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Abstract. With the approval of vaccines for the coronavirus disease
by many countries worldwide, most developed nations have begun, and
developing nations are gearing up for the vaccination process. This has
created an urgent need to provide a solution to optimally distribute the
available vaccines once they are received by the authorities. In this pa-
per, we propose a clustering-based solution to select optimal distribution
centers and a Constraint Satisfaction Problem framework to optimally
distribute the vaccines taking into consideration two factors namely pri-
ority and distance. We demonstrate the efficiency of the proposed models
using real-world data obtained from the district of Chennai, India. The
model provides the decision making authorities with optimal distribu-
tion centers across the district and the optimal allocation of individuals
across these distribution centers with the flexibility to accommodate a
wide range of demographics.

Keywords: COVID-19 · Constraint satisfaction problem · Vaccine dis-
tribution · Operational research · Policy making.

1 Introduction

The ongoing pandemic caused by the Severe Acute Respiratory Syndrome Coro-
navirus 2 (SARS-CoV-2) called the coronavirus disease (COVID-19), has not
only caused a public health crisis but also has significant social, political, and
economic implications throughout the world [2, 13, 19]. More than 92.1 million
cases and 1.9 million deaths have been reported worldwide as of January 2021
[6]. One of the widely used solutions, in preventing the spread of infectious dis-
eases is vaccination. Vaccination is defined by WHO as “A simple, safe, and
effective way of protecting people against harmful diseases before they come into
contact with them. It uses the body’s natural defenses to build resistance to spe-
cific infections and makes the immune system stronger” 1. Various researchers
? Equal contribution
† Corresponding Author
1 https://www.who.int/news-room/q-a-detail/vaccines-and-immunization-what-is-
vaccination
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and pharmaceutical corporations began research work on identifying potential
vaccines to combat the spread of COVID-19. Of the number of vaccines under
trial, Tozinameran (BNT162b2) by Pfizer and BioNTech, and mRNA-1273 by
Moderna have achieved an efficacy of more than 90% [12, 15]. Various nations
have begun the process of approval of these vaccines for mass distribution and
have placed orders to facilitate a continuous flow of supply of vaccines to meet
the demands.

In this paper we propose a Constraint Satisfaction Programming (CSP)
framework based model to optimize the distribution of vaccine in a given ge-
ographical region. We aim to maximize the distribution of vaccine among the
group of the population with higher priority while minimizing the average dis-
tance travelled by any individual to obtain the vaccine. In order to justify the
efficiency of the proposed model we compare the performance of the following
four optimization models namely,

– Basic Vaccine Distribution Model (B-VDM)
– Priority-based Vaccine Distribution Model (P-VDM)
– Distance-based Vaccine Distribution Model (D-VDM)
– Priority in conjunction with Distance-based Vaccine Distribution Model (PD-

VDM).

and present how the model PD-VDM provides the most optimal solution for
the distribution of vaccines. We perform a Case Study using the demographic
data obtained from Chennai - a well-renowned city in Southern India. This case
study highlights how the model can be used by decision making authorities of
a city with an population of 5.7 million. The model aids the decision making
authorities to choose an optimal number of vaccine distribution centers (DCs),
and to optimally assign an individual to a hospital such that the individuals in
the priority groups are vaccinated first while minimizing the distance they travel
to the vaccine DCs. In section 2 we discuss the various steps and challenges
involved in the process of vaccine distribution, in section 3 we describe in detail
the procedure followed to build the proposed models. The case-study is discussed
in section 4 followed by the discussion of results in section 5. We conclude with
future research directions in section 6.

