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Abstract. The alignment of reads to a transcriptome is an important
initial step in a variety of bioinformatics RNA-seq pipelines. As tra-
ditional alignment-based tools suffer from high runtimes, alternative,
alignment-free methods have recently gained increasing importance. We
present a novel approach to the detection of local similarities between
transcriptomes and RNA-seq reads based on context-aware minhashing.
We introduce RNACache, a three-step processing pipeline consisting of
minhashing of k-mers, match-based (online) filtering, and coverage-based
filtering in order to identify truly expressed transcript isoforms. Our
performance evaluation shows that RNACache produces transcriptomic
mappings of high accuracy that include significantly fewer erroneous
matches compared to the state-of-the-art tools RapMap, Salmon, and
Kallisto. Furthermore, it offers scalable and highly competitive runtime
performance at low memory consumption on common multi-core work-
stations. RNACache is publicly available at:
https://github.com/jcasc/rnacache

Keywords: Bioinformatics · Next-generation sequencing · RNA-seq ·
Transcriptomics · Read mapping · Hashing · Parallelism · Big Data

1 Introduction

Obtaining data from the sequencing of RNA (RNA-seq) is a major advance-
ment in medical and biological sciences that allows for the measurement of gene
expression. It has thus become an important technique for gaining knowledge
in a wide range of applications including drug development and understanding
of diseases [23]. The increasing availability and large size of next generation se-
quencing (NGS) data has also established the need for highly optimized big data
methods to align (or map) the produced reads to reference sequences [20]. Since
it is estimated that over hundreds of millions of human genomes and transcrip-
tomes will be sequenced by 2025, finding fast RNA-seq mapping algorithms is
of high importance to research [22].

Classical read mapping aims to identify the best alignment(s) of each read
to a given reference genome. In contrast, RNA-seq often requires the mapping
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of each produced read to a reference transcriptome, consisting of a collection of
genes, where each gene is represented by several alternative transcripts (known
as isoforms). Due to alternative splicing, many isoforms of the same gene can be
transcribed, which often contain highly similar subsequences. Thus, unlike map-
ping of genomic NGS data, where redundancies are usually less common, highly
similar regions between isoforms and homologs have to be taken into account
when mapping RNA-seq data. Because the number of potential origins tends
to be high, the process of determining the true origin of each sequencing read
becomes complex. This, in turn, can result in inaccurate expression estimation
of transcripts if not accounted for [6].

From an algorithmic perspective, established short-read aligners such as
BWA-MEM [11] and Bowtie2 [9] are based on seed-and-extend approaches which
map sequencing reads to a reference genome by first identifying seeds using FM-
index based data structures. Seeds are extended (e.g., by using fast versions of
dynamic programming based alignment algorithms) in order to verify whether
a seed is actually contained in a full alignment. Unfortunately, the computation
of traditional alignments for a large number of reads typically exhibits long run
times. The problem is further exacerbated by the multiplicity of similar potential
origins in transcriptome data, which can entail high numbers of seeds.

Consequently, a number of methods have recently been introduced for fast
mapping of RNA-seq reads to reference transcriptomes. These approaches are
based on the concepts of lightweight-alignment or quasi-mapping which rely on
the observation that the task of identifying the most likely isoform(s) each read
may originate from does not require precise and expensive alignment computa-
tion. RapMap [21] works by locating consecutive k-mers within a suffix array of
concatenated target transcripts and finding the longest possible substring shared
between read and target. Sailfish [18] and Selective Alignment (RapMapSA) [19]
both extend RapMap by adding a number of criteria and filters. Kallisto [2] gen-
erates pseudoalignments by determining the set of transcripts containing all of
the read’s k-mers using a de-Bruijn-graph. While these approaches clearly out-
perform traditional aligners such as STAR [5] in terms of runtime, the number of
reported potential read origins (called hits-per-read) can be high. Furthermore,
scalability (with respect to taking advantage of an increasing number of cores of
modern CPUs) is often limited while memory consumption can be high.

