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Abstract. Feature selection plays a vital role in machine learning and data min-
ing by eliminating noisy and irrelevant attributes without compromising the clas-
sification performance. To select the best subset of features, we need to consider
several issues such as the relationship among the features (interaction) and their
relationship with the classes. Even though the state-of-the-art, Relief based fea-
ture selection methods can handle feature interactions, they often fail to capture
the relationship of features with different classes. That is, a feature that can pro-
vide a clear boundary between two classes with a small average distance may
be mistakenly ranked low compared to a feature that has a higher average dis-
tance with no clear boundary (data overlapping). Moreover, most of the existing
methods provide a ranking of the given features rather than selecting a proper
subset of the features. To address these issues, we propose a feature subset se-
lection method namely modified Relief (mRelief) that can handle both feature
interactions and data overlapping problems. Experimental results over twenty-
seven benchmark datasets taken from different application areas demonstrate the
superiority of mRelief over the state-of-the-art methods in terms of accuracies,
number of the selected features, and the ability to identify the features (gene) to
characterize a class (disease).

Keywords: Feature selection · mRelief · Data overlapping

1 Introduction

Feature selection is the process of selecting a feature subset S from the original feature
set F such that S includes the most informative and relevant features for classifica-
tion. Through this reduction process, the noisy, redundant and irrelevant features are
eliminated which in turn improves the classification accuracy, reduces over-fitting as
well as the complexity of the model. In general, the existing feature selection methods
can be divided into three main categories: wrapper, embedded, and filter methods [29].
Among them, filter based methods are most popular as they are computationally less
expensive and not biased to any classification algorithm. Over the years different filter
criteria have been introduced such as Correlation [8], Mutual Information (MI) [29, 28,
24], and Distance [18, 13, 10].
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2 S. Akhter et al.

Earlier methods of feature selection use correlation metric to assess the quality of
features. Pearson’s correlation coefficient (PCC) is a well-known method in this re-
gard [8]. However, these methods cannot capture the non-linear relationship between
features and class variable. MI based selection methods overcome these problems and
can detect the nonlinear relationship both for categorical and numerical data contain-
ing multiple classes [22]. One of the state-of-the-art methods in this regard, Maximum
Relevance Minimum Redundancy (mRMR) [24] selects feature incrementally by max-
imizing the relevancy between a feature and class variable as well as minimizing the
redundancy among the features. However, mRMR discards some features which pro-
vides additional information about class despite its redundancy. This problem is solved
by Joint Mutual Information (JMI) [21] to some extent. Recently, Gao et. al. [7] intro-
duces a new feature selection method called Min-Redundancy and Max-Dependency
(MRMD) where a new feature redundancy term is proposed for better approximation
of the dependency between the features and class variable. Another MI based hybrid
method namely Information-Guided Incremental Selection (IGIS+) is proposed in [23]
for gene selection where they employ interaction information for ranking the features
and then select the final subset utilizing classifier performance. However, high classifi-
cation accuracy does not always ensure that the selected genes are relevant to a partic-
ular disease identification. Again, it is also well-known that a single feature alone can
not predict the class properly without considering its interaction with the other features.
Thus, we need to identify the inter-relationship among the features properly to select a
better subset of features. However, MI based methods often fail to capture the higher
order interaction among the features.