2 Related Work

In order to effectively distribute vaccines, it is necessary to understand the sup-
ply chain of vaccines. The supply chain of vaccines is divided into four major
components namely the product, production, allocation, and finally the distri-
bution [7]. The first concern of the decision making authorities is to decide on
which vaccine to choose for distribution in their country, province, or region.
For example, for countries in tropical regions, the storage temperature of the
vaccine is an important factor. Similarly, while developed countries are able to
afford vaccines at a higher price, most developing countries prefer the vaccine
which has an affordable price. In the present scenario, three of the prominent
vaccines in play are the BNT162b2, mRNA-1273, and AZD1222 [10]. They have
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storage temperatures of -70℃, -20℃, and 0℃ and cost USD 20, USD 50, and
USD 4 respectively2. Based on the storage it is safe to assume that while coun-
tries in temperate regions like the United States, Canada, and Russia would
have the option of purchasing any one of these vaccines while tropical coun-
tries like India, Bangladesh, Pakistan would prefer AZD1222. The cost of the
said vaccines also has a significant impact on the decision-making process of
developing nations which mostly cater to a greater number of people. Once the
product is chosen, the production of vaccines has to be scheduled according to
the demand. Factors that are taken into consideration at this stage include the
production time, capacity for manufactures, supply-demand analysis, and so on
[3]. Depending on the stage of the epidemic and the severity, the demand for the
vaccine and the optimal timeline for the supply of vaccines may vary. Allocation
and distribution stages go hand in hand in the vaccine supply chain. Depend-
ing on the distribution strategy, the allocation of vaccines at any level is tuned
to achieve the best result. Allocation at a global level may depend on priority
established through contracts and agreements among pharmaceuticals and gov-
ernments. However, once a country receives the vaccines, further allocating the
vaccines to provinces, states, or subgroups of the population is a critical decision
that in turn has an impact on the distribution strategy. The distribution stage
of the supply chain addresses the challenges of establishing an effective routing
procedure, infrastructure of the vaccine distribution centers, inventory control,
workforce, etc.

Operation Research (OR) involves the development and use of various sta-
tistical and mathematical problem-solving strategies to aid in the process of
decision making. Various OR models are proposed over time to optimize the
distribution of vaccines from the distribution centers. Ramirez-Nafarrate et al.
[17] proposes a genetic algorithm to optimize the distribution of vaccines by
minimizing the travel and waiting time. Huang et al. [9] formulated a vaccine
deployment model for the influenza virus that ensures geographical priority based
equity in Texas. However, their mathematical model might have generalization
issues when applied to smaller or larger than state-level regions. Lee et al. [11]
developed the RealOpt© a tool to aid in identifying optimal location for vac-
cine distribution centers, resource allocation and so on. Researchers have also
provided models to accommodate specific locations, for example Aaby et al. [1]
proposes a simulation model to optimize the allocation of vaccine distribution
centers at Montgomery county, Maryland. This model aims to minimize the vac-
cination time and increase the number of vaccinations. While the above models
consider the distribution centers to be stationary, Halper et al. [8] and Rachani-
otis et al. [16] consider the vaccine distribution centers to be mobile and address
this as a routing problem. While the later model proposes that various mobile
units serve different nodes in a network, the latter considers that a single mobile
units serves various areas with a goal to minimize the spread of infection. Some
of the OR models used in epidemics’ control include non-linear optimization,

2 https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-
tracker.html
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Quadratic Programming (QP), Integer Linear Programming (ILP) and Mixed
Integer Linear Programming (MILP) [5]. ILP, MILP, and QP models are not
suitable for many practical use cases due to its time expensive nature and infea-
sibility issues prevailing with irrational model designs. The mathematical design
process and selection of pre-defined numerical bounds can lead to several techni-
cal glitches in the models. Despite the apparent similarities with ILP and MILP,
CSP can eliminate all the aforementioned drawbacks and ensure sub-optimal
solution in non-deterministic polynomial time by applying boolean satisfiability
problem formulation. In the field of computer science, CSP is considered as a
powerful mechanism to address research challenges regarding scheduling, logis-
tics, resource allocation, and temporal reasoning [4]. Hence in this article we
employ CSP to propose four models to optimize the distribution minimizing the
traveling distance and maximizing the vaccination of high priority population.

3 Methodology

In this section, we initially determine the optimal number and location of vaccine
DCs using K-medoids clustering algorithm. Provided with the various locations
of possible vaccine DCs, the algorithm determines the optimal number of clusters
into which the region can be divided into, in order to effectively distribute the
vaccines across the chosen region. On selecting the number of clusters and the
cluster heads, we further propose four different vaccine distribution simulation
models to optimize vaccine distribution based on two factors namely distance
and priority. The clustering algorithm and the simulation models are explained
in the subsections below.

