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Abstract. This paper introduces DenLAC (Density Levels Aggregation
Clustering), an adaptable clustering algorithm which achieves high ac-
curacy independent of the input’s shape and distribution. While most
clustering algorithms are specialized on particular input types, DenLAC
obtains correct results for spherical, elongated and different density clus-
ters. We also incorporate a simple procedure for outlier identification and
displacement. Our method relies on defining clusters as density intervals
comprised of connected components which we call density bins, through
assembling several popular notions in data mining and statistics such
as Kernel Density Estimation, the density attraction and density levels
theoretical concepts. To build the final clusters, we extract the connected
components from each density bin and we merge adjacent connected com-
ponents using a slightly modified agglomerative clustering algorithm.

Keywords: Clustering, Kernel Density Estimation, Probability Density
Function, Hierarchical Clustering

1 Introduction

Clustering is the process of grouping a set of points into clusters such that the
points in the same cluster have high similarity but are significantly dissimilar
from the points in other clusters. Even though a large number of clustering
algorithms have been developed over time, most of them perform well only on
certain datasets, as we show in Section 2 and Section 6. Therefore, we propose
DenLLAC, which achieves high accuracy for various types of datasets regardless
of the input’s shape or distribution.

Relying on the cluster definitions proposed in [14] and [4, 13], we demonstrate
that clusters consist of density intervals containing connected components, which
we call density bins, the key concept of our method. We then extract the con-
nected components employing a nearest neighbour approach: we iterate through
each density bin’s objects, trying to expand clusters by recurrently merging the
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nearest neighbors for each object. The DenLAC algorithm sequentially applies
the following steps: i) evaluate the input’s probability density function; ii) re-
move the outliers with the help of the probability density function; iii) assign the
input objects to the corresponding density bins; iv) split the density bins into
adjacent connected components; v) aggregate the connected components from
the previous step in order to build the final clusters.

We evaluate DenLAC alongside several well-known clustering algorithms on
eight synthetic bi-dimensional datasets and on the Iris and Tetragonula real
datasets in order to demonstrate its flexibility. The employed quality functions
reveal that DenLAC obtains higher accuracy as compared to the other considered
algorithms.

2 Related Work

Clustering algorithms fall into five broad categories: partitional (representative
based), hierarchical, density-based, probabilistic and spectral.

Representative based algorithms rely on the intuitive notion of distance to
cluster the data points. The objects within the dataset are partitioned around
a subset of chosen representatives. K-means [18] and CLARANS (Clustering
Large Applications based on Randomized Search) [22] are two examples of these
clustering methods. K-means is sensitive to outliers because it relies on the mean
computation. It is also a randomized algorithm, therefore it considerably depends
on the parameters initialization. Also, K-means uses the square-error to measure
the quality of the clustering results and therefore works well when clusters are
compact clouds that are rather well separated from one another [12]. CLARANS
is also randomized, thus, it is sensitive to the parameters initialization; moreover
it only relies on the distances between the objects to be clustered.

Hierarchical algorithms rely on computing the pairwise distances between
the input dataset’s instances. There are two main types of hierarchical clus-
tering methods: agglomerative (bottom-up) clustering and divisive (top-down)
clustering. Hierarchical algorithms do not scale well with large data sets due to
the quadratic computational complexity of calculating all the pairwise distances
and suffer from problems such as chaining. BIRCH (Balanced Iterative Reducing
and Clustering using Hierarchies) [31] is a more efficient hierarchical clustering
algorithm used for large datasets. Because BIRCH structures the data as a tree,
the clustering result depends on the input objects order. In addition to this,
BIRCH does not obtain accurate results for arbitrarily shaped clusters as it uses
the diameter of the cluster to determine its boundaries. CURE (Clustering Us-
ing Representatives) [12] is an agglomerative hierarchical algorithm which can
identify non-spherical clusters. CURE fails to take into account special charac-
teristics of individual clusters, thus making incorrect merging decisions when the
underlying data does not follow the assumed model [16].

