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Abstract. In this paper, a multipurpose Bayesian-based method for
data analysis, causal inference and prediction in the sphere of oil and gas
reservoir development is considered. This allows analysing parameters of
a reservoir, discovery dependencies among parameters (including cause
and effects relations), checking for anomalies, prediction of expected val-
ues of missing parameters, looking for the closest analogues, and much
more. The method is based on extended algorithm MixLearn@BN for
structural learning of Bayesian networks. Key ideas of MixLearn@BN are
following: (1) learning the network structure on homogeneous data sub-
sets, (2) assigning a part of the structure by an expert, and (3) learning
the distribution parameters on mixed data (discrete and continuous). Ho-
mogeneous data subsets are identified as various groups of reservoirs with
similar features (analogues), where similarity measure may be based on
several types of distances. The aim of the described technique of Bayesian
network learning is to improve the quality of predictions and causal in-
ference on such networks. Experimental studies prove that the suggested
method gives a significant advantage in missing values prediction and
anomalies detection accuracy. Moreover, the method was applied to the
database of more than a thousand petroleum reservoirs across the globe
and allowed to discover novel insights in geological parameters relation-
ships.

Keywords: Bayesian networks · Structural learning · Causal inference
· Missing values prediction · Oil and gas reservoirs · Similarity detection

1 Introduction

The problem of choosing oil and gas reservoir development strategy is one of the
most crucial decisions made at the early stages of reservoir development by every
oil and gas producer company. Almost all decisions related to fluid production
have to be made at the early stages, characterized by high uncertainty and lack of
information about geological and production reservoir parameters. The reservoir
could be fully characterized only at mature development stages. The experience
of commissioning new reservoirs shows that most of the project decisions made
at the early stages of the reservoir development have a crucial impact on the
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development strategy and the entire project’s economic feasibility. A common
method of investigating these new reservoirs is to examine a subsample that is
close to or similar to them. Most often, the wrong selection of analogues leads
to the fact that the reserves of the reservoir are overestimated, which leads to
a discrepancy between the forecast and actual production levels, which results
in an overestimated net present value (NPV) forecast for the entire project [5].
Incorrect selection of analogues can even lead to the fact that the actual NPV
does not fall into the predicted distribution of probable NPV.

In a significant part of geological companies, analogues search is performed
by an expert who manually selects a reservoir which properties resemble prop-
erties of the target one. The result of this procedure is a list of reservoir names
with similar properties. Analogues are also used at mature stages of reservoir de-
velopment, for example, to find successful cases of increasing oil recovery. There
is another way to find reservoir analogues, namely using the similarity function
[16]. The difference between the two approaches consists mainly in distributions
shapes of reservoir analogues due to more narrow search space made by industry
expert [21]. It was also founded that using a manual approach, some experts
limit themselves only to local analogues and completely ignore global analogues.
A decision of using only local analogues may not be optimal, especially at the
early stages of project development [19]. On the other hand, the results of reser-
voir analogues performed by ranked similarity function are characterized by a
broader distribution of reservoir parameters. In order to find reservoir analogues
by similarity function more feasible, reconstruction of missing values should be
performed. Based on this, it is highly desirable to have a more automated and
mathematically proved instrument to determine the most likely reservoir pa-
rameters at the early stages of geological exploration. So far, a few works have
been done on topics related to inputting missing values using machine learning
to reservoir parameters datasets [20]. For this reason, our efforts also addressed
the search for an automated solution for the analysis and modelling of reservoir
properties with the usage of machine learning techniques.

2 Related Work

In this section, we summarize, in abbreviated form, the pros and cons of meth-
ods that are used for modelling and could potentially be the basis for reservoir
analysis. They are described in more detail in our previous work [1].

One common way of modelling is Markov Chain Monte Carlo (MCMC)
method. The algorithm walks through the space of all possible combinations
of values and moves from one state to a new state that differs in the i-th vari-
able with probability estimated from the dataset. However, this approach for
high-dimensional problems requires large amounts of memory and time. Un-
fortunately, this model does not find the relationship between the parameters
explicitly and is difficult to interpret. Nevertheless, MCMC is quite common,
ready-made libraries exist for it, and this method is used to solve practical prob-
lems in oil and gas data. For example, Gallagher et al. [6] showed the applicabil-
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ity of MCMC method to the task of modelling distributions of geochronological
ages, sea-level, and sedimentation histories from two-dimensional stratigraphic
sections.