3.1 Selection of Optimal Vaccine Distribution Center

Our proposed Algorithm 1 imitates the core logic of K-medoids clustering tech-
nique [14]. Firstly, the algorithm determines the optimal number of vaccine DCs
to be selected from a set of hospitals H̃ based on silhouette score analysis [18],
as mentioned in line number 1. We determine the silhouette score for 2 to h̃H̃−1
number of potential vaccine DCs, where H̃ = {h̃1, h̃2, h̃3, ..., h̃H̃}. Then, we se-
lect the optimal number of vaccine DCs as η that retains the highest silhouette
score. As per the line number 2, we randomly select η hospitals as vaccine DCs
into H. Later, we initiate the clustering process. Each hospital is assigned to
its closest vaccine DC to form η clusters, according to line numbers 5 − 8. The
cluster information indicating which hospital is associated to which vaccine DC
are recorded in C. Next, the algorithm reassigns the vaccine DCs H to the ones
with the minimum total distance to all other hospitals under the same cluster,
executed in line numbers 9− 16. We let the algorithm repeat the entire cluster-
ing process until vaccine DC assignments do not change. Hence, the termination
criteria depends on the stability of the clustering process. To summarize, we
employ this algorithm with inputs of a set of hospitals/potential vaccine DCs,
H̃ and a 2D dist matrix defining the distances of one hospital to every other
hospital. The output of the algorithm is the set of optimally selected vaccine
DCs H based on the distance metric. The primary idea is to choose vaccine DCs
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Algorithm 1: K-medoids algorithm to choose vaccine DCs from a set of hospitals

Input: H̃: A set of hospitals, dist: Squared matrix representing the distances of one
hospital to every other hospital

Result: H: A set of COVID-19 vaccine DCs
1 η ← Determine the number of optimal vaccine distribution centers using silhouette score
2 H ← Randomly select η hospitals from H̃
3 C ← ∅
4 while there is no change in H do
5 foreach h̃a ∈ H̃ do
6 foreach hb ∈ H do
7 hb ← Find the closest hb to h̃a using dist matrix
8 C ← C ∪ (h̃a, hb)

9 foreach hb ∈ H do
10 temp← ∅
11 foreach h̃a ∈ H̃ do
12 if (h̃a, hb) ∈ C then
13 temp← temp ∪ h̃a ∪ hb

14 q ← argmin
ĥa∈temp

∑
h∗a∈temp dist(ĥa, h

∗
a)

15 Swap hb with h̃q in C
16 Update hb by h̃q in H

optimally in a sparse manner to facilitate reachability for people living in any
part of the considered region.

3.2 System Model for Vaccine Distribution

In this subsection, we proceed by explaining the system model for vaccine distri-
bution. We denote H = {h1, h2, h3, ..., hH} to be the set of COVID−19 vaccine
distribution centers selected by Algorithm 1, where H ⊆ H̃ and hi is the ith vac-
cine DC in H. Moreover, we define U = {u1, u2, u3, ..., uU} as the set of available
staff, where every uj ∈ Ui. We denote Ui as the available set of staff in vaccine
DC hi and Ui ⊆ U . Subsequently, we can infer that U = ∪|H|i=1 Ui. We further
assume that E = {e1, e2, e3, ..., eE} represents the set of people required to be
vaccinated, and the kth person is ek. In order to specify the priority of people for
vaccination purpose, we use the set P = {p1, p2, p3, ..., pP}. Hence, pk defines the
priority level of a person ek ∈ E , and |E| = |P|. It is noteworthy that, the higher
the priority level, the faster the vaccination service deployment is desired. The
distance between a distribution center hi ∈ H and a specific person ek ∈ E is
represented using Di,k. In this research, we consider the solution binary decision
variable as xi,j,k ∈ {0, 1}. The value of the decision variable xi,j,k is 1, in case a
distribution center hi ∈ H allocates a staff uj ∈ Ui to vaccinate a person ek ∈ E ,
otherwise remains 0.