In this paper, we present RNACache – a new algorithm for fast and memory-
efficient mapping of RNA-seq reads to a given reference transcriptome. Our
method utilizes minhashing, a technique [3] known from processing big data
to map reads based on an approximate Jaccard-Index by analyzing k-mer sub-
samples [10]. Subsequently, a selection of task-specific filters is applied utilizing
statistical information gathered during the mapping of all reads in order to sig-
nificantly reduce the number of reported hits-per-read compared to previous
approaches while still maintaining high recall. Furthermore, we take advantage
of multi-threading to design a high-speed yet memory-efficient implementation
that can exploit large number of cores available in modern workstations. Our
performance evaluation shows that RNACache produces a lower number of hits-
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per-read than RapMap, RapMapSA, Salmon, and Kallisto while achieving higher
recall at the same time. In addition, RNACache is able to outperform all other
tested mapping-based tools in terms of runtime and memory consumption.

2 Method

We adopt minhashing – a locality sensitive hashing (LSH) based data subsam-
pling technique. It has been successfully employed by search engines to detect
near duplicate web pages [4] but has recently gained popularity in NGS analysis
with example applications including genome assembly [1], sequence clustering
[16], metagenomics [13], food sequencing [8], and single-cell sequencing [15]. To
our knowledge, we are the first to apply this concept in the context of RNA-seq
mapping.

We apply minhashing for memory-efficient transcriptome database (hash-
map) construction and querying. Query outputs are used for initial read assign-
ments. These are further refined by two filters (online and coverage filter) in order
to derive final read classifications. The workflow of RNACache is illustrated in
Figure 1.

2.1 Database Construction

In order to construct an index, reference transcriptome sequences (also called
transcripts or targets) are covered in slightly overlapping (default: k − 1 nu-
cleotides) windows. From each window a preset maximum number of k-mers
(substrings of length k) possessing the lowest hash values (referred to as fea-
tures) are selected to form what is called a sketch. A hash-map is constructed
that maps every feature to its corresponding locations, i.e., a list of transcript and
window identifiers in which it occurs. Strandedness is handled by substituting ev-
ery k-mer with the lexicographical minimum of itself and its reverse-complement,
referred to as its canonical k-mer, prior to hashing.

2.2 Querying and Initial Read Assignment

When querying a read, it is sketched similarly to a reference sequence and a
lookup of each of its features is performed on the index yielding a list of refer-
ence transcript locations which share features with the read, also referred to as
hits or matches. In this way, we determine which windows of which targets share
features, respectively k-mers, with the queried read. The number of features
shared by the read and a single target window can be interpreted as an approx-
imation of the Jaccard-Index of their respective k-mer sets, i.e., as a measure
of their similarity and hence of a local similarity between corresponding target
transcriptome sequence and read.

In order to determine larger regions of similarity, a candidate region is subse-
quently selected from each reference transcriptome sequence by determining the
contiguous-window-range of a maximum preset length spanning the most feature
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Fig. 1: Workflow of RNA-Cache. Build: Transcripts (tj) are partitioned into win-
dows (wi). The s smallest features (hashes of canonical k-mers) of each window
are computed and inserted into the hash map (database). Run 1 and Run 2:
The hash map is queried with the s smallest features of each read. The returned
hits are accumulated per transcript and candidates identified by determining
the contiguous window range spanning the most hits on each transcript. After
online-filtering, candidates are inserted into the coverage list, which is used to
filter candidates in Run 2 (mapping) in order to determine the final mapping.
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hits. This maximum window range corresponds to the maximum expected insert
size, i.e. fragment length for paired-end reads. Thus, candidates can be described
as tuples of the form (tgt , (b, e), hits), where tgt is an ID of the target sequence,
(b, e) is a tuple of window IDs, spanning the closed interval [b, e] of windows
on the target sequence, and hits is the number of features shared by the target
window interval and the read.

Note that, features which occur in a very high number of locations (default:
more than 254) are considered uninformative and are therefore deleted from
the index. As these features correspond to k-mers appearing in many different
reference sequences, they offer little discriminatory information regarding the
origin of a queried read.

After querying, RNACache applies an online filter (see Section 2.3) and a
subsequent post-processing (coverage) filter (see Section 2.4) to select the most
plausible transcript(s) among them, creating the final mapping of the read set.
The mapping generated in this way seeks to minimize the total number of candi-
dates per read while maximizing the ratio of reads to which the correct original
transcript is assigned (recall).

2.3 Online Filtering

Candidate targets which a considered read might originate from are refined by
an online filtering process based on absolute and relative hit counts. Consider a

read r’s set of candidates C(r) =
{
c1 = (tgt1, (b1, e1), hits1), c2, . . .