Relief based methods (RBM) such as Relief [18] can capture feature interactions
better than the MI based method. Instead of searching through feature combinations, it
uses the concept of k nearest neighbors (NN) to derive feature statistics that indirectly
account for interactions. RBMs are particularly interesting because they can perform
better even if the feature dimension increases. Relief was originally designed for binary
classification and extended to ReliefF [15] to handle multiple classes. Both in Relief
and ReliefF, we need to choose the value of k appropriately otherwise, it might become
difficult to capture the informative information. Instead of fixing the value of k, it will
be more advantageous if one can determine a volume from where reliable information
can be extracted. Inspired by this idea, SURF [13] define a volume with a radius con-
sidering the average distance of all the instances and use the hit and miss within that
radius (near hit/miss). It helps to capture the informative information even if the in-
teraction is small. RelielfF shows low success rate in this case. Again, along with the
near instance, other instances might contain important information and should be used
for selecting the features. SURF* [12] was designed to capture two way interaction in
feature weighting using near and far instance weighting. Even though it improves the
performance of SURF* but requires more computation. To reduce the computational
complexity retaining the performance, MultiSURF* [11] is proposed. However, SURF,
SURF* [12], and MultiSURF* are mainly designed to handle genomics data (usually
features contain few discrete value such as 0, 1 or 2) and might fail to achieve better
performance for other problems having different type of data. MultiSURF [10], one
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of the recent methods in RBM group, solve this problem with less computational time
compared to MultiSURF*.

Despite the importance of RBMs, most of them only rank the features and does
not consider redundancy. Moreover, they may suffer if data overlapping exists and fail
to capture the relationship between a feature and class. To understand this issue, let
us consider an example as given in Fig.1 where F1 and F2 are two features having
instances C1

+ to C3
+ for one class and C1

− to C4
− other class. CT

+ is the target instance.
Relief gives more priority to feature F1 than F2 though F2 have better separability. (for
details, see illustrative example in section 3.3).

Fig. 1: Data overlapping among different classes

To solve the aforementioned problems, we propose a new feature selection method
namely modified Relief (mRelief). The main contributions of this paper are as follows:
First, it can capture feature interaction with the help of kNN considering all the features.
Second, a reward− penalty scheme is introduced here to detect the data overlapping
among different classes and thus, establish a relationship between feature and class
properly. Third, a redundancy criteria is proposed to remove the redundant features. In
addition to superior performance in different datasets, mRelief can identify the impor-
tant genes for disease identification.

The rest of the paper is organized in the following four sections. Section 2 describes
the preliminaries required to understand the paper, our proposed mRelief is presented
in section 3, dataset description, implementation details and experimental results are
described in section 4. Finally, section 5 concludes the paper.

2 Preliminaries

Several relief based methods namely Relief, ReliefF, SURF, SURF*, MultiSURF, and
MultiSURF* are described in this section.

2.1 Relief

Relief [18] is a distance based feature selection method that uses 1NN to find the nearest
two instances of two different classes from a target instance. The distance is called
hit (δh(xfin )) when the target and NN belong to the same class and miss (δm(xfin ))
otherwise. The score (Jrelief ) of Relief for a feature fi is updated using Eq.1.

Jrelief (fi) = Jrelief (fi)−
δh(x

fi
n )

N
+
δm(xfin )

N
(1)
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here, N is the total number of samples. For nominal feature values, both δh and δm are
‘0’if the values are same and ‘1’otherwise. For numerical values, normalized feature
values are used to calculate distances.

2.2 ReliefF

ReliefF [15] is an extension of Relief to multi-class problem where instead of 1NN,
kNN is used to calculate hit and miss distances. Like Relief, it also calculates kNN for
the same class (hits) and for each of other classes (misses). Finally, the score (JReliefF )
is updated using Eq.2 where p(yn) is the miss and p(cn) is the hit class probability.

JReliefF (fi) = JReliefF (fi)−
K∑
i=1

δhi(x
fi
n )

m ∗ k
+
∑

cn 6=yn

p(yn)

1− p(cn)

K∑
i=1

δmi(x
fi
n )

m ∗ k (2)

2.3 SURF and SURF*

SURF [13] considers the nearest instances that have small distances than a threshold (T )
using Eq.3, where, ‘T’is defined by taking the average distance of all instance pairs.

δ(xi, xj) < T (3)

here, xi is the target instance and xj is the hit/miss instance. Considering these hit and
miss, SURF score, Jsurf is calculated as using Eq.2.