3.3 Problem Formulation

In this paper, we formulate the opted vaccine distribution research enigma as a
CSP model. The CSP framework includes a set of aforementioned decision vari-
ables that should be assigned values in such a way that a set of hard constraints
are satisfied. Hard constraints are essential to be satisfied for any model to reach
a feasible solution. Suppose, our proposed model iterates over T = {t1, t2, ..., tT }
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times to complete vaccination, where each time instance tn ∈ T refers to per
time frame for vaccine deployment decision making. Finally, N represents the
total amount of available vaccine throughout the entire time periods T . All of
our proposed CSP based models are subject to the following hard constraints
that have been translated into integer inequalities, for any time frame tn ∈ T :

C1 :
∑
ek∈E

xi,j,k ≤ 1, ∀hi∈H, ∀uj∈Ui (1) C2 :
∑
hi∈H

∑
uj∈Ui

xi,j,k ≤ 1, ∀ek∈E (2)

C3 : xi,j,k ∈ {0, 1}, ∀hi∈H, ∀uj∈Ui ,∀ek∈E (3)

The constraint C1 verifies that every staff from any distribution center can
vaccinate at most one person at a time. Thus, for every staff uj ∈ Ui of dis-
tribution center hi ∈ H, either there is a unique person ek ∈ E assigned for
vaccination, or the staff remains unassigned. Then, constraint C2 ensures that
every person ek ∈ E is allocated at most one vaccine through a single staff
uj ∈ Ui from a unique distribution center hi ∈ H. Finally, C3 is a binary con-
straint representing the value of decision variable to be 1, in case a staff uj ∈ Ui
of distribution center hi ∈ H is assigned to vaccinate a person ek ∈ E , otherwise
0, as mentioned previously.

C4 :
∑
tn∈T

∑
hi∈H

∑
uj∈Ui

∑
ek∈E

xi,j,k ≤ N (4)

The constraint C4 confirms that the total vaccine distribution should not be
more than the available vaccine by any means throughout the entire periods T
considered for vaccine deployment. Now, let us assume Ω be the set of all the
feasible solutions that satisfy all hard constraints.

Ω = {xi,j,k | C1, C2, C3, C4} (5)

Apart from hard constraints, our proposed CSP formulation incorporates
a set of soft constraints as well. Whilst hard constraints are modeled as in-
equalities, soft constraints are outlined through expressions intended to be even-
tually minimized or maximized. Soft constraints are not mandatory for find-
ing a solution, rather highly desirable to improvise the quality of the solutions
based on the application domain. The soft constraint C5 strives to maximize
the number of overall vaccinated people. The focus of another soft constraint
C6 remains to vaccinate the people with higher priority levels beforehand. In
other words, this constraint leads to maximize the summation of priorities of
all vaccinated people. Subsequently, the soft constraint C7 refers that every peo-
ple should be vaccinated by staff from the nearest vaccine distribution center.

C5 : max
Ω

∑
hi∈H

∑
uj∈Ui

∑
ek∈E

xi,j,k (6) C6 : max
Ω

∑
hi∈H

∑
uj∈Ui

∑
ek∈E

xi,j,k × pk (7)

C7 : min
Ω

∑
hi∈H

∑
uj∈Ui

∑
ek∈E

xi,j,k ×Di,k (8)
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3.4 Variations of Vaccine Distribution Models

By leveraging different combinations of soft constraints, we propose four differ-
ent variations of vaccine distribution models: a) Basic - Vaccine Distribution
Model (B-VDM), b) Priority based - Vaccine Distribution Model (P-VDM), c)
Distance based - Vaccine Distribution Model (D-VDM), and d) Priority in con-
junction with Distance based - Vaccine Distribution Model (PD-VDM). B-VDM
is a rudimentary vaccine distribution model that solely concentrates on the soft
constraint C5 to maximize the overall vaccine distribution, irrespective of any
other factors. A gain co-efficient α has been introduced to the ultimate objective
function of the model in Eq. 9.

C5 ⇐⇒ max
Ω

∑
hi∈H

∑
uj∈Ui

∑
ek∈E

α× xi,j,k (9)

P-VDM ensures maximum vaccine distribution among the higher priority
groups of people, by reducing soft constraints C5 and C6 into one objective
function in Eq. 10. We denote β as the gain factor associated to soft constraint
C6.

C5 ∧ C6 ⇐⇒ max
Ω

∑
hi∈H

∑
uj∈Ui

∑
ek∈E

xi,j,k × (α+ β × pk) (10)

Contrarily, D-VDM encourages vaccination of the people located closer to dis-
tribution centers. This model can be specifically useful for rural regions, where
distribution centers and people are sparsely located, including higher travelling
expenses. For this model, we incorporate soft constraints C5 and C7, by multi-
plying gain coefficients α and γ, respectively.