}
(see Section 2.2). Online filtering will permit the candidate set

Fo(C(r)) =

{(
tgt , (b, e), hits

)
∈ C(r)

∣∣∣ hits > tmin ,
hits

hitsmax > tcutoff

}
(1)

where hitsmax = max
ck∈C(r)

hitsk .

Informally, this filter permits only those candidates whose number of hits
exceeds tmin in absolute terms and is greater than a fraction of tcutoff relative to
the highest number of hits of any candidate of the same read. The second relative
filter has the advantage of innately scaling with other parameters and properties
of the input and reference data which affect the number of hits produced by
well-fitting reads.

2.4 Post-processing (Coverage) Filter

After online filtering, some reads can still map equally well to different targets
that share highly similar subsequences. However, it is unlikely that all of these
potential transcripts of origin are actually expressed in a transcriptomic sample.
Thus, a post processing filter is applied in order to distinguish between expressed
and non-expressed isoforms containing highly similar subsequence regions. For
this filter it is necessary to consider the complete set of reads as a whole, rather
than filter candidates solely on a per-read basis (as done by the online filter).
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RNA-seq data sets typically have a large coverage [14]. Thus, we can assume
with high confidence that every window of every transcript actually expressed
in the sample will appear as a match of at least some reads during the querying
process. By keeping track of all target windows covered in this way, we can
identify target regions with no matching reads, and discard the target as unlikely
to be expressed in the sample. Thus, we can use the information gained by reads
mapping to a sequence’s unique regions, or alternatively the lack thereof, to
reason about the correct mapping of reads to non-unique target regions. For this
purpose, we use the concept of coverage as follows.

Coverage. We define the coverage of a target as the ratio of its number of
covered windows to its number of total windows. A window is said to be covered
if the following two conditions hold:

1. It is an element of the contiguous window range of a candidate of at least
one read.

2. It shares at least one feature with that read.

Formally, we define R as the set of all input reads and W (tgt) as the set of
windows of target tgt . Then, the covered window set of tgt is defined as:

covered(tgt) =

{
wtgt,j ∈W (tgt)

∣∣∣ ∃r ∈ R : ∃(tgt , (b, e), hits) ∈ Fo(C(r)) : j ∈ [b, e]

∧ S(wtgt,j) ∩ S(r) 6= ∅︸ ︷︷ ︸
Condition 2

}
,

(2)
where wtgt,j ∈W (tgt) is the j-th window of target tgt while S(wtgt,j) and S(r)
denote the sketch of wtgt,j and r respectively.

Furthermore, we define the coverage statistic of a target tgt as:

cov(tgt) =
|covered(tgt)|
|W (tgt)|

. (3)

In the following, the term coverage refers to either a target’s covered window
set or coverage statistic, unless the distinction is relevant.

Condition 2 ensures that only those windows are counted towards a target’s
coverage which contribute to the candidate’s match count, i.e., share features
with the read. This is primarily relevant in the case of paired-end reads where
it reduces false positives in the coverage caused by the inclusion of regions that
differ from the sequenced fragment in the region located between the read mates.
Condition 2 can also be omitted by using a runtime parameter to handle weakly
expressed input data sets or transcriptomes that contain transcripts that are too
short for their center regions to appear in paired-end reads.

Coverage-based Filtering. The post-processing coverage filter admits those
candidates whose target’s coverage statistic exceeds a fraction tcov of the highest
coverage statistic of any candidate of the same read.
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Formally:

Fcov (Fo(C(r))) =

{
c = (tgt , (b, e), hits)

∣∣∣ c ∈ Fo(C(r)),

cov(tgt)

max
ck∈Fo(C(r))

cov(tgtk)
≥ tcov

} (4)

Per-read maximum-normalization allows the filter to automatically scale with
properties of the read and reference transcriptome as well as other parameters
that affect overall coverage of the dataset and has empirically proven to increase
mapping accuracy compared to a simple coverage threshold. Additionally, it has
the property of never rejecting the most covered candidate of any read, meaning
that it cannot by itself cause a read to remain entirely unmapped. However, the
user can disable this normalization in favor of a simple coverage threshold, if
desired.