Another modelling approach is the Conditional Iterative Proportional Fitting
(CIPF). CIPF is designed to work with multi-dimensional contingency tables.
The basic idea is to iteratively fit marginal and conditional distributions, gradu-
ally approaching the desired joint distribution in terms of Kullback-Leibler dis-
tance. However, this requires knowledge of the dependency structure, but even
so, the method converges extremely slowly. There is a simplified and faster ver-
sion called IPF, which assumes a toy model with an independent set of variables.
Li and Deutsch [13], for example, use it to estimate and model facies and rock
types. On the positive side, this approach is reduced to the sequential solution
of linear equations, and there is a ready-made library for it.

A third approach is to use a copula. Formally, this is a multivariate distribu-
tion on an n-dimensional unit cube obtained using inverse distribution functions
for some fixed family of distributions. Based on Sklar’s theorem, modelling any
joint distribution is reduced to approximation by copulas. For example, Han et
al. [9] use this approach to determine the tectonic settings. And in the work of
Hernández-Maldonado et al. [11] they model complex dependencies of petrophys-
ical properties such as porosity, permeability, etc. Unfortunately, expert selection
of the copula family is required. The basic method takes into account only the
pairwise dependence; more complex models require knowledge of the dependence
structure. It must be considered that the main application of copulas is to work
with quantitative values.

In short, our work seeks to circumvent the above limitations on the volume
and type of data. Our goal is an interpretive approach that will allow us to
combine the tools needed for oil and gas reservoir analysis on a single base. To
do this, we turn to Bayesian networks, taking into account the specifics of the
domain and the techniques adopted for analysis.

3 Problem statement

Let us temporarily step aside and look at this issue from the side of statistics, not
geology. The first thing that is important to us when we analyze data is to present
it in the most effective way that allows us to extract as much hidden information
as possible. And oil and gas reservoirs analysis impose some limitations: we need
to work with mixed data, i.e. continuous, categorical, and discrete data. The
objects under study have a large number of features.

The relationships of the parameters are not always linear and not always
obvious, even to a specialist, but we need to be able to identify them for further
interpretation. We also would like to have a possibility of taking into account the
expert’s opinion of the cause and effect links. There are additional restrictions
on the time of the algorithm, as well as the need for certain functionality such as
filling gaps and finding anomalies. So here is an additional challenge of making
an optimal choice among the existing modelling approaches. Based on all of the
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above we focus our efforts on developing a tool that is able to (1) be interpretable
and include some portion of expert knowledge (in the way of composite AI), (2)
be multipurpose as a core for partial algorithms (analogues search, gaps filling,
probabilistic inference, etc.), (3) be efficiently computed.

As the most promising basis, we choose Bayesian networks (BN). From a
graphical point of view, it is a directed acyclic graph (DAG), any vertex of
which represents some characteristic of the object. This structure also stores
information for the vertices about the value and conditional distribution of the
corresponding characteristic. Let PaGXi

denote the parents of the vertex Xi in
the structure G, NonDescendantsXi denote the vertices in the graph that are
not descendants of the vertex Xi [12]. Then, for each vertex Xi:

(Xi ⊥ NonDescendantsXi
|PaGXi

) (1)

Then the multivariate distribution of P in the same space is factorized according
to the structure of the graph G, if P can be represented as:

P (X1, ..., Xn) =

n∏
i=1

P (Xi|PaGXi
) (2)

However, to use Bayesian networks, it is necessary to solve two problems: learn-
ing the network structure and distributions parameters in the network nodes.
Unfortunately, learning the graph structure is a complex and resource-intensive
task. The number of DAGs grows super-exponentially with the number of ver-
tices [17]. However, there are several approaches [18] to solve this problem, which
we will discuss below.
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Fig. 1: The pipeline of the proposed Bayesian approach to the oil and gas reservoir
analysis. Data preprocessing block is not represented directly to simplify the
scheme.

