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Abstract. The paper presents an original algorithm for reducing three-
dimensional digital images to improve persistence diagrams computing
performance. These diagrams represent topology changes in digital rocks
pore space. The algorithm has linear complexity because removing the
voxel is based on the structure of its neighborhood. We illustrate that
the algorithm’s efficiency depends heavily on the pore space’s complexity
and the size of the filtration steps.
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1 Introduction

Green energy and environmental geotechnologies such as CO2 sequestration [15],
and geothermal exploration [3], [12], [17] rises new challenges in reservoir studies.
In particular, reactive fluid transport and changes in the pore space geometry
and topology due to chemical fluid-solid interaction become the dominant fac-
tor of the macroscopic properties (elastic stiffness, electric conductivity, seismic
velocities, hydraulic permeability) changes of the aquifers [25], [13], [14], [2].
However, theoretical investigations and numerical simulations of the reactive
transport are based on the reservoir-scale models of poromechanics, transport in
porous media and coupled modems [26], [4], [29], [22]. These models use empiri-
cal relations between porosity, pore space geometry and topology, permeability,
tortuosity, elastic stiffness, and others [26].

In recent years, a number of papers were published on experimental [15], [2],
and numerical study [23], [11], [27] of carbonates dissolution due to the reactive
fluid injection. These experiments show that changes in the pore space geometry
due to the rock matrix’s chemical dissolution strongly depend on the reaction
rate, flow rate, and mineral heterogeneity, resulting in the various scenarios of
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macroscopic properties changes [2], [16]. Recently we presented the research on
estimation of the pore space topology changes in 2D case, where the topology is
characterized by three Betti numbers representing the number of the connected
components of pore space (isolated pores), number of the connected components
of the matrix, and the Euler number [16]. We also showed that the evolution of
the pore space topology is related to the changes in the physical properties of
rock samples. Thus, it can be used to measure pore space changes. In the 3D
case, the Betti 1 number, representing the number of channels in the pore space,
has the main effect on the rocks’ transport properties. However, calculation of
the cycles and their evolution requires numerically intense algorithms.

The dynamics of rock matrix dissolution can be expressed as a set of sequen-
tial digital images of rock. The sequence corresponds to discrete time, and each
digital image represents a spatial sampling of the rock, for example, a tomo-
graphic image. In computational topology, such sequence (if it is monotonous)
is called filtration, and the natural thought is to count topological filtration in-
variants called persistent Betty numbers. One of the advantages of persistent
Betty numbers is that they evaluate the filtration’s topological complexity (i.e.,
the number of relative homological cycles taken relative to the filtration level).
Another property that is very important for applications is their stability with
respect to filtration perturbation. It means that a small error in the data leads
to a small error in the persistent diagram (the persistent diagram contains all
the necessary information about persistent Betty numbers).

There are 0, 1, and 2-dimensional non-zero Betti numbers in three-dimensional
space. Moreover, the calculation of 0 and 2-dimensional Betti numbers (num-
ber of isolated pores and number of isolated matrix components) are based on
disjoint-set-union data structure [8], and the duality of digital spaces does not
require high computational resources. A completely different situation is with
one-dimensional ones; they can be calculated by the Edelsbrunner-Lettsher-
Zomorodyan algorithm, which has cubic complexity from the image size [8].

The paper’s main idea is to use the image reduction algorithm compatible
with the Edelsbrunner-Letscher-Zomorodyan algorithm for calculating persistent
diagrams. We carried out a comparative test on rock samples obtained by statis-
tical modeling methods, in particular by truncated Gaussian field method [10],
and on real dissolved samples [2], [1]. It is shown that the reduction algorithm
makes it possible to accelerate the calculation of persistent Betty numbers. How-
ever, the acceleration depends on the porosity, correlation length of the samples,
and the discrete time step’s size.

2 Digital images

Let us define a regular spatial grid with points pI = (xi1+ 1
2
, yi2+ 1

2
, zi3+ 1

2
), where

I ∈ N3, and xi1+ 1
2

= hx(i1 + 1
2 ), yi2+ 1

2
= hy(i2 + 1

2 ), zi3+ 1
2

= hz(i3 + 1
2 ), with

hx, hy, and hz are the grid steps. Note, that we are interested in the topology of
the digital images, thus, we may state hx = hy = hz = 1. Now, we can introduce
the grid cell or voxel as CI = {(x, y, z) ∈ R3|i1 ≤ x ≤ i1 +1, i2 ≤ y ≤ i2 +1, i3 ≤
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z ≤ i3 + 1}. Using these notations the segmented digital image can be defined
as a piece-wise constant function F (x, y, z) mapping rectangular spatial domain
D ⊆ R3 to a finite subset of integer numbers A = {0, 1, ...,M}. A natural choice
for the digital rock physics applications is a binary image; i.e., A = {0, 1}, where
0 corresponds to the background and 1 represents the foreground. In particular,
if fluid flow [5], [6] or electric current in porous space is studied, 1 represents
pore space and 0 corresponds to the rock matrix.