SURF∗ [12] utilizes both the near and far instances (outside T ) and its score, (Jsurf∗)
is calculated by combining near and far instances. Near score is calculated using the tra-
ditional ReliefF scoring method (Eq.2). Far scoring is the opposite of near scoring that
is this sign of the second (hit) and third term (miss) of the right hand side of Eq.2
become opposite.

2.4 MultiSURF* and MultiSURF

In MultiSURF* [11], threshold (T ) for a target instance is identified by taking average
distance of all instances from the target instance defined in Eq.4. Note that, T remains
same in SURF*, but it varies in MultiSURF* for the target instance.

Ti =

∑N−1
j=1 δ(xj , xi)

N − 1
(4)

In case of MultiSURF*, a dead-band zone (Di) is defined using the standard deviation
(σi) of the distances during the calculation of Tis. A xn is near when δ(xi, xj) <
(Ti − Di) and far when δ(xi, xj) > (Ti + Di). MultiSURF considers only the near
score instead of both near and far as in MultiSURF*.

3 Modified Relief (mRelief)

We propose modified Relief (mRelief) that includes a reward−penalty scheme to se-
lect a subset of features. The process of selecting features using mRelief can be divided
into two parts: Candidate Feature Selection and Final Feature Subset Selection, which
are described as follows:
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3.1 Candidate Feature Selection

In this step, we filter the feature set F by removing the irrelevant and noisy features that
do not contribute to the classification. A feature is irrelevant if it does not possess the
ability to discriminate among the different classes properly. To measure this ability, we
use paired t-test considering two sets of distances: one for hit and another for miss for
a particular feature fi. This test helps us to determine if the means of hit (µh) and miss
(µm) distances are significantly different from each other under the null hypothesis,
H0 : µh = µm. When fi accept (H0) on α confidence interval, it is considered as
irrelevant feature and removed from the feature set. Based on this hypothesis testing, we
define feature irrelevance as given in Definition 1. Following this process, we remove
the irrelevant and noisy features and obtain a candidate feature set Sc.

Definition 1. Feature Irrelevance: A feature fi is called irrelevant if there is no signif-
icant difference between the distances of hit and miss.

3.2 Final Feature Subset Selection

Here, we first rank the candidate features Sc based on their individual relevance and
then, select a subset of features S that jointly maximizes the relevancy as well as mini-
mizes redundancy among them which is described as follows:

Ranking the Candidate Features: To rank the features in Sc, we assign a value for
each feature fi based on its score J1 as defined in Eq.5.

J1(fi) =
1

N

N∑
n=1

exp (−δm(xfin )

δh(x
fi)
n

) (5)

here, xfin is the nth instance of fi, N is the total number of instances, δh(xfin ) and
δm(xfin ) are the average distances of k nearest hit and miss respectively from a par-
ticular target instance (xn). J1 represents the class discrimination ability of fi and it
decreases if the target instance differs less from the nearby instances of the same class
than the nearby instances of the other classes, and increases otherwise. It is well-known
that the most discriminatory features have the least uncertainties. By minimizing the
score J1, we expect to identify the features that have better discrimination capability
among the classes which in turn reduces the uncertainty. With the help of derivation
given in [31], the relation between score and uncertainty is specified in Theorem 1.

Theorem 1. Score minimization is equivalent to entropy minimization.

Proof. It is straightforward to show that the distance (δh) from xn to one of its NN
(h(xfin )) within the same class (hit) of a feature fi is proportional to the volume (V )
of the hyperspheres having the radius (xfin -h(xfin )). At the same time, the posterior
probability, p(cn|xfin ) of xn to be class cn is equivalent to 1

NV . Therefore, it is evident
that δh ∝ p(cn|xfin ). From the set of probabilities calculated for all the instances of
fi, one can calculate the uncertainties of the instances to be the member of that class
by using entropy H(xfi) =

∑N
n=1 p(x

fi
n ) log p(xfin ). Similarly, for the other classes
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(miss), it can be shown that δm ∝ p(yn|xfin ) where cn 6= yn. Combining both hit and
miss distances as given in Eq.5. and their associated probabilities, it can easily be shown
that minimizing J1 also minimizes the entropy. This proves the theorem.

