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Abstract. In this paper, we propose an improvement of the Robust
Newton’s Method (RNM). The RNM is a generalisation of the known
Newton’s root finding method restricted to polynomials. Unfortunately,
the RNM is slow. Thus, in this paper, we propose the acceleration of
this method by replacing the standard Picard iteration in the RNM by
the S-iteration. This leads to an essential acceleration of the modified
method. We present the advantages of the proposed algorithm over the
RNM using polynomiagraphs and some numerical measures. Moreover,
we present its possible application to the generation of artistic patterns.
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1 Introduction

Newton’s method is used for finding solutions of nonlinear equations [3] and
in optimisation techniques [11], but it is not robust. An improvement of this
method with respect to its robustness can be achieved, for instance, by the use
of a damping factor in Newton’s algorithm. This method called the Damped
Newton Method, decreases or even eliminates the fractal boundaries between
basins [4].

Recently, the Robust Newton Method (RNM) was proposed [10], which rad-
ically smooths the boundaries between basins of attraction. That result was
obtained by precise controlling of the step’s length in Newton’s method. Unfor-
tunately, the RNM usually needs a huge number of iterations [10]. Thus, even
for not so accurate computations for some points, we need to perform a large
number of iterations. This is a drawback of the RNM.

In this paper, we propose a modification of the RNM by introducing the
S-iteration instead of the Picard one. This modification allows decreasing the
average number of iterations needed to find the solution. We will also analyse,
numerically, different aspects of the proposed modification. Moreover, by using
various sequences of parameters in the S-iteration, we will generate very complex
and intriguing patterns from the dynamics of the modified method.
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The paper is organised as follows. In Section 2 the RNM is described. In
Section 3 the proposed modification of the RNM is presented. Section 4 presents
the experimental results. And Section 5 concludes this paper.

2 The Robust Newton’s Method

Newton’s method has one drawback – the lack of definition at critical points.
To overcome this, the Robust Newton’s Method (RNM) was proposed [10]. This
method is defined by applying the Geometric Modulus Principle [9] and the Mod-
ulus Reduction Theorem [10] to the Newton’s method. The RNM guarantees the
reduction of the polynomial’s modulus in successive iterations. Additionally, the
RNM has a few differences in comparison to the Newton’s method, i.e. it con-
verges globally, and it finds both the roots and the critical points of polynomials,
unlike the Newton’s method. Let us follow the definitions from [10].

Let us consider a complex polynomial p of degree n ∈ N. Assume that p(z) 6=
0, z ∈ C and let us define [10]: k := k(z) = min{j ≥ 1 : p(j)(z) 6= 0}, A(z) =

max
{
|p(j)(z)|

j! : j = 0, . . . , n
}

, and uk := uk(z) = 1
k!p(z)p

(k)(z).

Moreover, let us define γk = 2 · Re(uk−1k ), δk = −2 · Im(uk−1k ), and ck =
max{|γk|, |δk|}. Additionally, let θk be the angle given by the following formula:

θk =


0, if ck = |γk| ∧ γk < 0,

π/k, if ck = |γk| ∧ γk > 0,

π/(2k), if ck = |δk| ∧ δk < 0,

3π/(2k), if ck = |δk| ∧ δk > 0.

(1)

Then, the RNM for the starting point z0 ∈ C is defined as

zi+1 = Np(zi) := zi +
Ck(zi)

3

uk
|uk|

eiθk , i = 0, 1, 2, . . . , (2)

where i denotes the imaginary unit, i.e., i =
√
−1, and Ck(zi) = ck|uk|2−k

6A2(zi)
. The

term (uk/|uk|)eiθk is called the normalised robust Newton direction at zi and
Ck(zi)/3 is called the step-size [10].

The stopping criterion is given by the following condition: |p(zi)| < ε ∨
|p′(zi)| < ε, where ε > 0 is the accuracy. This is a different criterion than in the
classical method since the RNM finds both the roots and the critical points.

3 The Robust Newton’s Method with the S-iteration

The RNM presented in the previous section uses the Picard iteration for finding
fixed points (see eq. (2)). However, we can use any method from the fixed point
theory. One of them is the S-iteration [1] defined in the following way:{

zi+1 = (1− αi)T (zi) + αiT (vi),

vi = (1− βi)zi + βiT (zi), i = 0, 1, 2, . . . ,
(3)
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where αi, βi ∈ [0, 1] and T is a mapping. Depending on the type of the mapping
and space, the conditions on the sequences αi and βi may be expanded to assure
the convergence to a fixed point. Let us note that when αi = 0 or βi = 0 for all
i, the S-iteration reduces to the Picard iteration.

