
Scaling Simulation of Continuous Urban Traffic
Model for High Performance Computing System

Mateusz Najdek1, Hairuo Xie2, and Wojciech Turek1

1 AGH University of Science and Technology, Krakow, Poland
2 University of Melbourne, Australia

Abstract. Urban traffic simulation of extensive areas with complex
driver models poses a significant computational challenge. Developing
highly scalable parallel simulation algorithms is the only feasible way to
provide useful results in this case. In this paper, we present extensions
of the SMARTS system, a traffic simulation tool, which provides effi-
cient scalability with a large number of parallel processes. The presented
extensions enabled its scalability for HPC-grade systems. The extended
version has been thoroughly tested in strong and weak scalability scenar-
ios for up to 2400 computing cores of a supercomputer. The satisfactory
scalability has been achieved by introducing several significant improve-
ments, which have been discussed in details.

Keywords: Urban traffic simulation · Simulation scalability · Simula-
tion metrics · HPC.

1 Introduction

The domain of Agent-based Modeling has been attracting more and more at-
tention in recent years, providing means for explaining phenomena observed in
complex social situations [10]. Microscopic urban traffic is a very interesting
real-life case within the domain, where a large number of autonomous agents
(drivers) coexist and interact in a common system (road network). The simu-
lation of this phenomenon is a significant computational challenge. Simulation
algorithms repetitively modify one large data structure, which, when performed
in parallel, must be properly synchronized. Providing parallelization methods for
such a task, which could efficiently utilize High-Performance Computing (HPC)
hardware, remains an open problem.

The work presented in this paper is the result of cooperation between the
creators of the SMARTS traffic simulator [11] from University of Melbourne and
the HPC team from AGH University of Science and Technology. The main con-
tribution is the extended version of the SMARTS system, which allows efficient
simulation of the IDM [4] model on 2400 cores of a supercomputer. We also de-
scribe introduced improvements and provide a discussion of typical issues with
creating or migrating spatial simulations for HPC-grade systems.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_22

https://dx.doi.org/10.1007/978-3-030-77961-0_22


2 M. Najdek et al.

2 Scalable Traffic Simulations

The need for parallel execution of traffic simulation has been identified at the
end of XX century [7]. At least a few attempts to creating a centrally synchro-
nized parallel traffic simulation were tried later on. Work presented in [6] or [9]
report scalability at a few nodes. The concept of increasing the time between
global synchronization, presented in [2], led to positive impact on scalability
and significant errors in the simulation results. Another approach, presented in
[13], introduced a complex protocol for correcting the errors resulting from rare
synchronizations.

In [12] authors suggested that the global synchronization in parallel traffic
simulation algorithm might not be necessary. Removing centralized element from
the computation is crucial in terms of HPC-grade scalability, however, achieving
this in traffic simulations was not straightforward. Probably the first reports
on a method which overcame this problem were presented in [18]. The authors
presented an Asynchronous Synchronization Strategy, which assumed that each
computing process communicates with limited number of processes – only those
responsible for adjacent fragments of the modeled environment. The authors
achieved linear scalability with 32 parallel workers. The concept has been ex-
tended in [14,15], where a simulation of discrete traffic model scaled linearly
to 19200 parallel processes running on 800 nodes of a supercomputer, which is
probably the largest setup tested so far in this type of simulations.

The work presented in this paper is the result of merging the experiences
from building HPC-scalable traffic simulations with the SMARTS tool, which
supports continuous traffic models and manages realistic maps. Scalable Micro-
scopic Adaptive Road Traffic Simulator (SMARTS) [11] is a free, light-weight
and versatile simulation tool developed at the School of Computing and Infor-
mation Systems, University of Melbourne, Australia. The simulator has been
used in many research projects [8,16,17]. SMARTS builds road networks based
on freely-available OpenStreetMap data, which allows researchers to simulate
traffic in real road networks around the world. During a simulation, the position
of vehicles on roads is updated based on a continuous model (a car-following
model), Intelligent Driver Model (IDM) [4], which computes the acceleration of
the vehicle based on several factors such as the distance to an impeding object. A
simulated vehicle is also controlled by a lane-changing model, Minimizing Over-
all Braking Induced by Lane Changes (MOBIL) [3], which is used to determine
whether it is safe and beneficial for the vehicle to change to specific traffic lanes.
SMARTS also models traffic lights and a number of traffic rules.