The purpose of this paper is to demonstrate a new flexible approach in the
context of a comprehensive analysis of oil and gas reservoirs (see Fig. 1 for de-
tails). We chose the Bayesian network model as the core because this probabilistic
model generally meets the formulated criteria. There is an extensive theoretical
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basis for various probabilistic analysis problems, and examples of specialized im-
plementations on small oil and gas datasets [15,14]. However, Bayesian networks
are capable of handling larger amounts of data, and the functionality can be
represented as a complex structure of complementary elements. In this paper,
we propose to implement this idea on the basis of oil and gas reservoirs data,
taking into account the specificity of the domain and typical auxiliary techniques
such as searching for analogues.

4 Algorithms and methods

4.1 MixLearn@BN: Algorithm for mixed learning of Bayesian
networks

Making the inference of reservoir parameters requires a complex algorithm with
several crucial properties. The algorithm MixLearn@BN allows us to combine (1)
learning the network structure on homogeneous data subsets, (2) assigning the
structure by an expert, and (3) learning the distribution parameters on mixed
data (discrete and continuous). Algorithm 1 demonstrates the pseudocode of the
proposed complex algorithm. For structure learning, we use the Hill Climbing
algorithm [2], [7] with the scoring function from K2 algorithm [4]. To learn the
parameters, we use a mixed approach, within which the distributions at the
nodes can be of three types:

– Conditional probabilities tables (CPT), if the values at the node are discrete
and its parents have a discrete distribution;

– Gaussian distribution, if the values at the node are continuous and its parents
have a continuous distribution;

– Conditional Gaussian distribution, if the node values are continuous, and
among the parents there are discrete nodes and nodes with continuous dis-
tribution.

4.2 Reducing the training samples using similarity detection

In this paper, in particular, we test whether the technique for finding similar
reservoirs (analogues) can improve parameter restoration quality with Bayesian
networks. The main task is to find these analogues. And for this, we need to define
an appropriate measure of proximity or distance to the target reservoir.The main
requirement for distance metrics are defined by task features:

1. The data is represented by a set of values of different types. Metrics on
categorical variables rely on whether or not the value matched, whereas, for
quantitative ones, it matters how much it does not match. Once quantitative
variables are discretized, we can use the general approach for categorical
ones, but there is a risk that we miss valuable information.

2. Variables are interdependent, and mismatches cannot be considered as un-
related in any way. It is unclear how to account for this.
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Algorithm 1 Comprehensive Bayesian Network Learning Algorithm

1: procedure Bayesian network learning(D, edges, remove edges)
2: Input: D =

{
x1, ...,xn

}
, edges which an expert wants

3: to add edges, boolean remove edges that allows removing edges
4: Output: Bayesian network

{
V,E,DistributionsParameters

}
5: discrete D = Discretization(D)
6:

{
V,E

}
= HillClimbingSearch(discrete D) . Structure learning

7: if remove edges = false then
8:

{
V,E

}
=

{
V,E

}
∪ edges

9: end if
10: bn parameters = Parameters learning(D,

{
V,E

}
) . Parameters learning

11: return Bayesian network
{
V,E, bn parameters

}
12: end procedure
13: procedure Parameters learning(D,

{
V,E

}
)

14: Input: D =
{
x1, ...,xn

}
, structure of BN

{
V,E

}
15: Output: dictionary with distributions parameters for each node in BN
16: params = empty dictionary
17: for node in BN structure do
18: if node is discrete and parents(node) are discrete then
19: params[node] = CPT(node, parents(node), D)
20: end if
21: if node is continuous and parents(node) are continuous then
22: mean, var = parameters from Gaussian(node,D)
23: coef = coefficients from BayesianLinearRegression(parents(node),node,
24: D)
25: params[node] =

{
mean, var, coef

}
26: end if
27: if node is continuous and parents(node) are continuous and discrete then
28: cont parents = parents continuous(node)
29: disc parents = parents discrete(node)
30: node params = ∅
31: combinations = all combinations of disc parents values
32: for