Density based clustering methods rely on the consideration that the typical
density of points within a cluster is considerably higher than outside of the
cluster [7]. DBSCAN (Density Based Spatial Clustering of Applications with
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Noise) [7] measures density as the number of points within the radius ¢ of a
point within the analyzed dataset and is accurate for arbitrarily shaped groups
of objects. However, it fails to cluster datasets with varying density accurately.

The Gaussian Mixture [2] is a probabilistic clustering algorithm. It assumes
that the input objects were drawn from k multivariate normal distributions,
where k is the number of clusters and relies on Expectation Maximization to de-
termine each distribution’s specific parameters. The algorithm works well only
on datasets which follow the normal distribution (elliptical clusters) and since
it uses Expectation Maximization for the mixture model’s parameters computa-
tion, it is sensitive to the parameters initialization.

Spectral Clustering [21] relies on computing the eigenvectors associated with
the Laplacian matrix derived from the dataset’s similarity graph and then clus-
ters them using any algorithm, for example K-means. Spectral clustering cannot
successfully cluster datasets that contain structures at different scales of size and
density [20].

3 Methodology

In this section we present the theoretical concepts on which DenLAC is based
on. We first introduce the notion of density attraction, defined in [14]. Then, we
reproduce Chaudhuri et al.’s density levels based cluster definition [4]. Finally
we explain how our method utilizes the aforementioned concepts.

3.1 DENCLUE (DENsity-based CLUstEring) Algorithm

The DENCLUE (DENsity-based CLUstEring) algorithm [14] identifies clusters
using a hill climbing procedure which is guided by the probability density’s
function gradient, assigning the objects approaching the local maximas of the
probability density function to the same cluster. [14] characterize center-defined
clusters and arbitrary-shaped clusters in terms of the local maximas of the prob-
ability density function, called ”density attractors”: i) the center-defined clusters
consist of the objects which are ”density attracted” by a density attractor whose
density is greater than a given threshold £ and ii) the arbitrary shaped clusters
consist of objects which are ”density attracted” by a set of density attractors,
provided that there exists a path between the density attractors with density
above a given threshold &.

We display the formal density attractor-based cluster definitions proposed
in [14] below, using the following notations: i) D represents the d-dimensional
input dataset, ii) € D denotes an object in the input dataset iii) we note the
probability density function with f iv) z* represents a density attractor, more
specifically a local maxima of the probability density function f

Definition 1 (Center-Defined Clusters). A center-defined cluster given a
density attractor xx is a subset C of the input dataset D with x € C being
attracted by x* and f(xx) > £. Points x € D are called outliers if they are
density attracted by a local mazimum xxg with f(xe*x) < &.
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Definition 2 (Arbitrary-Shape Clusters). An arbitrary-shape cluster given
the set X of density attractors is a subset C of the input dataset D where: i)
Ve € Cax € X : f(xx) > &, x is density attracted to xx and ii) Varxy,xx9 €
X : 3 a path P C F? from x%; to x* with ¥p € P : f(p) > &, where F? is a
d-dimensional feature space.

3.2 Clusters as Connected Components At Different Density Levels

[4, 13] define clusters as connected components at each density level A of the
dataset D. The density levels are regions for which the density value is equal to
or above a particular level and can be estimated using Kernel Density Estima-
tion [5]. The formal definition is:

Definition 3 (Density Levels). Given a level A, the \-density level is: Ly =
{z: P(x) > A}.

The connected components at a lower density level incorporate the connected
components at higher density levels. Thus, a cluster of density f is any connected
component of z : f(x) > A, for any A > 0. The collection of all such clusters forms
an (infinite) hierarchy called the cluster tree [4]. Finding consistent and reliable
approximations of the cluster tree has been studied extensively in [13, 4].

3.3 Clusters as Adjacent Density Bins

From Definition 1 we infer that the members of a center-defined cluster tend
to the local maxima of the probability density function within the cluster: the
estimated probability density values of the cluster members decrease linearly
as they move away from the density attractor. From Definition 2 we infer that
the probability density values for the members of an arbitrary shaped cluster
are greater than a given threshold £. Assuming that the probability density
function is estimated using KDE employing a smooth kernel function, such as
the Gaussian kernel, we infer that the estimate’s values do not rise or drop
suddenly.