SMARTS is a distributed system that has one server and one or more work-
ers. It divides the simulation area into multiple sub-areas, assigned to different
workers that run in parallel and exchange information only with workers respon-
sible for adjacent sub-areas. The workers do not need to communicate with the
server during simulation, which helps prevent a communication bottleneck at the
server. SMARTS also adopts a Priority Synchronous Parallel model, which uses
a two-phase simulation approach to reduce the impact of the slowest worker [5].

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_22

https://dx.doi.org/10.1007/978-3-030-77961-0_22


Scaling Simulation of Continuous Urban Traffic Model for HPC 3

3 Towards HPC-grade Traffic Simulation

The concept of the simulation method presented in SMARTS is suitable for dis-
tributed computing, but for a high level of parallelization at High-Performance
Computing (HPC) systems several modifications were required. Considering
massive HPC parallelism, where the number of workers can be orders of mag-
nitude larger than in the case of small clusters, one should always focus on
minimizing the non-parallel part of process or possibly getting rid of it entirely.
Original elements of SMARTS, like workers initialization, task division, commu-
nication, and results collecting could significantly reduce overall efficiency and
even crash the entire system. To overcome these problems the following improve-
ments were required.

3.1 Initialization of the Simulation

SMARTS imposes on each worker to know metadata of its neighboring workers
with which it must communicate. To obtain this information, a connection must
be established with a centralized server, shared among all running workers. The
server builds a dedicated connection with each worker synchronously. This se-
quentiality overhead cannot be easily avoided, but the effect is relatively reduced
in long simulations. It also does not influence the proper simulation stage.

Another much greater sequential part of initialization, referred to as setup in
sec. 4, requires all workers to obtain simulation configuration from the server by
message pushing model. Conceptually, it is better to aggregate data dedicated
to all workers within a single node and distribute them locally, involving their
resources for parallelizing the process. In HPC practice, a far more efficient
solution is to use the common filesystem for shared data distribution. Memory
extensive part of shared message content is then loaded locally in parallel.

3.2 Data Scalability

To be able to simulate large scenarios within the available memory, one has to
analyze the volume of data and divide them properly between available com-
puting resources to ensure data-scalability. Generally, two types of data can be
distinguished: static and dynamic. The static, such as the model of the envi-
ronment, should be divided among all processing workers. Currently, SMARTS
system balances the workload by generating vehicles with random routes on-
the-fly, using the whole map at every worker. The optimal solution is to use
predefined routes and remove the need for global planning from workers. This
will reduce the setup time and also memory usage within a single node. The sec-
ond data type (dynamic) can increases at demand and correspond mainly to the
mobile entities. To prevent complete memory consumption, a safe estimation of
maximal volume for each worker should be performed. Another method of pre-
vention is online monitoring of transmitted data and dynamic load balancing –
which is a challenge for further research.

3.3 Massive Parallelism Issues

All operations in a distributed environment which use randomness require special
attention (or should be avoided), as they can cause complications visible only in

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_22

https://dx.doi.org/10.1007/978-3-030-77961-0_22


4 M. Najdek et al.

large scale. Defining internal identifiers of individual processes based on a ran-
domly generated string may seem a sufficient approach. However, being a variant
of the Birthday problem, it can, with an increasing number of processes cause
problems, when generated the same identifier. A better approach is to associate
an internal identifier with a uniquely defined entity in the cluster topology as it
guarantees unambiguity. Another thing to be taken into consideration is access
to shared system resources, such as random socket number selection by different
processes. It can manifest itself when a larger number of workers is involved,
causing not obvious race conditions between separate processes within a com-
puting node. Incoming messages were processed so far by dedicated, emerging
threads in a thread-per-message approach. This solution is quickly worn-out at a
larger scale and causes a massive decrease in efficiency with more incoming mes-
sages. To overcome this problem Thread Pooling based solution was introduced
where the creation time of thread is avoided and its total amount is restricted.
The messages are stored in a queue and handled by reusable processing threads.