{
v1, ..., vk

}
in combinations do

33: subsample =
{
xi : xij1 = v1, ..., xijk = vk

}
34: mean, var = parameters from Gaussian(node, subsample)
35: coef = coefficients from BayesianLinearRegression(cont parents ,
36: node, subsample)
37: node params ∪

{
mean, var, coef

}
38: end for
39: params[node] = node params
40: end if
41: end for
42: return params
43: end procedure
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3. Some variables are more valuable than others. There is a weighted option
for most distances and events, but it is not obvious how to select optimal
weights.

The following is a description of the distances between the objects u and t
involved in the experiments. We begin by determining Gower’s general similarity
coefficient S(u, t) [8]. A auxiliary coefficient Sj(u, t) is considered for each jth
variable. And S(u, t) is their weighted average with weights wj . In the unweighted
version, wj = 1 is assumed. On categorical variables, Sj(u, t) is 0 or 1, depending
on whether the categories match. On quantitative variables, it is the modulus of
the difference of the normalized values. Note that this is a similarity coefficient,
not a distance. However, it is easy to turn it into distance with the following
transformation: distG(u, t) = 1− S(u, t).

There are also measures of a different nature than Gower’s coefficient. This is
cosine distance that has proven itself in the task of ranking search engine results.
Applying this distance requires prior preparation of values. For a categorical
variable, the value is assumed to be 1 at the target. And 0 or 1 on the object
being compared, depending on whether the categories match. For quantitative
variables, values are normalized.

We also investigated the performance of the filtering function in the experi-
ments. It depends on only one parameter ε, which for quantitative variables says
that a value is close if |uj − tj | ≤ ε · range(j). And for categorical, it checks for
category matching. First, the set of analogues includes objects that are close to
the target in all variables. Then for all but one, and so on.

4.3 Method for parameters restoration with Bayesian networks
learning on analogues

Using similarity metrics allows you to find the closest reservoirs to a target reser-
voir. Combining the search for analogous reservoirs and learning Bayesian net-
works with MixLearn@BN allows formulating a method for solving the problem
of parameters restoration (Fig. 1), the structure of which implies the following
steps:

1. Select the target reservoir from a dataset;

2. Looking for N nearest reservoirs according to the distance metric;

3. Learn the structure and parameters at the nearest reservoirs with algorithm
MixLearn@BN;

4. Initialize the nodes of the Bayesian network with the values of those param-
eters that are not missing;

5. Sample the missing values from this Bayesian network by forward sampling
with evidence [10];

6. For categorical values, the gap is filled with the most frequent category in
the sample;

7. For continuous values the gap is filled with the average value in the sample.
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5 Experiments and Results

5.1 Exploratory data analysis with Bayesian networks

The dataset used in the study was collected from open sources and presented by
plain database contains 1073 carbonate and clastic reservoirs from all over the
world. The parameters that define the dataset contain categorical and contin-
uous values: reservoir depth and period, depositional system and environment,
tectonic regime, structural setting and trapping mechanism, lithology type, gross
and net thicknesses, reservoir porosity and permeability.

Fig. 2: Bayesian networks are for six main geological parameters across different
regions worldwide. Each network has five nodes, which are described on the right
margin.

Several Bayesian networks were built to demonstrate that their output could
be used to get qualitative data insights. The x-axis on Fig. 2 signifies region
division based on geographical closeness (CIS stands for Commonwealth of In-
dependent States) and can be considered as filters of the dataset. The y-axis indi-
cates some categorical parameters which characterize reservoirs in the dataset.
The network nodes’ color and size signify the value of a categorical parame-
ter (presented on the right portion of the figure) and several such occurrences,
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respectively. Generally, the figure demonstrates relationships between selected
reservoir parameters within regions.