The set of voxelsX = ∪NI=1CI , so that F (x ∈ X) = const, forms a topological
space X(X,T ) if the topology T is introduced. The topology T on X can be
defined in several ways [8]. In particular, we deal with 6-neighborhood rule; that
is the voxels are neighbors if they share a face, and 26-neighborhood rule; that
is the voxels are neighbors if they share either a face, or an edge, or a vertex.
X = (X,T ) is called a digital image’s topological space or a three-dimensional
digital image.

Fig. 1. A fragment of a digital image and its topological implementation for cases of
6- and 26-neighborhood rule

In numerical modeling, space’s topology is indirectly defined by choice of the
numerical method. In particular, if the fluid flow is simulated using the finite-
difference or finite-volume method, the topology of the pore space corresponds
to the 6-neighborhood rule because flows are determined through the cells’ faces
[16], [9]. Therefore, the voxels included in the complement (rock matrix) has
26-neighborhood rule; thus, advanced numerical approximations such as rotated
grids [24], or finite-elements on hexagonal grids should be utilized if coupled
problems are solved [21], [18].

Let us consider sequence of digital images with the following topological
spaces {Xi}m0 such as ∅ = X0 ⊆ X1 ⊆ X2 ⊆ ... ⊆ Xm = X, and call this
sequence filtration. Filtration of a binary image can also be presented as an
artificial multi-component digital image:

F (x) =

{
0, x ∈ background of X
k, x ∈ Xk\Xk−1

(1)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_32

https://dx.doi.org/10.1007/978-3-030-77961-0_32


4 D. Prokhorov et al.

Fig. 2. Filtration of the binary image X0 ⊆ X1 ⊆ X2, where voxels from

For each pair of indices 0 ≤ i < j ≤ m, the embedding Xi ⊆ Xj induces a ho-
momorphism of p-dimensional homology groups (we consider cellular homology
with coefficients in Z2):

f i,jp : Hp(Xi)→ Hp(Xj). (2)

The p-dimensional persistent homology group is the image of the homomor-
phism considered above: Hi,j

p = Im(f i,jp ). The rank of this group βi,j
p is called

p-dimensional persistent Betty number.

3 Edelsbrunner algorithm

The Edelsbrunner-Lettsher-Zomorodyan algorithm [8] is a common way to cal-
culate persistent Betty numbers. The original implementation is described for
simplicial complexes. A k-simplex σ is the convex hull of k+ 1 affinely indepen-
dent points S = {v0, v1, ..., vk}. A simplex τ defined by T ⊆ S is a face of σ.
And a simplicial complex is finite set of simplices such that

1. σ ∈ K, τ is a face of σ ⇒ τ ∈ K
2. σ, τ ∈ K ⇒ σ ∩ τ is a face of σ and face of τ

The nested sequence of simplicial complexes ∅ = K0 ⊆ K1 ⊆ K2 ⊆ ... ⊆
Km = K is filtration.

Therefore, the first task that arises in calculating persistent homologies of
a digital image is the triangulation of the image and the definition of filtration
on the resulting complex. It is worth noting that triangulation is not required,
because cubic homology is equivalent to simplicial. So the image can be converted
to unit cubic complex, which is more natural. It is defined in the same way as
simplicial, but instead of k-simplexes cubical complex consists of k -dimensional
unit cubes.

Thus, in the case of the 26-neighborhood rule, each voxel can be considered
a three-dimensional unit cube. Moreover, in the case of the 6-neighborhood rule,
it is convenient to use the more efficient approach described in [28].
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Here is a description of the Edelsbrunner-Lettsher-Zomorodyan algorithm.
Let all the simplexes in the complex are numbered according to the filtration
[8]. It means that

1. If σi1 is a face of σi2 then i1 ≤ i2.
2. If σi1 ∈ Ki and σi2 ∈ Ki+j\Ki for j > 0 then i1 ≤ i2

We have a sequence of simplices σ1, σ2, ..., σn. The data is stored in a linear
array R[1..n], whose elements are lists of simplexes.