Coverage Data Structure. In order to keep track of coverage, an additional
data structure in form of a hash map is constructed while reads are queried,
in which targets are mapped to a list of their covered windows, based on the
aforementioned definition and the candidates resulting from online filtering. Sub-
sequent application of the post-processing filter would require all candidates of
each read to be stored. For typical RNA-seq read set sizes, this can become infea-
sible; e.g. the required memory for a medium-sized set of ≈ 50M reads and ≈ 5
candidates per read can already be expected to be on the order of 2.5GB. Dif-
ferent parameters regarding online filtering and very large read sets can quickly
increase this requirement by at least an order-of-magnitude. Thus, the default
behavior of RNACache is not to store candidates. Instead, the sketching and
querying process, including online-filtering, is repeated after the coverage data
structure has been completely assembled.

2.5 Parallelization

Input sequences are processed by multiple CPU threads in parallel that commu-
nicate work items with the help of a concurrent queue.

The database build phase uses three threads. One thread reads transcripts
from the input files, one sketches sequences into hash signatures and one inserts
sketches into the hash table. Using more than three threads does not improve
performance since our hash table does not allow for concurrent insertion.

The query phase uses one producer thread for reading the input RNA-seq
reads from file and multiple consumer threads to accelerate the time-consuming
classification of reads. The producer thread places batches of input reads (default
is 4096 per batch) in the queue from which consumer threads then extract them
for processing. The individual results of each consumer thread are successively
merged into global data structures and/or written to a results file.
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3 Evaluation

We assessed the performance of RNACache in terms of mapping accuracy and
speed using simulated and real RNA-seq data, and compared it to a number of
existing state-of-the-art tools performing transcriptomic mappings without full
alignments:

– RapMap v.0.6.0 [21],
– RapMapSA v.0.6.0 [19],
– Kallisto v.0.46.2 [2],
– Salmon v.1.2.1 [17],

as well as to Bowtie2 v.2.4.1 [9], a commonly used full alignment tool.
Simulated datasets were generated using Flux simulator (v.1.2.1) [7] by ap-

plying appropriate parameters for human transcriptome RNA-seq experiments.
The utilized reference transcriptome consists of 100,566 transcripts of protein-
coding genes, taken from GENCODE Human Release 34 (GRCh38.p13). Reads
were generated from this transcriptome using corresponding annotations from
the same release.

Our tests were conducted on a workstation with a dual 22-core Intel(R)
Xeon(R) Gold 6238 CPU (i.e. 88 logical cores total), 187 GiB DDR4 RAM
(NUMA), two PC601 NVMe SK Hynix 1TB in RAID0 running Ubuntu 18.04.4.

With the exception of Salmon, whose binary release was used directly, all
tools were built using g++ v.7.5.0. As all considered tools other than RNACache
and Kallisto use SAM format output, Samtools [12] was utilized to convert their
output into BAM format on-the-fly.

3.1 Accuracy Evaluation using Simulated Reads

To assess accuracy, datasets of≈ 48 million paired-end reads of length 2×76 base-
pairs were generated. Mapping quality is assessed in terms of three measures:

– Recall, defined as the fraction of total input reads whose mapping result
includes the true origin,

– Hits-per-read or HPR, defined as the mean number of returned candidates
of a mapped read, i.e. disregarding unmapped reads,

– True-hit-rate or THR, which is the ratio of the number of true origins found
and the total number of candidates assigned.

This form of evaluation is based on the evaluation of RapMap [21], in which
a read is considered a ”True Positive” if its mapping includes its true origin,
regardless of the number of other candidates. Furthermore, HPR and THR can
be considered a conceptual counterpart to the precision quality in binary classi-
fication tasks.

Ground truth mappings were extracted from read headers generated by the
simulator. Bowtie2 has been included to allow for a comparison to an established
full alignment-based tool. Note that it uses a ”k” parameter specifying the max-
imum number of distinct, valid alignments it will search for. As this setting has
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a direct effect on the HPR statistic, Bowtie2 was executed with three different
settings: k = 1 (def.), k = 20, k = 200.

Table 1 shows the results whereby the experiments were repeated five times
with different read data and the reported values are averages. In addition to
recall, HPR, and THR, the percentage of reads that have been mapped to at
least one transcript is provided in the first row (”aligned”).

Table 1: Mapping results for simulated reads (bold denotes best value).