Considering the deductions above, we view clusters as sets of adjacent density
intervals consisting of connected components, which we call density bins. We
formally define density bins with the help of Definition 3 as the set differences
between adjacent density levels described in Definition 4.

Definition 4 (Density Bins). For a given dataset D with the probability
density function f(D) and n density levels Ly,, where i € (0,n), we define
density bins as: B; = Ly, \ Lx,_, .

For example, bn bins, each consisting of ¢m,, connected components, are
structured as follows:

Bl : L>\1 ~ 0171 U 01’2 U..u Cl,m1
Bg : L>\2 \ L>\1 ~ 02,1 U 02,2 U...u CQ)mQ

By, : LAbn \LAbnfl ~ Cbn,l U Cbn,Z u..J Cbnymbn

Where C; ,,, is a connected component for the i-th bin, with 7 =1, bn.
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4 Algorithm Pipeline

The proposed algorithm pipeline, which is graphically displayed in Figure 1,
consists of the following modules: i) Density estimation: we estimate the density
of the input dataset using Kernel Density Estimation ii)OQutlier identification
and displacement: we eliminate the outliers using the probability density func-
tion; iii) Density based partitioning: we identify the density levels in the input
dataset and extract compact sets of objects that are positioned at large distances
one to another which represent the differences between adjacent density levels;
iv) Distance based splitting: we split the compact sets of object using the distance
between them; v) Merging the final partitions: we merge the closest partitions and
return the final clusters in order to minimize the distance function [31].

ESTIMATE THE ASSIGN DATASET | SPnoaa” | |MERGE ADJACENT
PROBABILITY —J» REMOVE OUTLIERS OBJECTS TO oo INTO CONNECTED
DENSITY FUNCTION DENSITY BINS SOUECTED COMPONENTS

Fig. 1: DenLAC Algorithm Pipeline

In the following sections we describe each step in detail, using the following
notations: i) D = djy, ..., d,, represents the d-dimensional, input dataset of size n
ii) B= U?Zl B; represents the density bins set of size bn, defined in the previous
section.

4.1 Density Estimation. Outlier Identification and Displacement

We identify the dense regions of the input set D by estimating the probabil-
ity density function using Kernel Density Estimation (also known as KDE). We
choose KDE due to its independence of the input dataset distribution’s under-
lying form. Out of the variety of available kernel functions (cosine, exponential,
linear, epanechnikov, gaussian, etc.) we prefer the gaussian kernel function since
it produces the smoothest estimate, thus being the most suitable for the density
levels partitioning. We employ Scott’s rule of thumb [25] for determining the
optimal bandwidth, as it is a classic, well-established method.

DenL AC utilizes the probability density function to partition the input dataset
according to its density. However, the probability density function is also help-
ful for removing potential outliers by detecting probability density function’s
unusually low values.

To determine these values we used the interquartile range, noted IQR [26],
defined as the difference between the 25" and the 75" percentiles. This method
is more robust than Z-score for the reason that Z-score relies on the mean and
the standard deviation, which are affected by outliers. The k' percentile can
be defined as a value z; from a given data set X = z1,%9,...,2, having the
property that £ percent of the values are less or equal than x;. The probability
density function values of the outliers, associated with regions with extremely
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low density, are more than 1.5 x IQR below the 25" percentile. Therefore, we
remove the objects with probability density function values in this interval.

4.2 Density Based Partitioning

We partition the input dataset D into bn density bins by allocating each object
d; to a density bin B; according to its estimated probability density function, as
follows:

Given a dataset instance d; € D and a density bin B; delimited by the bound-
aries B and B"®, we assign d; to B; if f(d;) > B™™ and f(d;) < B,
where f : D — Z is the estimated probability density function. The number
of density intervals, bn, must be supplied at runtime as parameter. Section 5,
Subsection 5.1 offers several guidelines on choosing the algorithm’s parameters.
The density bins set and the density based split result for the Aggregation [11]
synthetic dataset can be visualized in Figure 2. The density bins before and after
allocating the input dataset’s objects are graphically represented in Figure 2b
(the regions colored with the same shade blue) and Figure 2¢ (the groups of
points with the same colour) respectively.

