 60◦ 80◦

optimal ∆x for the Padé approximation 600λ 50λ 11λ 1.5λ - -

optimal ∆x for the proposed method 2600λ 200λ 40λ 8λ 4λ 1.4λ

5 Conclusion

It was shown that the use of rational interpolation on the interval gives an
opportunity to decrease the computational time of the numerical scheme for
solving the unidirectional Helmholtz equation by 2-5 times. It was shown that the
approximation of the propagation operator on the segment is more natural for the
considered problem. The proposed approach does not require significant changes
to the existing numerical schemas and its implementations. A significant increase
in the performance of a numerical scheme can be achieved only by changing its
coefficients, without increasing the density of the computational grid or the order
of approximation. The relationship between the input data of the algorithm
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(variations of the refractive index and the maximum propagation angle) and
the required approximation was established. This allows us to implement more
accurate and reliable numerical algorithms adapted to a particular situation. It
is shown that the proposed method can be effectively applied in computational
hydroacoustics and tropospheric radio wave propagation.

Other rational approximations should be studied in the future works. It is
also necessary to study the stability and limitations of the proposed method, al-
though the conducted computational experiments give reason to believe that the
proposed numerical scheme, as well as the split-step Padé method, is absolutely
stable. In this paper, the two-dimensional propagation was considered, but the
proposed method can be generalized to a more general three-dimensional case
in the future works.
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