RNACache RapMap RapMapSA Salmon Kallisto Bowtie2
k = 1 k = 20 k = 200

Aligned (%) 98.2 97.9 83.7 86.5 91.8 96.4 96.9 97.5
Recall (%) 96.4 96.0 83.4 86.1 89.4 41.2 95.0 96.0
HPR 3.9 5.0 5.0 5.0 4.6 1.0 4.8 5.8
THR 25.2 19.7 20.0 19.9 21.3 42.7 20.5 17.1

RNACache achieves the highest percentage of aligned reads and highest re-
call, while it is second best for HPR and THR. It is able to assign the correct
original transcript to 96.4% of all reads and produces fewer than 4 mappings
per read on average. While RapMap comes close in terms of recall, it produces
more than 25% more false transcripts assignments (HPR = 5.0). RapMapSA
and Salmon fail to map large portions of reads. Kallisto has similarly low recall.
Bowtie2 with k = 1 achieves the best HPR and THR at the expense of the
worst recall (only ≈ 40%). The results of Bowtie2 with medium setting (k = 20)
are in the vicinity of the other tools while being balanced more towards lower
HPR/recall. Even Bowtie2 with highest k-value (k = 200) is not capable of beat-
ing RNACache in terms of recall, while accumulating the largest amount of false
matches (HPR ≈ 5.8).

Impact of Filtering. In order to analyze the effectiveness of our introduced
filters, we evaluated their impact to the RNACache processing pipeline in terms
of the percentage of aligned reads, recall, HPR, and THR. The results in Table 2
show that the application of the online filter refines the initial read-to-reference
mappings by improving both HPR and THR by over an order-of-magnitude
while only slightly decreasing recall. The additional coverage filter can improve
HPR and THR even further at only a minor decrease of recall.

3.2 Runtime and Parallel Scalability

In addition to accuracy, runtimes were measured in a standard usage scenario.
All tools were executed with 88 threads in total on our test system. Query
runtimes are shown in Figure 2. Breakdown of absolute runtimes in build (index)
and query phase (including disk I/O) as well as peak memory consumption are
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Table 2: Impact of filtering steps on the mapping results of RNACache.

No filter Online Online
+ Coverage

Aligned (%) 99.0 98.2 98.2
Recall (%) 97.6 96.9 96.4
HPR 60.2 5.3 3.9
THR 1.6 18.7 25.2

provided in Table 3. With the exceptions of Kallisto and RNACache, outputs
were piped into Samtools for live SAM-to-BAM conversion, for which 8 threads
(4 in the case of Bowtie2) were deducted and assigned to Samtools [12]. This
represents a common toolchain in bioinformatics when working with the involved
tools, as handling large SAM output files is impractical.

0 200 400 600 800

RNACache

RNACache (BAM)

RapMap

RapMapSA

Salmon

Kallisto

Bowtie2 (k=1)

Runtime [s]

Fig. 2: Query runtimes on synthetic data including SAM-to-BAM conversion and
hard-disk I/O.

RNACache outperforms all other tools in terms of runtime, in both its de-
fault and BAM output modes. The minhash-based hash map construction (build
phase) of RNACache is faster than the corresponding index data structure con-
struction of the other methods; i.e. it outperforms suffix array construction used
by RapMap, RapMapSA, and Salmon by at least 1.9×, deBruijn Graph con-
struction used by Kallisto by 2.1×, and FM-index construction used by Bowtie2
by 16.9×. In its default output mode, the query phase of RNACache achieves
speedups of 2.9, 2.5, 4.2, 3.4, and 13.2 compared to RapMap, RapMapSA,
Salmon, Kallisto, and Bowtie2 (best case, k = 1), respectively. Futhermore,
RNACache exhibits a low memory footprint.

An advantage of RNACache is that it provides its own significantly more
compact output format in which only the identifiers of the query read and of its
mapped targets, as well as the number of shared minhashing features, are stored.
Optionally, the mapping can be output in the BAM format, which is more suited
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Table 3: Build (index creation) / Query runtimes and peak memory (RAM)
consumption in a common SAM/BAM conversion chain, including conversion
and disk I/O (best values in bold).