For instance, from Fig. 2 following conclusion could be made: in Europe
and Africa, extension tectonic regime and rift structural setting prevail. Exten-
sion and rift are closely related in terms of tectonic. Extension tectonic regime
causes extension of continental lithosphere which carriers origin of rift struc-
tural setting, so the area undergoes extensional deformation (stretching) by the
formation and activity of normal faults. The East African Rift System and the
North Sea rift could be examples of extensional regimes in the regions. Also,
there are arrows from normal faults to tilted blocks that could indicate causal
inference between these parameters, and if so, this is in agreement with geological
knowledge. A similar approach (in terms of analyzing statistical model with and
domain knowledge) was performed by analyzing the causal inference between
reservoir parameters and well log data [20]. They have found that those statis-
tical models could produce conclusions that mimic interpretation rules from a
domain knowledge point of view, which opens up an opportunity to reveal causal
relations between features. In general, such plots could be used for qualitative
analysis of prevailing parameters or patterns within regions as an alternative
to conventional screening performed by a geologist using manual filtering and
spatial visualization techniques.

The x-axis on Fig. 3 signifies the geological period used to filter the dataset
and build networks. The figure shows a relation of reservoir parameters within
geological timeframes according to International Chronostratigraphic Chart [3].
The Neogene, Cretaceous, Jurassic, and Triassic are characterized by the fact
that coastal and fluvial depositional systems and sandstone lithology dominate
in these geological periods. It does not contradict domain knowledge that sand-
stone tends to dominate in coastal and fluvial depositional systems as it the
characterized by relatively high flow energy. In Paleozoic, sandstone lithology
also prevalent, but carbonate mud depositional system is predominant. The rea-
son for this discrepancy may be due to missing values in the depositional system.
It is difficult to draw conclusions from the figure and confirm them with domain
knowledge (as was done for the previous one) because different portions of the
planet at the same geological time undergo various geological processes.

The possible implementation of this workflow can be easily extended to the
internal company database. Apart from the fact that it has a similar number of
parameters, it has many instances subdivided in hierarchical order into reser-
voirs, formations, and wells, respectively. This allows us to work internally with
the same approach using an internal database, but here we present some results
using the dataset obtained from public sources.

5.2 Bayesian networks application experiments

In this section, we carried out several experiments to study the Bayesian net-
work’s ability to restore missing values in parameters and detect abnormal values
and compare various metrics for analogues searching in terms of the restoration
accuracy. Firstly a Bayesian network was learned on the selected parameters of
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Fig. 3: Bayesian networks are for six main geological parameters across different
stratigraphy periods. Each network has five nodes, which are described on the
right margin.

all reservoirs in the dataset. For structure learning, quantile data discretization
was performed. The resulting Bayesian network is shown in Fig. 4. The structure
of the experiment is as follows:

1. A reservoir is selected from the dataset;
2. The Bayesian network is learned from all reservoirs except the selected one;
3. In the selected reservoir, the parameters are deleted and restored with the

Bayesian network;
4. Recovery results are saved;
5. The steps are repeated for the next reservoirs in the dataset.

To increase parameter restoration accuracy, we can learn Bayesian networks
only on similar reservoirs because analogous reservoirs are more homogeneous
subsamples. Our study uses several distance metrics to search for similar reser-
voirs (Section 4.2). We apply method (Section 4.3) with 40 nearest reservoirs
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Structural setting

Trapping mechanism

Depositional system
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NetpayDepth
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Period

Fig. 4: The result of structural learning of the Bayesian network on the parame-
ters of the reservoir data. The red nodes represent continuous variables and blue
nodes represent the categorical variables.

to the selected reservoir with different distance metrics. The number of nearby
reservoirs was selected on the assumption that it cannot be too small to avoid
overfitting, but it cannot be too large to prevent dissimilar reservoirs from en-
tering the list of analogues.