C5 ∧ C7 ⇐⇒ max
Ω

∑
hi∈H

∑
uj∈Ui

∑
ek∈E

xi,j,k × (α− γ ×Di,k) (11)

Finally, the PD-VDM merges all the soft constraints simultaneously. Our
proposed PD-VDM considers maximization of vaccine distribution in priority
groups and minimization of distance factored in transportation expenditure,
collaboratively. Furthermore, α, β, and γ have been introduced as gain factors
to equilibrate the combination of soft constraints and then presented as a multi-
objective function in the Eq. 12. Hence, this model can optimize priority and
distance concerns conjointly based on the adapted values of gain factors.

C5 ∧ C6 ∧ C7 ⇐⇒ max
Ω

∑
hi∈H

∑
uj∈Ui

∑
ek∈E

xi,j,k × (α+ β × pk − γ ×Di,k) (12)

The gain parameters of all the proposed models can be tuned to balance
or incline towards more focused convergent vaccine distribution solutions. For
instance, α, β, and γ are individually responsible for maximum distribution,
maximization of priorities, and minimization of distance focused vaccine dis-
tribution solutions, respectively. Moreover, the policymakers can exploit these
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models and adjust gain parameters according to the region specifics and domain
knowledge of vaccine distribution centers and population density. The regula-
tion of these gain factors can aid to analyze and figure out the applicability of
our various proposed models relying on different contextual targets, environment
settings, and demand-supply gaps.

4 Case Study - Chennai, India

We demonstrate the proposed models using real-world data obtained from one of
the popular cities in the southern part of India - Chennai. As listed by Rachan-
iotis et al. [16] most of the articles in literature make various assumptions to
demonstrate the performance of their models, Similarly, we make a few reason-
able assumptions to accommodate the lack of crucial data required to implement
the model. Various input parameters of the models and their method of estima-
tion or assumptions made to reach the decisions are described below.

4.1 Clustering phase

– The entire city is divided into 15 zones for administrative purposes and we
assume the distribution of vaccines is carried out based on these 15 zones as
well.

– To determine the vaccine distribution centers, we assume that the vaccines
will be distributed from hospitals or primary health centers. While there are
approximately 800 hospitals in Chennai, based on ‘on-the-ground’ knowl-
edge, we select 45 hospitals (3 hospitals per zone) to enable us to determine
the distance between the hospitals. The selected hospitals are classified as
private (PVT) and public funded (PUB) based on their administration. At
least one publicly funded hospital or primary health center is chosen per
zone.

– A 45 x 45 distance matrix is constructed with each row and column repre-
senting the hospitals. The cells are populated with the geographic distance
obtained from Google Maps3. Using these distance measures, the optimal
vaccine DCs are chosen by implementing k-medoids clustering algorithm de-
scribed in Section 3.1.

4.2 Vaccine-Distribution Phase

– Total population to be vaccinated (E): As per the census records col-
lected in 2011, Chennai has a population of 4.6 million distributed across an
area of 175 km2 with a population density of 26,553 persons/km2. Based on
the growth in the overall population of India, we estimate the current popu-
lation of Chennai to be 5,128,728 with a population density of 29,307/km2.

– Set of Vacccine Distribution centers (H): The optimal vaccine DCs are
chosen from using the clustering phase of the model using silhouette width
such that the chosen DCs are evenly spread across the entire district.

3 https://www.google.com/maps/
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– Staff for vaccination per DC (U): Based on the capacity of the hospital
in terms of facilities, workforce, etc. the hospitals are classified as ‘SMALL’,
‘MED’, and ‘LARGE’. We assume that small, medium, and large hospitals
allocate 5, 20, and 40 health-care workers for vaccination purposes respec-
tively.

– Priority levels (P): While the priority levels can be decided by the au-
thorities based on wide variety of parameters, for our simulation we assume
that the priority depends on the age of the individual such that the elderly
people are vaccinated earlier. The distribution of population across various
age groups is calculated based on the age-wise distribution calculated during
the census 2011. Table 1 shows the distribution of the population across six
priority groups.