3.4 Simulation results processing

The required details of the collected metrics should be carefully considered since
fined-grained metrics cause larger sizes of exchanged messages and also more
frequent communication. Where every timestamped vehicle positions are not
required or are in final post-processing aggregated anyway, then it is better
to perform the aggregation ahead at each worker. In such a case instead of
gathering trajectories directly, it is better to transform them into more coarse-
grained metrics such as density and flow per road. The original architecture,
where trajectories were collected by the server, is not feasible with more than 240
workers for the reason of the limited amount of memory. In order to support this
feature in the HPC-grade version, we introduced a solution to bind the trajectory
metrics with the corresponding vehicle state. It is gradually growing, burdening
workers instead of the server. The proposed solution allows for independent
serialization of such results at the end of simulation, fully in parallel, instead
of massively time-consuming sequential serialization. It totally eliminates the
sequential part of this process and greatly speeds it up by a factor of the number
of workers used.

4 Evaluation of Traffic Simulation Scalability

Different test scenarios were prepared with an increasing number of processing
cores. The first scenario of strong scalability included a fixed minimum number
of 2.4 million vehicles in total. The second one (weak scalability) increased from
24 thousand up to 2.4 million vehicles in proportion to the number of work-
ers. Routes were randomly generated using A-star algorithm. Both scenarios
used 59km×55km area of Beijing. The road graph contained approximately 400
thousand directed edges, which correspond to streets and 220 thousand nodes,
that represent intersections and points of road division into smaller sections. The
average length of a road is about 85 meters and the total length is 58.000 km.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_22

https://dx.doi.org/10.1007/978-3-030-77961-0_22


Scaling Simulation of Continuous Urban Traffic Model for HPC 5

All tests were performed using the Prometheus supercomputer, a part of the
PL-Grid infrastructure1. Currently, Prometheus is ranked as the 324th computer
in the worldwide top 500 list2. It contains 2232 computing nodes, HP Apollo 8000
with Xeon E5-2680v3 CPUs working at 2.5GHz. Each node has 24 physical cores
– the total number of computing cores is 53,568. Nodes are connected by the
Infiniband FDR 56Gb/s network.

For evaluation purposes, two main categories of performance metrics were
collected depending on the source. The first describes the server perspective.
Figures 1, 3 shows execution time of 4 components: global time of initialization,
model setup and loading, simulation, serialization of obtained results. The second
type describes simulation from the worker’s side. Figures 2, 4 present the average
execution step time from 50 steps for data collected over the last 1000 out of 1500
steps. The length of a single step was 0.2 second, which is equivalent to 6 minutes
of real-time traffic. Synchronization is based on decentralized communication and
result are collected in a decentralized manner. All tests were repeated 3 times
to confirm the stability of the obtained results. Each node has been configured
to run 24 workers and the server was run on a separate node.

4.1 Strong Scalability

As Amdahl [1] pointed out in 1967, for fixed-sized problem overall speedup is
limited by the factor of sequential part that cannot be subject to parallelization.
Based on that, strong scalability is defined as the variance of the solution’s exe-
cution time to the utilized number of computing processors. In this experiment,
each worker minimally simulated the number of vehicles equivalent to roughly
a fraction of the fixed number of 2.4 million vehicles by the number of workers.
Since the size of the problem is large, it was not feasible to run scenario us-
ing less than 4 nodes. Figure 1 shows results of global execution times for each
component of the process.