Table 1 shows the average restoration result over leave-one-out cross-validation
tests. An approach of filling the most frequent category and average was cho-
sen as baseline. We should pay particular attention to the tables’ last columns,
which offer results for subsamples built at the Gower distance with weights. The
point is that the Gower distance penalty for non-coincidence of categorical is
greater than for non-coincidence of continuous ones. Therefore, if you equalize
the penalties for all parameters, you can increase the prediction of continuous
parameter values while maintaining a good prediction accuracy for categorical
values. We first analyzed the average Gower distance penalties for all parame-
ters; the spread of penalties is shown in Fig. 5. Then, to equalize the penalties,
we assign the weights of the continuous parameters equal to the average penalty
ratio for categorical to the average penalty for continuous ones. This means that
categorical parameters are taken without weight (equal to 1), and continuous
parameters are taken with a selected weight (5.8). An increase in the continu-
ous ones’ accuracy indicates that the selected value of the weights equalizes the
penalties and allows you to accurately search for similar reservoirs both in terms
of categorical and continuous parameters.

The most challenging case of anomalies in reservoir data is when the reser-
voirs themselves’ continuous parameters are not out of the range of possible val-
ues, but in combination with other characteristics, they are impossible. We exper-
imented with testing the Bayesian network’s ability to search for such anomalous
cases. In each continuous parameter, 10% of the values were randomly changed;
such a change simulates the anomaly in the parameter. Then the nodes of the
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Table 1: The values of accuracy score for categorical parameters restoration and
RMSE for continuous parameters restoration.

Parameter
All dataset On analogs

Baseline MixLearn@BN Cosine Gower Filtering
Gower

with weights

Accuracy for the categorical parameters

Tectonic
regime

0.48 0.48 0.86 0.85 0.91 0.78

Period 0.27 0.37 0.65 0.63 0.62 0.64

Depositional
system

0.35 0.56 0.81 0.78 0.78 0.72

Lithology 0.57 0.57 0.81 0.81 0.81 0.81

Structural
setting

0.48 0.56 0.72 0.74 0.73 0.72

Trapping
mechanism

0.28 0.54 0.77 0.77 0.75 0.77

RMSE for the continuous

Gross 436 297.3 358.7 375.1 394.1 323.6

Netpay 82.8 72.04 91.02 69.5 75.01 68.2

Porosity 7.6 5.8 6.6 5.8 5.3 4.2

Permeability 1039 830.07 901.8 873.6 936.4 703.3

Depth 1110 962.42 1097 908 1010 875.3

(a) (b)

Fig. 5: The spread of penalties for categorical parameters (Tectonic regime, Pe-
riod, Depositional system, Lithology, Structural setting, Trapping mechanism)
(a) and continuous parameters (Gross, Netpay, Porosity, Permeability, Depth)
(b) for the Gower distance, taken for all reservoirs from the dataset.

Bayesian network were initialized with other parameters, and the checked pa-
rameter was sampled. If the current value fell outside the interval of two standard
deviations of the sample, it was recognized as an anomaly. ROC-AUC metrics

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_33

https://dx.doi.org/10.1007/978-3-030-77961-0_33


Reservoirs Parameters Analysis using Bayesian Networks 13

for searching anomalous values of reservoirs parameters [Gross, Netpay, Porosity,
Permeability, Depth] are equal to [0.85, 0.97, 0.8, 0.71, 0.7].

6 Conclusion

In this paper, a multipurpose method for analysis of heterogeneous data was
presented using data from oil and gas reservoirs. This method consists of con-
structing Bayesian networks with mixed learning algorithm MixLearn@BN to
enhance the accuracy. First, the learning of distribution parameters on mixed
data was proposed. Thus, the accuracy of restoring continuous parameters has
increased. Secondly, an approach was proposed for training the structure and pa-
rameters of a Bayesian network on a subsample of similar reservoirs. This made
it possible to make the distributions of most parameters more unimodal, which
led to a significant increase in restoration accuracy in all parameters at once. To
find similar reservoirs, we used several distance metrics that can work with dis-
crete and continuous data. The highest restoration accuracy for most categorical
variables was obtained for the Gower distance. Using the Gower distance with
weights allowed us to maintain sufficient accuracy for categorical parameters
and significantly improve continuous ones’ accuracy. Also, the Bayesian network
showed fairly good accuracy in searching for anomalies.

In the future, it would be interesting to compare results for different numbers
of analogs. It would also be interesting to describe other practical cases, such as
quality control, studying one parameter’s effect on another, and others.
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