»
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Fig. 2: Density based splitting

4.3 Splitting the Density Bins Into Distinct Connected Components

The resulting density bins consist of distinct connected components (Defini-
tion 4) which must be separated. For example, all the points marked with red in
Figure 2c are assigned to the same density interval according to their estimated
probability density. Therefore, the set of points must be divided into distinct
connected components. We split the connected components using a nearest-
neighbour approach. We examine each object within a density bin and start
extending a cluster from it. We extend a cluster by adding the object’s nearest
neighbours whose distances to the selected object are smaller than a specific
threshold.

We determine the correct threshold for each bin using the same approach as
[17] and [10]. The above-mentioned papers address the problem of DBSCAN’s
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radius threshold e automatic computation by laying out a k-distance plot rep-
resenting the density levels as interconnected smooth curves. Similar to [17], we
compute the distances between each point and its k-th neighbour, where k£ de-
pends on the input dataset’s D dimension d and is automatically determined
as follows: k = 2-d — 1. In order to deduce k we used the same rule of thumb
for deducing the nearest neighbour as the one mentioned in [24]. Then, we use
these values to draw the k-distance plot; the threshold value, thresholdpistance,
corresponds to the sharp change point of the outlined curve. We formally define
our k-distance plot as kDistance: B, ... — Dk, where B;_ . .. represents
the set of points belonging to bin B; sorted by their distance to their k-th neigh-
bour and Dj, represents the set of the actual distances. We note that because a
bin consists of points belonging to the same density interval, the k-distance plot
will usually incorporate a single sharp change point.

If the clusters are not well separated either because of noise or chains, we
need to over partition the bins in order to better separate and emphasise the
high density regions. This is why we introduce the expansion factor ef, a custom
parameter utilized to weight the threshold. We cover e f’s value selection in detail
in Section 5, Subsection 5.1. Therefore, we formally define the threshold using
the inflection point of the k-distance plot, thresholdypistance and the expansion
factor ef: threshold = ef - thresholdkpistance-

4.4 Merging the Adjacent Connected Components

The resulting adjacent connected components must ultimately be merged in or-
der to build the final clusters. For this purpose we use an agglomerative approach:
we compute the pairwise distances between all partitions, we merge the closest
partitions into a cluster, we recompute the distances that have changed due to
the merge and continue with the following closest partitions. In the majority of
cases, where no over-partitioning is needed, the process is considerably faster
than plain hierarchical agglomerative clustering, because it starts with already
clustered large groups of points instead of just points. The linkage method is
configurable trough the input parameters. We offer two options: smallest pair-
wise distance (the default option) and centroid linkage. For elongated clusters or
well separated gaussian clusters, we use the smallest pairwise distance linkage.
This is the most suitable linkage criterion because regardless the input dataset’s
shape, the continuous regions previously obtained, which we want to join, are
elongated. For noisy datasets or gaussian clusters connected by chains, we use
centroid linkage - so the noise or the chains do not affect the quality of the result.

5 Algorithm

5.1 Choosing the Hyperparameters

The number of clusters, the bn number of bins, the expansion factor ef and the
method to compute the inter cluster linkage must be provided as parameters.
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Determining the optimal number of clusters is a comprehensively documented
problem; the elbow and silhouette methods represent popular solutions. The
number of bins bn is generally equal to the number of density levels of the opti-
mal cluster tree (as defined in [4]). However, if the input dataset contains chains
(see Aggregation [11]), we must choose a greater value for bn in order to force
the separation of the chained bins. Therefore, bn € [3,9]. The expansion factor
ef is generally equal to one. For elongated and well separated spherical clusters
there is no need to apply any weight on the closest mean (defined in Section 4,
Subsection 4.3). However, if the input dataset is noisy, ef should be lower than
1 in order to ”prune” the noisy points. Therefore, ef € [0.1,2]. We support two
linkage methods: single linkage (smallest pairwise distances), which is the default
option, and centroid linkage. For elongated and well separated spherical clusters
single linkage performs best. This is because the intermediary connected compo-
nents which we join in the aggregation step are usually elongated, regardless the
input dataset’s structure. For noisy or chained datasets, centroid linkage obtains
best results.