Note that, entropy minimization does not always ensure score minimization, but
score minimization always ensure entropy minimization as shown in Theorem 1. How-
ever, only minimization of J1 in Eq.5 is not reliable enough due to data overlapping
among different classes as shown in Figure 1. To solve this problem, we introduce
reward-penalty scheme. The definition of reward is given in Definition 2.

Definition 2. Reward: Reward is a distance based measure that indicate the clear class
separability of hit and miss instances and can be calculated using Eq.6.

dR =
max(δhk

)

min(δMoH)
∗ k − nMoH

k
(6)

here, δhk
are the distances of the k nearest hit, δMoH is the distances of miss outside

hit, and nMoH is the number of miss outside hit. On the other hand, penalty term is
defined in Definition 3.

Definition 3. Penalty: Penalty is a distance based measure that indicates the amount
of mixing of hit and miss instances and can be calculated using Eq.7

dP =
min(δMiH)

max(δhk
)
∗ k − nMiH

k
(7)

here, nMiH is the number ofmiss inside of hit. The values of dR and dP ranges from 0
to 1. The lower the value of dR and dP , the more the reward and penalty. Incorporating
dR and dP to Eq.5, we propose a new score J2 defined in Eq.8 to calculate the relevance
of each feature fi(∈ Sc) and sort them in ascending order to get the ranking of the
features.

J2(fi) =
1

N

N∑
n=1

exp
(
− δm(xfin )

δh(x
fi
n )
− dP (xfin )

dR(xfin )

)
(8)

Generating a Criteria for Subset Selection The ranking based on J2 does not confirm
the best combination of features set for classification. Moreover, redundant features may
exist in the ranking that need to be eliminated despite its relevancy. For this, let us define
redundancy (δred) in term of distance which is given in Definition 4.

Definition 4. Redundancy: A feature fi is fully redundant in term of distance with the
selected feature subset S when it has same discrimination ability as fj (fj ∈ S) and
can be calculated using Eq.9.

δred(f i, S) =
∑
fj∈S

1

N

N∑
n=1

exp (−δm(x
{fj ,fi}
n )

δh(x
{fj ,fi}
n )

)− J1(fi) (9)
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here, δh(x
{fj ,fi}
n represents distance considering the target instance from fi and cal-

culating J1(fi) for hit and miss instance for fj . Lower value of δred indicates high
redundancy with the selected feature.

Eq.8 calculates J2 for a single feature fi. This equation can also be used for a set
of features S using kNN for that S. By incorporating this redundancy term with Eq.8
that calculates distances considering all the features in S and fi, we propose our final
criteria (J3) for feature subset selection as given in Eq.10.

J3(fi, S) =
1

N

N∑
n=1

exp (−δm(xS,fin )

δh(x
S,fi
n )

− dP (xS,fin )

dR(xS,fin )
− δred) (10)

Search Strategy: We adopt a greedy forward search strategy to select the best subset
of features without having low redundancy among them. At first, we include the top
ranked (obtained using J2) feature to our final subset S as the first selected feature.
After that, we consider the subsequent features (Sc \ f1) in the ranked list one by one
and evaluate their goodness in combination with the selected subset S using the score
J3. The overall process of mRelief is shown in Algorithm-1. If the feature fi minimizes
the J3, it shows that fi gives additional information with the selected feature and is
added fi to S otherwise discarded. Following this process, we select the final subset of
feature.