96 144 192 240 480 960 1440 1920 2400
0

2k

4k

6k

8k

10k Components:
Initialization
Setup
Simulation
Results Serialization

Number of Workers

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Fig. 1. Global times of process compo-
nents with increasing number of workers
for growing problem size.

96240 480 960 1440 1920 2400

200
400
600
800

1000
1200
1400
1600

Number of Workers

S
im

 S
te

p 
Ti

m
e 

(m
s)

Fig. 2. Simulation step times for increas-
ing problem size in proportion to the num-
ber of workers.

The whole process for the same task size benefits greatly from adding up
to 1440 workers and further increase causes it to suffer due to the initialization
part. In Figure 2 the median of simulation step time is reduced and distribution
becomes more convergent with an increasing number of workers.
1 http://www.plgrid.pl/
2 https://www.top500.org/lists/top500/list/2020/11?page=4

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_22

http://www.plgrid.pl/
https://www.top500.org/lists/top500/list/2020/11/?page=4
https://dx.doi.org/10.1007/978-3-030-77961-0_22


6 M. Najdek et al.

4.2 Weak Scalability

As Gustafson [1] noticed, in practice predominantly size of the problem scales
with the number of available resources. The observation is that if the problem
is small, there is no benefit in using large amounts of resources, and a more
sensible approach is to use resources according to the problem size. Weak scaling
is concerned with how the execution time for solving a scaled size problem varies
with the number of CPUs used. The computational costs depend on the number
of vehicles and the results are presented in figures below (3 and 4), where each
worker initially simulated a minimal number of 1000 vehicles.

24 48 96 144 192 240 480 960 1440 1920 2400
0

200

400

600

800

1000

1200

1400
Components:

Initialization
Setup
Simulation
Results Serialization

Number of Workers

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Fig. 3. Global times of process compo-
nents with increasing number of workers
for growing problem size.

24 240 480 960 1440 1920 2400

100

150

200

250

300

350

400

450

Number of Workers
S
im

 S
te

p 
Ti

m
e 

(m
s)

Fig. 4. Simulation step times for increas-
ing problem size in proportion to the num-
ber of workers.

The main factor extending the duration of the entire process is the initial-
ization part. As shown in Figure 4 results confirm algorithm scalability as the
simulation time of each task remains within a constant range. The conclusion
is by increasing the number of workers communication overhead is not strongly
affecting this method.

5 Conclusions and Further Work
The presented solution to the problem of efficient urban traffic simulation is
most likely the first to efficiently utilize HPC-grade hardware for simulation
of continuous traffic model with real-life scenarios. The simulation algorithm
itself exposes proper features both in strong and weak scalability tests. Achieved
overall scalability of the simulation system is not perfect, however, in all of the
analyzed cases addition of hardware improved the simulation efficiency.

Extensions introduced to the SMARTS platform resulted in conclusions re-
garding HPC-grade software design, which goes beyond the particular applica-
tion. Identified issues and proposed solutions may become valuable guidelines
for researchers willing to scale spatial simulations to HPC-grade. The extended
versions of SMARTS system, used for conducting the presented experiments, is
available at: https://github.com/mateusznajdek/SMARTS-extension.

A few aspects still can and should be improved. More efficient strategies for
initialization are definitely needed. Also, scalable mechanisms for model division
should be introduced. These will be the subject of further research.