5.2 Implementation

We start by estimating the probability density function. Then, we group the
input objects into partitions representing bn density bins. Afterwards, we iterate
trough each partition and split its connected components. Lastly, we merge the
adjacent connect components in order to build the final clusters. The density bins
splitting procedure consists of the following steps: i) we start with an arbitrary
object and retrieve its k = d + 1 nearest neighbours computed as all the objects
whose distance to the specified object is smaller than the threshold defined in
Subsection 4.3; ii) we start a new cluster from the current object, add the
object’s neighbors to the cluster and try to expand it; iii) when we cannot further
expand the current cluster we return to Step 1 and repeat the process.

The full algorithm is presented in pseudocode 1, whereas the distance based
split is displayed in pseudocode 2. The implementation is freely available online®,
alongside run instructions and graphical results for all synthetic bidimensional
datasets.

6 Experimental Results

6.1 Clustering Evaluation Methods

In order to evaluate DenLAC’s accuracy we use two different classes of evaluation
methods: i) evaluation methods based on the mutual information (specifically
the Entropy [29] and ii) evaluation methods based on counting pairs of objects
distributed either to the same cluster or to different clusters by a given clustering
algorithm versus the ground truth [29] (specifically the Rand Index [23] and the
Adjusted Rand Index [27]).

! https://github.com/TuliaRadulescu/DENLAC
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Algorithm 1 DenLAC algorithm

1: procedure DENLAC(inputDataset, numberO fClusters, bn, ef, linkageMethod)
2: pdf < the probability density estimate of inputDataset;

3: outliers < the outliers, identified employing the IQR method on the pdf;

4: input Dataset = inputDataset \ outliers;

5: Recompute pdf for the updated inputDataset,;

6: Split pdf into bn intervals: Bi, ..., Bon;

7: for By in By, ..., By, do

8: for d; in inputDataset do

9: if d; >= B and d; < B{*®® then

10: By = B Ud;;

11: end if

12: end for

13: end for

14: connectedComponents < 0;

15: for Bk in Bl, ey an do

16: connectedComponents Bk = separateConnectedComponents(By, ef);

17: connectedComponents = connectedComponents U

connectedComponentsBk;
18: end for
19: clusters < the connectedComponents aggregation result using linkage M ethod
and numberO fClusters;

20: return clusters;

21: end procedure

The Entropy [29] measures the uncertainty regarding the cluster membership
of a randomly chosen object, assuming that all elements of the input dataset have
the same probability of being picked. Therefore, a small entropy indicates a good
clustering.

The Rand Index [23] represents the level of agreement between the group-
ing produced by the evaluated clustering algorithm and the ground truth. It is
computed as a fraction where the sum between the number of pairs assigned to
the same cluster and the number of pairs assigned to different clusters is the
numerator and the total number of pairs is the denominator. The value of Rand
Index is a number between 0 (the groupings are completely different) and 1 (the
groupings are the same).

However, the value of the Rand Index converges to 1 as the number of clusters
increases. For this reason the Adjusted Rand Inder quality measure was intro-
duced as the normalized difference of the Rand Inder and its expected value
under the null hypothesis [27].

6.2 Evaluation Results

We evaluate DenLAC’s performances on eight synthetic bi-dimensional datasets
and two real datasets: Iris [6] and Tetragonula bee species [8] (retrieved from
[1]). Each of the eight bi-dimensional datasets holds its particularities: Aggre-
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Algorithm 2 Splitting the density bins into connected components

procedure SEPARATECONNECTEDCOMPONENTS(objectsInDensityBin, ef)
2: split Partitions < (;
clustld + 1;
4: for obj in objectsInDensityBin do
Mark obj as already parsed;

6: split Partitions|clusterId] = split Partitions|clusterId] U obj;
thresholdkpistance < the inflection point of the k-distance plot of
objectsInDensityBin
8: kNeighbours < obj’s nearest neighbors within thresholdkpistance - €f
for kNeighbour in kNeigbours do
10: if kNeighbour not already parsed then
Mark kNeigbour as already parsed;
12: splitPartitions|[clustld] = split Partitions|clustId] U kN eighbour;

Continue expansion by parsing each of the neighbors neighbor;
14: end if

end for
16: Increment clustld; > if we can’t expand the current cluster anymore,
create a new cluster and start from a new not already parsed point;
end for
18: return split Partitions;

end procedure

gation [11] is comprised of spherical clusters with different dimensions, Com-
pound [30] contains clusters with varying densities, Pathbased [3], Spiral[3],
Jain [15] and Flame [9] consist of arbitrary shaped clusters, Flame also incorpo-
rating outliers, R15 [28] and D31 [28] encompass spherical clusters of approxi-
mately the same size.