Algorithm 1 mRelief
Input: Dataset (D): all instances, X ={ x1,x2,x3, ...xn} and features, F={f1,f2,f3, ...fp}
Parameter: Number of neighbour (k)
Output:Subset of features, S ⊆ F
1: Select the candidate feature set Sc performing t-test
2: Calculate relevance score J2 of each feature fi ∈ Sc using Eq-(8)
3: Sort Sc based on their score J2 in ascending order
4: select f1 with minimum score J2 value
5: S ← f1;S

c ← Sc \ f1; T ← J2(f1)
6: for all i = 2: |Sc| do
7: Calculate score J3(fi, S) using Eq-(10)
8: if J3(fi, S) < T then
9: S ← S ∪ fi; T ← J3(fi, S)

10: end if
11: Sc ← Sc \ fi
12: end for
13: return S

3.3 An Illustrative Example

To understand the impact of reward-penalty scheme, let us consider an example where
F1 and F2 are two features having the instance values shown in Table 1. Here Cy

x

represents instance y (1 to m) belong to class x (+ and -) and T represents the target
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Table 1: Sample dataset for the illustrative example
Instance C1

+ C1
− C2

+ CT
+ C3

+ C2
− C3

− C4
−

F1 0.13 0.15 0.17 0.18 0.19 0.6 0.62 0.65
F2 0.11 0.3 0.14 0.12 0.15 0.31 0.35 0.40

class + - + + + - - -

instance. Considering Eq.2, the score of ReliefF for F1 and F2 are 0.0342 and 0.0225
respectively. According to ReliefF, F1 gets higher value compared to F2. However, it is
evident that the instances of F2 are more clearly separable than F1 and thus, F2 should
get higher priority. This is because, for F1, an instance of ‘-ve’class resides within the
‘+ve’class (also shown in Fig.1. In case of mRelief (Eq.8), the score of F1 and F2 are
0.1368e−38 and ' 0 respectively. As mRelief gives priority to the minimized score, it
ranks F2 better than F1 which is desired.

4 Result Analysis and Discussions

To demonstrate the experimental result, we first describe the datasets and then, present
the experimental setup of different methods along with the proposed one and their eval-
uation process. Finally, mRelief is compared with other state-of-the-art methods from
different aspects.

4.1 Dataset Description

To compare mRelief with other state-of-the-art methods, we use twenty benchmark
datasets collected from UCI machine learning repository1. We also use seven cancer
related datasets namely (Lung [2], CNS [26], SRBCT [17], Colon [1], Leukemia [9],
MLL [25]) and GDS3341 [5] collected from different sources. The characteristics of
the datasets are presented in column 2 to 4 of Table 2.

4.2 Implementation Detail

We conduct 10 fold cross-validation (10-CV) for the datasets with a large number of
samples (> 250), ten runs of 5-CV for the datasets having their samples between 100
and 250; and Leave-One-Out (LOO) otherwise. For fair comparison, the same strategy
is followed for all other methods used in this paper. The results of mRelief are compared
with other RBMs such as ReliefF, SURF, SURF*, MultiSURF*, and MultiSURF. We
also compare mRelief with two MI based methods namely MRMD and IGIS+. Features
are normalized to the interval [0,1] for all RBMs along with mRelief as suggested in
[15]. For MRMD and IGIS+, we follow the suggested discretization as given in [7]
and [23]. There are various type of classifier such as SVM, KNN, XGBoost [4] and
for imbalance data PEkNN [16], kENN [19] can be used to measure the accuracy. The
average accuracy of n-fold cross-validation is calculated using SVM (linear kernel)