RNACache RapMap Salmon Kallisto Bowtie2
def. BAM def. SA k = 1 k = 20 k = 200

build [s] 54.8 54.8 102.5 102.5 117.9 188.2 931.0 931.0 931.0
query [s] 58.4 96.1 170.5 148.3 244.7 199.6 769.2 1968.9 5976.2

memory [GB] 2.6 8.5 107.0 107.0 18.3 16.3 1.5 3.7 21.4

for alignment-based methods. While this format offers compatibility with many
downstream tools expecting traditional alignments, none of the tested alignment-
free methods actually produce sufficient information to utilize all of the format’s
columns to their full extent in the way alignment-based methods can.

To evaluate parallel thread scalability of the compared mapping algorithms,
we benchmarked all tools using various thread counts with minimal disk I/O
and without subsequent format conversions. Note that for Bowtie2 thread counts
lower than 8 were not used for the setting of k = 200, as corresponding runtimes
would be exceedingly long. Disk I/O was minimized by ensuring that all data was
preloaded into page cache beforehand and output was suppressed to the extent
possible. The benchmark results are shown in Figure 3. Data sets of ≈ 20 mio.
reads were used, benchmarks were repeated three times and results averaged.
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Fig. 3: Query runtimes and speedups of all tested tools for varying numbers of
CPU threads using synthetic data. (Suppressed I/O, no format conversion.)

Bowtie2 exhibits the highest parallel efficiency (measured in terms of speedup
divided by the number of utilized threads) for large numbers of threads but
still has the longest overall runtime. The mapping-based methods (RNACache,
RapMap, RapMapSA, Salmon, Kallisto) generally offer superior runtime perfor-
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mance compared to Bowtie2 but exhibit lower parallel efficiency. RNACache out-
performs all other mapping-based tools when executed with high thread counts
and exhibits superior parallel scalability when more than 22 threads are used.

The noticeable drop in parallel efficiency for more than 22 threads is most
likely related to the 2-socket NUMA architecture of our benchmarking system.
Additionally, we can observe that hyper-threading (which is used when going
from 44 to 88 threads) is not always beneficial when physical cores are exhausted,
increasing runtimes due to higher scheduling and inter-thread communication
overhead in some cases.

Our results suggest that a minhashing-based method can offer better scala-
bility and lower memory consumption than other state-of-the-art mapping algo-
rithms, and thus might lend itself to an effective port to many-core architectures
such as CUDA-enabled GPUs.

3.3 Evaluation using Experimental Data

As ground truth data is usually not available for experimental data, our eval-
uation on real RNA-seq data was performed by assessing the concordance of
RNACache to other tools. We have used the NCBI GEO accession SRR1293902
sample consisting of 26M 75bp paired-end reads (Illumina HiSeq) and the same
reference transcriptome as in Section 3.1. For each read ri, we have compared the
set of transcripts MRNACache(ri) = {tj1 , tj2 , ...} assigned to it by RNACache, to
the sets Mkallisto(ri), ...,MRapMap(ri) returned by other tools by accumulating
the occurrences of various set relations (⊂,⊃,=, ...) per tool. The results are
shown in Figure 4.

We can observe that RNACache shares over half of all mappings with each
tool, with the exception of Bowtie2’s default setting, which limits the size of
paired alignments to one. In comparison with most tools, RNACache assigns
an equal or subset mapping to a large majority of reads (≈ 80%), in line with
the already observed hits-per-read values, while leaving fewer reads unmapped.
Kallisto constitutes an exception among mapping-based tools in that its stricter
rejection of sub-optimal alignments leads to RNACache assigning a larger num-
ber of reads to superset mappings. Furthermore, only a vanishingly small number
of reads left unmapped by RNACache were mapped by any other tool.

4 Conclusion

We have presented RNACache, a minhashing-based method for determining lo-
cal sequence similarities by analyzing intersections of local pseudo-random k-
mer subsets and applied it to the important task of transcriptomic mapping of
RNA-seq data. Using a multi-step filtering process utilizing read-global tran-
script coverage information, our approach is able to refine initial read-to-target
mappings in order to produce transcriptomic mappings of high accuracy. Our
performance evaluation shows that RNACache is able to outperform the state-
of-the-art mapping tools RapMap, RapMapSA, Salmon, and Kallisto in terms of
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.

recall, hits-per-read, and true-hit-rate while having the lowest memory footprint.
Furthermore, it offers the fastest runtimes among the tested tools on common
multi-core workstations. RNACache and the scripts and parameters used in its
evaluation are publicly available at https://github.com/jcasc/rnacache .
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