We compare DenLAC’s results with the ones obtained by eight popular al-
gorithms: K-Means [18], Clarans [22], Hierarchical agglomerative clustering [19],
Birch [31], CURE [12], Gaussian Mixture [2], DBSCAN (7] and Spectral Cluster-
ing [21]. The output for the Pathbased synthetic datatset is graphically displayed
in Figure 3.

The evaluation results shown in Table 1a, 1b, 1c¢ indicate that DenLAC ob-
tains the highest overall accuracy: the ARI values are greater than 0.9 for all
datasets except Tetragonula and the uncertainty regarding the cluster of a ran-
domly extracted an object given its ground-truth class is smaller than 0.01 for
7 datasets and smaller than 0.3 for all of the datasets.

As expected, the classic algorithms are correct only on particular datasets.

K-Means obtains optimal results solely for the datasets which contain spher-
ical clusters (Iris, Aggregation, D31 and R15 datasets). However, it computes
inaccurate results for the Jain, Flame, Pathbased and Spiral datasets.

Because it relies on minimizing the sum of pairwise distances within the clus-
ters formed around medoids, Clarans also favors non-convex clusters, performing
best on the R15, D31 and Iris datasets.
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Table 1: Evaluation measures values

(a) Entropy evaluation results

Dataset |DenLAC |Birch|Clarans|Cure| S2USS180 4yi0 0 chical |K-Means| DBSCAN | SPoctral

Mixture Custering
Aggregation[0.0111 0.099 [0.183 0.0 0.081 0.037 0.062 0.174 0.011
Compound [0.114 0.185 |0.315 0.186(0.187 0.279 0.21 0.282 0.18
D31 0.011 0.062 (0.184 0.166 [0.056 0.05 0.033 0.136 0.035
Flame 0.166 0.682 |0.842 0.932(0.606 0.932 0.557 0.94 0.932
Jain 0.0 0.373 [0.616 0.726[0.651 0.373 0.49 0.0 0.0
Pathbased 0.098 0.475 |0.579 0.4590.522 0.534 0.487 0.292 0.243
R15 0.008 0.019 (0.139 0.046 [0.006 0.014 0.006 0.084 0.006
Spiral 0.0 0.98 0.985 0.918(0.999 0.0 0.999 0.0 0.0
Iris 0.0 0.174 [0.460 0.115[0.0 0.333 0.0 0.0 0.246
Tetragonula |0.189 0.71 0.71 0.73 [0.71 0.71 0.71 0.1 0.8

(b) Rand Index evaluation results

Dataset DenLAC|Birch|Clarans|Cure GéuSS‘an Hierarchical| K-Means DBSCAN SpeCt”.al

Mixture Custering
Aggregation|0.997 0.917 |0.868 1.0 0.944 0.938 0.927 0.927 0.997
Compound [0.966 0.924 [0.816 0.922[0.858 0.89 0.843 0.89 0.834
D31 0.997 0.993 [0.97 0.971[0.994 0.995 0.997 0.974 0.997
Flame 0.95 0.694 (0.603 0.541(0.65 0.541 0.727 0.539 0.541
Jain 1.0 0.759 |0.726 0.501(0.512 0.759 0.662 0.975 1.0
Pathbased [0.968 0.757 [0.709 0.7620.729 0.723 0.747 0.819 0.857
R15 0.99 0.997 [0.96 0.989[0.999 0.998 0.999 0.971 0.999
Spiral 1.0 0.558 [(0.536 0.453[0.554 1.0 0.554 1.0 1.0
Iris 1.0 0.912 |0.773 0.949 (1.0 0.835 1.0 0.92 0.695
Tetragonula |0.888 0.4 0.4 0.36 (0.4 0.4 0.4 0.8 0.08