1 https://archive.ics.uci.edu/ml
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Table 2: Dataset overview and performance comparison among different algorithms in
terms of Accuracy. Significant win is marked as ∗ and loss as ◦ means mRelief signifi-
cantly perform better/worse in the comparison of existing methods.
Dataset Features Class Instance MRMD MultiSURF MultiSURF* SURF* SURF ReliefF mRelief
yeast 8 10 1484 0.517∗ 0.532 0.522∗ 0.562 0.497∗ 0.560 0.563(7)
wine 13 3 178 0.963∗ 0.982 0.983 0.984 0.987 0.984 0.989(12)
heart 13 2 270 0.819 0.833 0.804 0.800∗ 0.833 0.833 0.837(11)
segment 19 7 2310 0.894∗ 0.919 0.800∗ 0.809∗ 0.914 0.906 0.926(10)
steel 27 7 1941 0.684 0.649 0.676 0.677 0.637 0.662 0.668(18)
ionosphere 33 2 351 0.833 0.822 0.831 0.819 0.836 0.831 0.856(17)
dermatology 34 6 366 0.948 0.815∗ 0.838∗ 0.868∗ 0.800∗ 0.840∗ 0.950(13)
appendicitis 7 2 106 0.850 0.858 0.833 0.842 0.875 0.842 0.875(6)
german 20 2 1000 0.763 0.747 0.742 0.740 0.749 0.753 0.752(15)
sonar 60 2 208 0.755 0.764 0.790 0.750 0.764 0.759 0.791(17)
libras 91 15 360 0.744◦ 0.571∗ 0.469∗ 0.527∗ 0.567∗ 0.584∗ 0.702(29)
page-blocks 10 5 5472 0.912∗ 0.923 0.901∗ 0.901∗ 0.921 0.921 0.921(5)
saheart 9 2 462 0.710 0.681 0.668∗ 0.685 0.672∗ 0.685 0.717(6)
southgerman 21 2 1000 0.771 0.753 0.752 0.753 0.750 0.754 0.767(15)
page-blocks0 10 2 5472 0.926∗ 0.918∗ 0.901∗ 0.901∗ 0.928 0.906∗ 0.933(7)
vehicle0 18 2 846 0.819∗ 0.822∗ 0.921 0.921 0.809∗ 0.833∗ 0.926(6)
ecoli3 7 2 336 0.926◦ 0.886 0.886 0.886 0.886 0.886 0.886(6)
new-thyroid1 5 2 215 0.941 0.945 0.818∗ 0.818∗ 0.945 0.945 0.950(2)
musk 166 2 476 0.783 0.790 0.775 0.775 0.810 0.763∗ 0.796(45)
semeion 256 10 1593 0.874∗ 0.820∗ 0.750∗ 0.759∗ 0.867∗ 0.855∗ 0.895(99)
Win/ Tie/ Loss - - - 15/0/5 19/1/0 19/1/0 18/2/0 17/2/1 18/1/1 -
Sig. Win/ Loss - - - 7/2 5/0 9/0 8/0 6/0 6/0 -

to measure the performance of the compared methods. We use the same number of
features that mRelief selects for all other compared methods (except IGIS+) as they are
all ranking methods.

4.3 Comparison of mRelief with the State-of-the-art Methods

Table 2 and Table 3 present the average accuracies of mRelief in comparison with other
state-of-the-art methods along with the number of selected features given in the paren-
thesis. For these tables, win/tie/loss is calculated using the accuracies and shown in
the second last row of the tables. To evaluate the significance of the improvements in
accuracies among different methods, paired t-tests (at 95% significance level) are per-
formed and shown in the last row of the tables. Here, Win/Tie/Loss indicates the number
of datasets for which mRelief performs better/equally-well/worse than other aforemen-
tioned methods. The best performing method is presented in boldfaced. Analyzing these
tables, we find that for most of the datasets, mRelief outperforms the other methods
with less number of features. The reason behind such performance is that mReleif is
able to detect feature interaction, data overlapping and redundant features. The detailed
discussion of experimental results is presented as follows.