Now, we combine the RNM with the S-iteration, obtaining a new method,
called shortly as S-RNM. This combination is done by using the Np as T in (3)
and extending the [0, 1] interval for the parameters to R, obtaining:{

zi+1 = (1− αi)Np(zi) + αiNp(vi),

vi = (1− βk)zi + βiNp(zi), i = 0, 1, 2, . . . ,
(4)

where αi, βi ∈ R.
Let us see the first step of (4) after including the formula for Np:

vi = (1− βi)zi + βi

(
zi +

Ck(zi)

3

uk
|uk|

eiθk
)

= zi + βi
Ck(zi)

3

uk
|uk|

eiθk . (5)

We can see that if we join βi with the term representing the step size, i.e.,
Ck(zi)/3, then we can change the step size in the original RNM. We can look at
this step as a predictor step. In the second step of the S-iteration, we combine
the values of the original point and the predictor one to obtain the final point in
a given iteration. The second step can be treated as a corrector step. Therefore,
the S-RNM uses the predictor–corrector strategy – a well-known strategy in
numerical methods [11].

4 Experiments

In this section, we present two categories of numerical results: polynomiographs [8]
of two types (basins of attraction and polynomiographs showing the speed of
convergence and dynamics) and the plots presenting various numerical mea-
sures: average number of iterations (ANI) [2], convergence area index (CAI) [2]
and polynomiograph’s generation time [5]. The experiments were performed for
αi = const = α and βi = const = β.

We have performed the experiments for different polynomials, but due to the
lack of space, we present the complete results only for the polynomial p3(z) =

z3 − 1. This polynomial has three roots: − 1
2 −

√
3
2 i, − 1

2 +
√
3
2 i, 1, and only one

critical point, namely 0.
To generate the polynomiographs we used the following parameters: area

[−3, 3]2, the maximal number of iterations equals to 250, accuracy ε = 0.001,
and image resolution 800× 800 pixels. In the basins of attraction, we used red,
green and blue colours for the roots, yellow one for the critical points, and black
for non-convergent points. The values of α and β, used in the S-iteration, were
taken from [0, 20] with the step equal to 0.1, which gives 40 401 polynomiographs.

The experiments were performed on the computer with: Intel i5-9600K (@
3.70 GHz) processor, 32 GB DDR4 RAM, NVIDIA GeForce GTX 1660 Ti with 6
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GB GDDR6 SDRAM and Windows 10 (64-bit). The software was implemented
in C++, OpenGL and GLSL. The computations were performed on the graphics
card with GLSL shaders.

We analyse, first, the basins of attraction of the proposed method for p3,
presented in Fig. 1 for the S-RNM. From these images one can observe that when
we increase the values of α or/and β, the borders of the basins are changing.
Indeed, a third basin appears between the two ones (Fig. 1(c)). Going further
causes that more points are not converging (Fig. 1(d)). This tendency continues
up to nearly all non-convergent points. Only some convergence to critical points
appears (yellow dots, Figs. 1(e)–(f)). Finally, we can observe something like a
chaos with the play of critical points (Figs. 1(g)–(h)). When we look at Fig. 1(b)
and Fig. 1(a) (the Picard iteration case), we can observe that the basins of
attraction have similar shapes.

(a) (b) α = 13.3, β = 0.7 (c) α = 1.0, β = 15.0 (d) α = 3.5, β = 5.4

(e) α = 5.3, β = 3.7 (f) α = 9.3, β = 3.1 (g) α = 10.9, β = 3.3 (h) α = 19.4, β = 4.2

Fig. 1. The examples of basins of attraction for p3(z) = z3−1 for (a) Picard iteration,
(b)–(h) S-iteration with various values of α and β.