Algorithm 1 Edelsbrunner-Lettsher-Zomorodyan algorithm

1: for j ← 1 to m do
2: L← list of faces of the σj

3: R[j]← NULL
4: while L 6= NULL and R[i] 6= NULL, where i is the largest number of simplices

in L do
5: L ← L4R[i]
6: end while
7: if L 6= NULL then
8: R[i]← L
9: end if

10: end for

The fulfillment of the last condition gives the following information - a cycle
born at time i is destroyed at time j. Moreover, the failure corresponds to the
birth of the cycle at the time of j. Iterations of the inner while loop are called
collisions. They take most of the running time of the algorithm.

Consider an example in which σk and σk+1 are triangles and σk−5, ..., σk−1

are their edges, where σk−1 is common. And let these simplices belong toKl\Kl−1.
Collisions occur when σk−2 and σk−1 are added. It means the birth of one-
dimensional cycles. These cycles die when σk and σk+1 are added. Since all
these simplexes belong to one filtration step, they are not considered in the final
result. There can be many collisions in large complexes, including cubic ones
that do not carry information about persistent homology groups. Therefore, the
question arises. Is it possible to reduce their number? The answer to this question
is positive; one way is to remove the corresponding simplexes.

4 Reduction algorithm

The reduction algorithms for simplicial and cubic complexes based on retraction
are quite simple. Their main idea is the sequential removal of free faces, which
means a retraction of simplexes (cubes). More efficient co-reduction algorithms
are also known now [19]. Among other things, they are used for calculating
persistent homologies [20].
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This part of the paper describes an algorithm based on retraction. The version
of the algorithm described in [7] adapted for 3-d digital images with the 6-
neighborhood rule.

The algorithm takes the digital image representing filtration {Xi}n0 as an
input. After that, it sequentially removes voxels according to rules described
below, beginning with voxels that have value n and down to 1.

1. All conditions are checked in voxel neighborhood of size 3× 3× 3.
2. Number of connected components of the foreground of Xn with and without

current voxel is the same.
3. Number of connected components of the background of Xn is equal to 1.
4. Euler characteristic of the foreground of Xn with and without current voxel

is the same.
5. Current voxel is not in any parallelepiped consisted of foreground of Xn with

size 1×1×2 or 1×2×2 or 2×2×2 that contains voxels with greater value.

If the voxel is removed, its value becomes equal to 0, and the algorithm rechecks
his neighbors.

It is easy to show that the reduction algorithm has linear complexity of the
number of voxels in the image. Checking the rule has a constant running time.
Moreover, each voxel is checked no more than seven times because it has only
six neighbors.

5 Numerical experiments

5.1 Statistical models

In the first series of experiments, the algorithm was applied to filtration obtained
by ”uniform” dissolution of the rock described in [16]. Here was assumed that the
reagent concentration is constant, which leads to the same speed of movement of
the pore space – rock matrix interface. The original images were obtained by the
truncated Gaussian field method [10]. The main parameters in image generation
were porosity and correlation length. The size of individual pores in the image
depends on the correlation length.

We generated 160 samples of the size 2503 voxels. We considered the porosity
varied from 0.05 to 0.2 with the increment of 0.05, and the correlation length
varied from 5 to 20 voxels with the step of 5. Thus, for each pair of parameters
(porosity, correlation length), ten statistical realizations were generated. The
simulation process had 100 time steps for all samples.

For all of these images, 1-dimensional barcodes were calculated before and
after reduction. In each experiment, they were equal up to permutation. This
fact confirms the correctness of the implementation of the algorithm.

The time of 1-dimensional barcodes computation was also measured. The
figure 3 shows the acceleration coefficient averaged by the samples’ parameters.
It is important to note that the acceleration coefficient was calculated without
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taking into account the time spent on reduction. It is because the Edelsbrunner-
Lettsher-Zomorodyan algorithm has cubic complexity, and the reduction algo-
rithm is linear. Therefore the time spent on reduction becomes insignificant when
image size is increasing.

0.05 0.1 0.15 0.2

Porosity

2

4

6

8

10

12

14

16

18

S
p
e
e
d
-u

p

minimum and maximum

standard deviation

mean

6.48184

3.71522

4.16355 4.00579

5 10 15 20

Correlation length

2

4

6

8

10

12

14

16

18

S
p

e
e

d
-u

p

minimum and maximum

standard deviation

mean

9.43205

1.43477

2.55129

4.94828

Fig. 3. The average value of the acceleration of the calculation of persistent Betty
numbers depending on porosity (left) and correlation length (right)

The graphs show that the highest acceleration was achieved for samples with
low porosity and high correlation length. It is because the samples with larger
surface area dissolve faster and form more complex topological structure. Aver-
aging within each group of samples also confirms this assumption.