Impact of feature interaction and data overlapping To understand the impact of fea-
ture interaction and data overlapping, let us consider the data visualization for Semeion
dataset shown in Fig.2. We observe a major data overlapping between class 3 and 10
in this figure. As an MI based method, MRMD can handle data overlapping, its overall
accuracy for this dataset is 87.4% which is close to mRelief (89.5%) (mRelief signifi-
cantly wins in this case). Note that, MRMD can classify class 3 and 10 more accurately
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Table 3: Performance comparison among different algorithms on high Dimensional
Datasets in terms of Accuracy. Significant win is marked as ∗ and loss as ◦ means
mRelief significantly perform better/worse in the comparison of existing methods.
Dataset Features Class Instance IGIS+ MultiSURF MultiSURF* SURF* SURF ReliefF mRelief
Lung 12600 5 203 0.902(9) 0.852∗ 0.892∗ 0.899∗ 0.871∗ 0.918∗ 0.931(77)
CNS 7129 2 60 0.618(3) 0.582∗ 0.603∗ 0.629 0.605 0.628 0.631(7)
SRBCT 2308 4 83 0.923(9)∗ 0.987∗ 0.942∗ 0.928∗ 0.982∗ 0.994∗ 0.997(51)
Colon 2000 2 62 0.727(3)∗ 0.829 0.695∗ 0.649∗ 0.845 0.835 0.843(21)
Leukemia 7129 2 72 0.903(3) 0.932 0.865∗ 0.861∗ 0.937 0.937 0.939(37)
MLL 12582 3 72 0.843(5)∗ 0.944∗ 0.873∗ 0.844∗ 0.953 0.951∗ 0.965(64)
GDS-3341 30802 2 41 0.862(4) 1.000 0.780 0.927 0.976 1.000 1.000(26)
Win/ Tie/ Loss - - - 7/0/0 6/1/0 7/0/0 7/0/0 6/0/1 6/1/0 -
Sig. Win/ Loss - - - 3/0 4/0 5/0 5/0 2/0 3/0 -

than RBMs (with 80% and 87% accuracy respectively), mRelief achieve 88.7% and
89.07% accuracy in this case. It shows although MRMD performs better than other
RBMs, it can not exceed the performance of mRelief due to its lower capability of ap-
proximating the higher-order feature interaction. Instead of MRMD, we use IGIS+ (an
MI based method) for the genomics datasets which is mainly designed to detect genes
(features) for such datasets. This reason helps mRelief to win for all genomics dataset
compared to IGIS+ shown in Table 3. On the other hand, RBMs (Table 3) can capture
feature interaction but they confuse among the classes if data overlapping exists. There-
fore, even the best performing RBM (SURF) does not perform well and the accuracies
of class 3 and 10 are 85.2%, and 82.9% respectively. These results demonstrate the su-
periority of mRelief over the other methods in terms of capturing interactions and the
ability to handle data overlapping.

Impact of feature selection mRelief uses Eq.10 to select the best set of features. Note
that, among all the compared methods, mRelief is the only feature selection method.
To demonstrate the capability of mRelief in this regard, we plot the accuracies of dif-
ferent methods for different number of selected features using Lung, Semeion and
MLL dataset as shown in Fig.3 (arrow mark indicates the performance of total se-

Fig. 2: Data Visualization using tSNE[20]. Here, (1-10) represents different classes.
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Fig. 3: Comparison of accuracies for different number of selected features

lected features using mRelief). From these figures, we observe that mRelief can iden-
tify the relevant features properly and reach the highest point of accuracy for Lung,
and MLL dataset and very close to the highest accuracies for Semeion dataset. Note
that, for Lung dataset, mRelief selects 7089 candidate features from 12600 features and
achieves 93.2% accuracy using 77 selected features. On the other hand, other methods
require considerably more features to attain such performance. This justifies the pur-
pose of feature selection methods that the selected features are highly relevant to the
class and less redundant among themselves.