Then, we analyse the examples of dynamics polynomiographs of p3, presented
in Fig. 2, for the S-RNM. From these images, we can observe that by increasing
the values of α or/and β, the dynamics changes similarly as in the case of the
basins of attraction but in a more subtle way. However, the same idea remains –
these changes go to the vanishing of convergent points and then to making chaos
with the critical points. By comparing the polynomiographs from Figs. 1(b)–(c)
and Fig. 1(a) (the Picard case) we see that the use of the S-iteration has lowered
the number of iterations needed to find the solution.
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(a) (b) α = 13.3, β = 0.7 (c) α = 1.0, β = 15.0 (d) α = 3.5, β = 5.4

(e) α = 5.3, β = 3.7 (f) α = 9.3, β = 3.1 (g) α = 10.9, β = 3.3 (h) α = 19.4, β = 4.2

0 25 50 75 100 125 150 175 200 225 250

(i)

Fig. 2. The examples of dynamics polynomiographs for p3(z) = z3 − 1 for (a) Picard
iteration, (b)–(h) S-iteration with various values of α and β. (i) the colour map.

Next, in Fig. 3 the heatmaps on (α, β)-plane for p3 are shown, presenting
the values of ANI, CAI and time generation, coded in colour. From all these
plots one can see that the results are nearly symmetrical along β = α line.
This tendency is also present in the resulting polynomiographs. In these plots
it is possible to point out the values of the parameters α and β for which the
S-RNM behaves well, i.e. the method is convergent to the roots or the critical
point and has low ANI and time generation parameters (blue areas in Fig. 3(a)
and (c), respectively) and CAI parameter is close to 1.0 (the dark red area in
Fig. 3(b)). Outside these areas, the algorithm needs much more iterations to
find the solution or might be non-convergent. In the mentioned areas there are
located α and β parameters for which the S-RNM is essentially better than
the RNM. The following values were obtained for the S-RNM in the case of
z3 − 1: simultaneously minimal ANI = 5.18 and time = 0.047s with CAI = 1.0,
for α = 13.3 and β = 0.7 (for which the basins of attraction and dynamics
polynomiograph are presented in Figs. 1(b) and 2(b), respectively), whereas for
the RNM: ANI = 84.89, CAI = 0.99, and time = 0.667s (the basins of attraction
and dynamics polynomiograph are presented in Fig. 1(a) and 2(a)). It means
that in this case, the S-RNM needs nearly 17 times iterations less in comparison
to the RNM to achieve the same goal in considerably lower computation time.
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(a) ANI (b) CAI (c) time

Fig. 3. The plots of: (a) ANI, (b) CAI, and (c) time of generation for p3(z) = z3 − 1.

Dynamics of a discrete dynamical system can give rise to fascinating patterns,
see for instance [5,7,12]. The introduction of the S-iteration in the RNM can give
birth to very complicated patterns of possible artistic applications. In Fig. 4 we
present three patterns obtained with the S-RNM for p3. The other parameters
used to generate these patterns are the following:

(a) ε = 0.001, the maximal number of iterations equal to 250, the area [−3.2, 3.8]×
[−3.5, 3.5] and αi = 0.5 sin(i) tan(7i) + 0.5, βi = 20 sin(0.25i) cos(10i) −
cos(0.5i) tan(7.4i) + 1.25,

(b) ε = 0.01, the maximal number of iterations equal to 200, the area [−3, 3]2

and αi = 25 sin(0.25i) cos(0.3i)− cos(0.5i) tan(7.4i) + 1.25, βi = 0.5,

(c) ε = 0.01, the maximal number of iterations equal to 50, the area [−3, 3]2

and αi = 1.1 sin(1.1i) tan(2.5i) + 0.9, βi = 1.1 sin(2i) tan(1.8i) + 10.

(a) (b) (c)

Fig. 4. The examples of artistic patterns obtained by the use of the S-RNM.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_28

https://dx.doi.org/10.1007/978-3-030-77961-0_28


Acceleration of the Robust Newton Method by the use of the S-iteration 7

5 Conclusions

In this paper, we modified the RNM by replacing the Picard iteration with
the S-iteration. The proposed S-RNM significantly accelerates the RNM, but
the optimal α and β values are polynomial dependent. The S-RNM does not
lose the good properties of the RNM such as global convergence, stability and
robustness.

In our future study, we would like to concentrate on two aspects regarding
the RNM. The first aspect will be the study on variable αi and βi sequences,
which might further accelerate the S-RNM. In the second aspect, we will try to
replace the S-iteration with other iterations known in literature and collected, for
instance, in [6]. This could also lead to the acceleration of the RNM. Moreover,
we will investigate the artistic applications of the patterns generated with the
new methods.
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