Acknowledgments
The research presented in this paper was funded by the National Science Centre,
Poland, under the grant no. 2019/35/O/ST6/01806. The research was supported
in part by PL-Grid Infrastructure.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_22

https://dx.doi.org/10.1007/978-3-030-77961-0_22


Scaling Simulation of Continuous Urban Traffic Model for HPC 7

References

1. Gustafson, J.: Reevaluating Amdahl’s Law. Commun. ACM 31(5), 532–533 (1988)
2. Kanezashi, H., Suzumura, T.: Performance optimization for agent-based traffic

simulation by dynamic agent assignment. In: Proc. of 2015 Winter Simulation
Conference. pp. 757–766. WSC ’15, IEEE Press, Piscataway, NJ, USA (2015)

3. Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for
car-following models. J. of Transportation Research Board 1999(1), 86–94 (2007)

4. Kesting, A., Treiber, M., Helbing, D.: Enhanced intelligent driver model to access
the impact of driving strategies on traffic capacity. Trans. of Royal Society of
London A 368(1928), 4585–4605 (2010)

5. Khunayn, E.B., Karunasekera, S., Xie, H., Ramamohanarao, K.: Straggler mit-
igation for distributed behavioral simulation. In: 2017 IEEE 37th Int. Conf. on
Distributed Computing Systems (ICDCS). pp. 2638–2641. IEEE (2017)

6. Klefstad, R., Zhang, Y., Lai, M., Jayakrishnan, R., Lavanya, R.: A distributed,
scalable, and synchronized framework for large-scale microscopic traffic simulation.
In: Proc. 2005 IEEE Intelligent Transportation Systems, 2005. pp. 813–818 (2005)

7. Nagel, K., Schleicher, A.: Microscopic traffic modeling on parallel high performance
computers. Parallel Computing 20(1), 125 – 146 (1994)

8. Nguyen, U.T., et al.: A randomized path routing algorithm for decentralized route
allocation in transportation networks. In: ACM SIGSPATIAL. pp. 15–20 (2015)

9. O’Cearbhaill, E.A., O’Mahony, M.: Parallel implementation of a transportation
network model. Journal of Parallel and Distributed Computing 65(1), 1 – 14 (2005)

10. Railsback, S.F., Grimm, V.: Agent-based and individual-based modeling: a practi-
cal introduction. Princeton university press (2019)

11. Ramamohanarao, K., Xie, H., Kulik, L., Karunasekera, S., Tanin, E., Zhang, R.,
Khunayn, E.B.: SMARTS: Scalable microscopic adaptive road traffic simulator.
ACM Trans. on Intelligent Systems and Technology (TIST) 8(2), 1–22 (2016)

12. Rickert, M., Nagel, K.: Dynamic traffic assignment on parallel computers in tran-
sims. Future Generation Computer Systems 17(5), 637 – 648 (2001)

13. Toscano, L., D’Angelo, G., Marzolla, M.: Parallel discrete event simulation with
erlang. In: Proceedings of the 1st ACM SIGPLAN Workshop on Functional High-
performance Computing. pp. 83–92. FHPC ’12, ACM, New York, NY, USA (2012)

14. Turek, W.: Erlang-based desynchronized urban traffic simulation for high-
performance computing systems. Future Generation Computer Systems 79, 645–
652 (2018)

15. Turek, W., Siwik, L., Byrski, A.: Leveraging rapid simulation and analysis of large
urban road systems on hpc. Transportation Research Part C: Emerging Technolo-
gies 87, 46–57 (2018)

16. Xie, H., Karunasekera, S., Kulik, L., Tanin, E., Zhang, R., Ramamohanarao, K.: A
simulation study of emergency vehicle prioritization in intelligent transportation
systems. In: IEEE VTC Spring. pp. 1–5 (2017)

17. Xie, H., Tanin, E., Karunasekera, S., Qi, J., Zhang, R., Kulik, L., Ramamohanarao,
K.: Quantifying the impact of autonomous vehicles using microscopic simulations.
In: ACM SIGSPATIAL. pp. 1–10 (2019)

18. Xu, Y., Cai, W., Aydt, H., Lees, M., Zehe, D.: An asynchronous synchronization
strategy for parallel large-scale agent-based traffic simulations. In: Proceedings of
the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.
pp. 259–269. SIGSIM PADS ’15, ACM, New York, NY, USA (2015)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_22

https://dx.doi.org/10.1007/978-3-030-77961-0_22