Impact of redundancy mRelief achieves a better ranking with a small set of features as
it can identify non-redundant features for most of the datasets. For this, let us consider
Lung and MLL datasets shown in Fig.3. In MLL dataset, mRelief performs better
than the existing methods with less number of selected features, because mRelief has
the mechanism of removing the redundant features and selects the features having better
class separability. However, RBMs achieve similar accuracies with a higher number of
features as they can not eliminate the redundant ones. In MLL dataset, IGIS+ obtains
satisfactory performance (though these accuracies are lower compared to mRelief) with
a fewer number of selected features in comparison with mRelief. We use IGIS+ only
for gene datasets as the proposal is only for these types of datasets. However, the se-
lected features often fail to identify the relevant genes for a disease whereas the selected
features of mRelief are truly relevant for classification as well as disease identification
which is described in the following subsections.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_24

https://dx.doi.org/10.1007/978-3-030-77961-0_24


12 S. Akhter et al.

Table 4: Ranking of the selected gene
Method Pathway Rank FDR

Using both score and frequency

mRelief

Proteasome 1 4.41E-42
Epstein-Barr virus infection 2 1.62E-32

Cell cycle 3 1.40E-23
Viral carcinogenesis 4 7.13E-18

Hepatitis B 5 1.09E-15
Kaposi’s sarcoma-associated herpesvirus infection 6 3.19E-14

Pathways in cancer 8 4.95E-13
Using the respective method’s score

mRelief
Viral carcinogenesis 2 6.94E-10

Hepatitis B 3 8.11E-10
Kaposi’s sarcoma-associated herpesvirus infection 4 1.17E-08

Epstein-Barr virus infection 5 2.58E-07
ReliefF Pathways in cancer 4 3.06E-11

Kaposi’s sarcoma-associated herpesvirus infection 5 3.29E-11
SURF N/A

MultiSURF Pathways in cancer 1 0.000716
SURF* Hepatitis B 5 6.07E-12

Viral carcinogenesis 7 7.88E-12
MultiSURF* Viral carcinogenesis 2 1.31E-10

Cell cycle 6 2.06E-09
IGIS+ Pathways in cancer 4 0.387

Impact of Important Gene Identification To demonstrate that mRelief can select
relatively a small subset of best performing features (gene) to identify a particular class
(disease related gene), we use GDS3341 [5], gene expression dataset. Both qualitative
and quantitative changes in gene expression contribute to the development of different
diseases. Therefore, we investigate the biological significance of the top fifty genes
selected by different methods, except IGIS+. IGIS+ can select only ten different genes,
which are used as input in further analysis. To explore the biological importance of
the top selected genes, we use NetworkAnalyst 3.0 [33] for identifying the cellular
pathways.

TheGDS3341 dataset includes nasopharyngeal carcinoma tissue samples. Epstein-
Barr virus (EBV) is well known to cause nasopharyngeal carcinoma (NPC), which is
an epithelial cancer prevalent in Southeast Asia [3, 32]. Hepatitis B virus (HBV) infec-
tion plays a role in the development of NPC [30]. Epstein-Barr virus (EBV) and human
herpesvirus, which is also known as Kaposi sarcoma-associated herpesvirus (KSHV),
belong to the human gammaherpes virus family [6]. EBV manipulates the ubiquitin-
proteasome system in EBV-associated malignancies [14]. Table 4 shows the pathways
that have been identified based on protein-protein interaction networks. The list of path-
ways are ranked based on false discovery rates (FDR), which are adjusted p-values
used in the analysis of large datasets generated in high-throughput experiments in or-
der to correct for random events that falsely appear significant [27]. Only the top ten
most significant pathways are considered. Table 4 shows only those pathways relevant
to NPC. Based on the ranks of the NPC associated pathways, mRelief unequivocally
perform better than the other methods. Although the selected genes of IGIS+ can iden-
tify “Pathways in cancer” with only ten selected genes, it is not significant statistically
(FDR > 0.05).
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5 Conclusion

In this paper, we propose mRelief that selects a better feature subset with higher accu-
racies compared to the state-of-the-art methods over a large set of benchmark datasets.
Moreover, it identifies a set of features that is highly representative of a particular class
and thus can be used in different applications including gene selection for disease iden-
tification. However, mRelief can be adapted using SURF or MultiSURF instead of fixed
k, which we will address in the future.
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