Age group 0-9 10-19 20-54 55-64 65-74 75+
% of distribution 14.02 15.34 56.38 7.87 4.09 2.31

Table 1: Distribution of the population of Chennai across 6 age groups

– Time per vaccination (t): Based on the data provided during the recent
trial dry run carried out in India, the government estimates to carry out 25
vaccinations in 2 hours span, we approximate that the time taken for the
vaccination of one person to be 5 minutes.

– Time per vaccination (N ): Keeping in mind the deficit in the supply of
vaccines in the early stages of vaccination we assume that only vaccine doses
for 50% of the total population is available currently. However, the number
can be increased based on increase in production 4

These described parameters can be tuned by the decision making authorities
to accommodate the distribution at the area under consideration. For all the
experimental settings, we consider the gain factors α, β, and γ as 1

4 × |ε|,
1
4 ×

1
|P| × |ε|, and 1 respectively. Yet, as mentioned earlier, these gain factors can be
explored and set according to the solutions desired by policy makers and decision
making authorities.

5 Results and Discussion
We demonstrate the proposed models in two scenarios with randomly generated
data and two scenarios with real world data from Chennai. We discuss in detail
the inferences from each scenario in this section. In each scenario we compare
the four models and highlight how PD-VDM optimizes the two parameters taken
into consideration - priority and distance.

5.1 Random-simulation

For the two random scenarios we consider that there are 12 vaccine DCs in total
and based on the silhouette width measures as shown in Fig. 1a we select three
4 https://www.cnn.com/2020/12/18/asia/india-coronavirus-vaccine-intl-
hnk/index.html
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DCs optimally distributed across the area. We assume the total population size
(E) to be 200 and the total number of vaccines available (N ) to be 85. Of the
three chosen DCs we assume that each has a capacity (U) of 15, 30, 45. The
model considers five different different priority levels (P) with 1 being the least
and 5 being the most. The population is distributed among these priority levels
as shown in Table 2. To demonstrate the impact of the population distribution

Priority group 1 2 3 4 5
Raw Count 43 35 50 45 27

Table 2: Distribution of population across priority groups in random simulation.

parameter, we run the simulation model under two different distributions namely,

– Random-case -1 (RC-1): Uniform random distribution
– Random-case -2 (RC-2): Poisson like distribution where the population is

dense at some regions and spares at others.

(a) Random simulation (b) Case Study

Fig. 1: Selection of optimum number of DCs based on Silhouette width

The distribution of vaccines at any time instance tn by all four models, for both
random cases is depicted in Fig. 2. The percentage of individuals vaccinated in
each priority group in random case 1 and random case 2 are depicted in Fig.3a
and Fig. 3b respectively. The B-VDM vaccinates 41.86%, 37.14%, 42%, 46.67%,
and 44.44% of individuals across priorities 1 to 5 respectively, in both RC1 and
RC2. We can see that 55.56% of the individuals from the highest priority group
are left out. The D-VDM optimizes only the distance parameter and vaccinates
37.21%, 51.43%, 38%, 51.11% and 33.33% of individuals across priorities 1 to 5
respectively in RC1 and almost the same results in RC2. Again we can notice,
that a greater percentage of the individuals in the highest priority group are not
vaccinated. While both P-VDM and PD-VDM attempt to vaccinate 100% of the
high priority individuals in both RC1 and RC2, on studying the average distance
travelled by each individual of the population as depicted in Fig. 4a, we can
clearly identify that the PD-VDM reduces the distance parameter by more than
40% in both RC1 and RC2 . We can also see that the ‘distribution of population’
parameter does not impact the performance of the models and PD-VDM is the
most efficient across both Uniform and Poisson distribution. Although there is
a slight increase in the average distance travelled in the second distribution the
PD-VDM still achieves the most optimal results.
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(a) RC1 B-VDM (b) RC1 P-VDM (c) RC1 D-VDM (d) RC1 PD-VDM

(e) RC2 B-VDM (f) RC2 P-VDM (g) RC2 D-VDM (h) RC2 PD-VDM

Fig. 2: Snapshot of the simulation of the models in the random case studies

(a) RC1 (b) RC2

(c) CS1 (d) CS2

Fig. 3: Distribution of vaccine across various priority groups
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(a) RC1 and RC2 (b) CS1 and CS2

Fig. 4: Average distance travelled by the proposed models

Priority group 1 2 3 4 5 6
Case-study scenario 1 546 598 2199 307 160 90
Case-study scenario 2 2817 3082 11331 1583 823 464