(c) Adjusted Rand Index evaluation results

Dataset DenLAC|Birch|Clarans|Cure Ga‘usslan Hierarchical| K-Means| DBSCAN SpeCtr?I

Mixture Custering
Aggregation|0.991 0.733 [0.586 1.0 0.827 0.8 0.762 0.808 0.99
Compound [0.911 0.809 |0.481 0.805 [0.596 0.742 0.538 0.743 0.531
D31 0.991 0.884 0.6 0.664 |0.897 0.92 0.953 0.682 0.95
Flame 0.9 0.385 [0.183 0.013 [0.299 0.013 0.453 0.0 0.013
Jain 1.0 0.515 |0.356 -0.084(-0.004 0.515 0.324 0.948 1.0
Pathbased [0.929 0.477 [0.395 0.487 [0.432 0.423 0.46 0.605 0.683
R15 0.989 0.972 10.713 0.914 [(0.993 0.982 0.993 0.802 0.993
Spiral 1.0 0.017 [0.003 0.037 [-0.005 1.0 -0.006 1.0 1.0
Iris 1.0 0.803 |0.515 0.885 |1.0 0.631 1.0 0.81 0.695
Tetragonula [0.658 -0.01 [-0.01 0.36 0.004 -0.01 -0.01 0.2 0.001

Hierarchical agglomerative clustering with average linkage splits the elon-
gated clusters and merges sections within neighbouring clusters for the Jain
and Pathbased datasets. For the Flame dataset, the results are affected by the
presence of the two outliers.

Birch obtains substandard results for non-spherical, elongated clusters such
as Spiral, Jain, Flame and Pathbased.

Cure performs well only on the Aggregation, R15 and Iris datasets, since
their structure is adequately described by the computed set of representatives.

The Gaussian Mixture algorithm is imprecise on datasets containing non-
normally distributed clusters such as Jain, Spiral and Pathbased.

DBSCAN is sensitive to the clusters density discrepancies. For instance, it
splits the Compound dataset in three different clusters ignoring the fine details
and it overpartitions the Jain dataset into three clusters.
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Although Spectral clustering is applicable on arbitrary shaped datasets, its
ARI values for the Compound and the Pathbased datasets, 0.531 and 0.683
respectively, are significantly lower than the ones achieved by DenLAC (0.967
and 0.987 respectively).

(c) Clarans

- e ites
.t .
1

(g) DBSCAN (h) Spectral (i) Hierarchical

Fig. 3: Graphical representation of the results obtained by DenLAC versus other
clustering algorithms for the Pathbased synthetic dataset

7 Conclusions

In this paper we present DenLAC, a flexible clustering algorithm which combines
the benefits of density based and hierarchical clustering to produce accurate
results regardless the input’s shape and distribution. As we show in Section 6, our
method surpasses the established clustering algorithms used for comparison in
terms of accuracy, on both synthetic and real datasets. DenLac operates best on
elongated, well separated clusters, obtaining perfect scores for the Jain and Spiral
synthetic datasets. Aditionally, its accurracy is also maximum for the Iris real
dataset and is significantly higher for the Tetragonula dataset as compared with
the other methods. Our method requires choosing a number of hyperparameters:
the number of clusters, the number of density bins, the expansion factor and
the agglomerative clustering linkage method. We propose several heuristics for
choosing these values: i) the elbow and silhouette methods are confirmed for
determining a dataset’s optimal number of clusters, ii) the number of density
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bins is normally equal to the optimal number of density levels of the cluster
tree but should be larger for noisy datasets, iii) the expansion factor is normally
equal to 1 but should be smaller for clusters with chains and iv) the preferred
linkage method is single linkage; however, for elongated or noisy datasets centroid
linkage must be used. We detail these approaches in Section 5, Subsection 5.1.
We further intend to incorporate a procedure which computes the number of
clusters automatically and improve the nearest neighbour expansion algorithm
such that the computation of the expanding factor ef is automatic.
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