Table 1. The average acceleration of the algorithm depending on the porosity and
correlation length

l;ρ 0.05 0.1 0.15 0.2

5 1.9 1.4 1.3 1.2
10 3.1 2.5 2.4 2.2
15 6.9 5.1 4.3 3.5
20 14.0 7.7 8.0 8.0

Table 2. The standard deviation of the algorithm acceleration depending on the poros-
ity and correlation length

l;ρ 0.05 0.1 0.15 0.2

5 0.98 0.06 0.06 0.09
10 0.31 0.18 0.09 0.10
15 1.58 0.88 0.38 0.22
20 2.83 2.08 1.66 1.63
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Table 3. Maximum algorithm acceleration depending on porosity and correlation
length

l;ρ 0.05 0.1 0.15 0.2

5 4.6 1.5 1.4 1.3
10 3.5 2.8 2.5 2.3
15 9.6 6.5 4.9 3.8
20 18.6 10.2 11.2 10.4

Table 4. Minimum algorithm acceleration depending on porosity and correlation
length

l;ρ 0.05 0.1 0.15 0.2

5 1.5 1.3 1.2 1.1
10 2.5 2.2 2.2 2.0
15 4.7 3.9 3.8 3.0
20 10.8 3.1 6.0 5.9

5.2 Pore-scale dissolution by CO2 saturated brine in a multi-mineral
carbonate at reservoir conditions

The significant difference between these tests is that they were done on real
images obtained as a result of the dissolution described in [1]. Here we present
only the characteristics of the images. The original images had a size of 10003

with a voxel length of 5.2 µm and corresponded to heterogeneous rock samples
consisting of 86.6% of dolomite and 11.1% of calcite. Ten images were showing
the dynamics of dissolution for each experiment.

Filtration was obtained from these images assuming that pore space voxels
do not become rock voxels at the later steps. Fragment of size 400 × 340 × 400
was cut out from sample AH, and of size 260× 320× 400 from AL because the
main part of the pore space is located where fluid forms the channel.

Table 5. The results of the algorithm for calculating persistent Betty numbers with
and without reduction

Sample AH AL

ELZ time. sec. 2485 445
Reduction time. sec. 240 101
ELZ time after reduction. sec. 35 15
Acceleration 71 29.67
Total acceleration 9.04 3.84

We measured CPU time of the computation of one-dimensional Betti num-
bers by Edelsbrunner-Lettsher-Zomorodyan algorithm (ELZ in the table) before
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and after reduction for both fragments. The time of the reduction was also mea-
sured. The results are shown in the table 5. The acceleration here is much higher
than for the first series of tests. It is because the reduction algorithm does not
remove voxels with neighbors with a higher filtration step, and these samples
have only ten filtration steps, and they are quite large.

Figures 4, 5, 6 shows that the reduction does not preserve the geometry of
the image. Preservation of geometry is not necessary, and it is enough to preserve
topology.

Fig. 4. Horizontal slices of the AH fragment before and after reduction. (Increase in
the warmth of color corresponds to an increase in the filtration step.)

Fig. 5. Vertical slices of the AH fragment before and after reduction.
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Fig. 6. Horizontal slices of the AL fragment before and after reduction.

6 Conclusion

The paper presents an algorithm for the reduction of a digital image of a porous
medium. The algorithm is applicable to speed up the calculation of persistent
Betty numbers, which are used to characterize the changes in the pore space’s
structure during the chemical dissolution of rock. It is shown that the use of
the algorithm makes it possible to accelerate the calculation of persistent Betty
numbers up to 70 times that leads to possibility of processing samples of sizes
up to 5003 voxels by using a single computational node within acceptable wall-
clock time, that, less than 15 minutes (on the machine with Intel(R) Core(TM)
i7-3770K CPU 3.5 GHz processor and 32 GB RAM installed, which was used
for performed tests). Acceleration depends on the complexity of the pore space
structure and the dynamics of the rock dissolution process.

The reduction algorithm allows parallelization. Thus, the first part of the
future work is implementation and testing of parallel reduction. The second part
is to study another methods of reducing input data for Edelsbrunner algorithm,
such as co–reduction [20] and acyclic complex [7]. Then, we will be able to find the
most efficient combination of reduction and these two methods for digital images
of rock. It will allows us to quickly solve topological optimization problems in
material design.
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