Table 3: Distribution of population across six priority groups for Case study
scenarios

5.2 Case-Study simulation

In both the case-study scenarios we consider that the vaccination process con-
tinues for five hours each day and as mentioned in Section 4 each vaccination
takes (tn) 5 mins. Hence there are 60 vaccinations carried out by each health
care worker for any given day. We compile and present the results of the vac-
cination process at the end of any given day. Although in the initial stages of
the vaccination it is likely that individuals from one priority group will only be
vaccinated, as time progresses people across various priority groups will need to
be considered. Hence the population considered by the model for each day is
taken as a stratified sample from the age-wise distribution of the overall popula-
tion of Chennai provided in Table 1. Initially we identify the optimal number of
DCs needed for effectively serving the district of Chennai based on the distance
between the hospitals considered. On analyzing the silhouette width of various
‘number of clusters’ as depicted in Fig. 1b we present two different scenarios
namely,

– Case study scenario -1 (CS1): Three optimal DCs
– Case study scenario -2 (CS2): Twelve optimal DCs

Case study scenario -1: For this scenario, we consider 3 optimal vaccine DCs
(H) with capacities (U) of 5, 20, 40 since the chosen DCs fall under ‘SMALL’,
‘MED’ and ‘LARGE’ respectively. Based on these factors the total population
to be vaccinated (E) in any given data is estimated to be 3,900. As mentioned in
Section 4 we assume, that the total vaccines (N ) available to be half the total
population which in this case sums upto 1,950. The entire population falls under
six priority groups (P) based on their age. The actual number of people in each
priority group is provided in Table 3.
Case study scenario -2: For this scenario, we consider 12 optimal vaccine
DCs (H) and among these 12 chosen DCs there are 3, 2 and 7 DCs with a
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staff capacity (U) of 5 (‘SMALL’), 20 (‘MED’), and 40 (‘LARGE’) respectively.
Hence the total population (E) that can be vaccinated at any given 5 hour day is
20100. Similar to scenario 1 we assume that the total vaccines (N ) available to
be half the total population which amounts to 10,050 and that the population is
distributed across six different priority groups (P) based on their age as shown
in Table 3.

The vaccination percentage across the priority groups for both case study
scenarios are provided in Fig. 3c and Fig. 3d respectively. Unlike the random
scenarios, it is interesting to note that in both CS1 and CS2, the B-VDM though
not optimized to satisfy a specific hard constraint, it produces results that are
almost identical to P-VDM vaccinating 100% of the highest priority group in-
dividuals. This can be attributed to the similarity in the effect of α and β gain
paramters in both these models in CS1 and CS2. Though the PD-VDM model
vaccinates less than 90% of the individuals in the three highest priority groups
we can clearly see that it significantly reduces the ‘average distance travelled’ by
an individual in the population by more than 70%, which makes it more efficient
than all the other models. While D-VDM achieves the least ‘average distance
travelled’ value it sacrifices vaccinating almost 50% of the high priority groups.
Thus, we demonstrate how PD-VDM efficiently distributes the available vac-
cines by modifying various parameters like the distribution of population, total
population, total number of available vaccines, the number of vaccine DCs and
the capacity of each DCs. The model provides flexibility for the decision-making
authorities of any given demographic to optimize the distribution of vaccine in
the desired region. Moreover, the models developed using CSP are easier to de-
sign, adapt, and control compared to other existing combinatorial optimization
techniques (e.g., ILP, MILP, and QP) that are often very computationally ex-
pensive in terms of memory and time with very rigid search space navigation
restrictions.

6 Conclusion and Future Work
In this paper, we propose an optimization model (PD-VDM) based on Constraint
Satisfaction Programming framework to find the most effective way to distribute
vaccines in a given demographic region, in terms of distance and a priority (age,
exposure, vulnerability, etc). We compare the efficiency of the model with three
other models which take into consideration either one or none of the two op-
timization constraints. While this model can be adapted across a wide variety
of scenarios as demonstrated in our case studies, it is essential to understand
that due to resource constraints we have demonstrated only two of the many
available constraints. Expanding the scope of the model to allow optimizing a
wide variety of parameters can be carried out in future research, along with an
attempt to replace some of the assumptions made in our model with real world
data.
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