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Abstract. Cloud bursting is an application deployment model wherein

additional computing resources are provisioned from public clouds in cases

where local resources are not sufficient, e.g. during peak demand periods.

We propose and experimentally evaluate a cloud-bursting solution for

scientific workflows. Our solution is portable thanks to using Kubernetes

for deployment of the workflow management system and computing

clusters in multiple clouds. We also introduce transparent data access by

employing a virtual distributed file system across the clouds, allowing jobs

to use a POSIX file system interface, while hiding data transfer between

clouds. To balance load distribution and minimize the communication
volume between clouds, we leverage graph partitioning, while ensuring

that the algorithm distributes the load equally at each parallel execution

stage of a workflow. The solution is experimentally evaluated using the

HyperFlow workflow management system integrated with the Onedata

data management platform, deployed in our on-premise cloud in Cyfronet

AGH and in the Google Cloud.

Keywords: cloud bursting, scientific workflow management, scientific data man-
agement, hybrid cloud, Kubernetes

1 Introduction

Cloud bursting is an application deployment model leveraging hybrid cloud [17], in
which the application normally runs in a private cloud, while during peak demand
periods it is partially deployed on additional resources allocated in a public cloud
[10]. Hybrid computing approach based on on-premise computing infrastructure
and resources allocated on-demand from a public cloud is increasingly adopted
in scientific computing [19]. The motivations to move scientific computations to
public clouds include lack of appropriate local resources [4], insufficient computing
infrastructure due to growing user base [1], and better turnaround times achieved
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in the cloud due to long queue wait time in a local cluster, even if it is better in
terms of raw performance [3, 16]. Consequently, cloud bursting is definitely an
attractive model for scientific applications.

In this paper, we propose a cloud bursting approach for scientific workflows
leveraging graph partitioning. In our solution we address the following problems:
(1) Portability: we deploy the Workflow Management System and computing
clusters on the private and public clouds using Kubernetes, taking benefit from its
cloud-agnostic application deployment model [20]. Consequently, we support any
cloud in which a Kubernetes cluster can be deployed. (2) Transparent data access:
we employ a virtual distributed file system across two clouds, so that workflow
jobs use a POSIX file system interface, while data is transparently transferred
regardless of its location (local or remote), and underlying storage technology.
(3) Execution optimizations: we introduce an algorithm for partitioning of the
workflow in order to balance task distribution between partitions (load balancing
in space) and in individual parallel execution phases of the workflow (load
balancing in time); the algorithm allows uneven partitions (cluster sizes), and
optimizes the volume of communication between clouds. We estimate the required
size of the cluster rented in the public cloud by taking into account the level of
parallelism of the workflow and resource demands of workflow jobs. The solution
is experimentally evaluated with the HyperFlow workflow management system [2]
integrated with the Onedata data management platform [8].

The paper is organized as follows. Section 2 presents related work. Section 3
describes the proposed solution. Section 4 contains experimental evaluation of
the solution. Section 5 concludes the paper.

2 Related Work

The usefulness of hybrid infrastructures in scientific computing have been rec-
ognized since the early days of clouds [5,21,24]. Hybrid clouds have also been
the subject of research specifically in the context of scientific workflows. Liu and
others [15] introduce an algorithm for dynamic placement of large scientific work-
flow data sets in hybrid clouds. In [13] and [6], the authors propose algorithms
for scheduling of workflows on hybrid clouds, with deadline and cost constraints.
These algorithms heavily rely on accurate predictions of task execution times on
specific computing resources which can be difficult [23].

In [22] graph partitioning is used to guide scheduling of scientific workflows
in a cluster of nodes, but not in the context of a hybrid cloud. Cloud bursting is
supported in the Galaxy system dedicated for life science workflows [9]. The key
component in this solution is a job mapper which decides to which cloud a given
job should be submitted. This decision-making is based on simple criteria, e.g.
the resource availability, location of specific tools, or location of data [1].

Overall, no approaches investigate graph partitioning for hybrid execution
of scientific workflows with cloud bursting, combined with architectural aspects
enabling portability and transparent data access. All these issues are addressed
by the research presented in this paper.
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3 Cloud bursting solution for scientific workflows

3.1 Architecture

Fig. 1 shows a conceptual architecture of the proposed solution. The private
cloud is running Kubernetes cluster 1 – the home cluster. We assume that the
user is assigned a certain quota of 𝑁 virtual CPUs (vCPU) in the home cluster,
distributed across a certain number of nodes. The user decides to allocate another
Kubernetes cluster in a public cloud in order to speed up the computations. The
second cluster has size of 𝑀 vCPUs.

The workflow graph is then divided into two partitions, one for each of the
clusters. The relative sizes of the partitions are, respectively, 𝑁

𝑁+𝑀 and 𝑀
𝑁+𝑀 .

The partitioning should minimize the volume of the inter-cluster communication
and maximize task parallelism, see section 3.2 for more details.

Private cloud Public cloud  

Kubernetes 
cluster 1

(N vCPUs)

Kubernetes 
cluster 2

(M vCPUs)

Shared storage Shared storageOnedata

HyperFlow 
WMS

Partitioned 
workflow

Partitioned 
workflow

Workflow 
jobs

Async job 
submission

Onedata
Async data 

transfer

Kubernetes 
API

Kubernetes 
API

Workflow 
jobs

On-demand provisioning 
and deployment

Fig. 1: High-level concept of the proposed cloud bursting architecture for scientific
workflows. The user has a cluster with 𝑁 virtual CPUs in the private cloud
and allocates another cluster with 𝑀 vCPUs in the public cloud. The workflow
graph is divided into two partitions proportional to cluster sizes. The partitioning
should minimize inter-cloud data transfer without reducing task parallelism.

How to estimate the desired size (in virtual CPUs) of the second cluster? The
upper limit on 𝑀 can be estimated as follows:

𝑀 =
∑︁

𝑝𝑖∈𝑃𝐿𝑜𝑃 (𝑤)

𝑐𝑝𝑢𝑅𝑒𝑞(𝑝𝑖) − 𝑁𝑣𝑐𝑝𝑢(𝑐𝑙𝑢𝑠𝑡𝑒𝑟1) + 0.5 * 𝑁𝑛𝑜𝑑𝑒𝑠 (1)

where 𝑃𝐿𝑜𝑃 (𝑤) is the subset of workflow tasks that belong to the largest
graph level (execution phase) of the workflow graph. In other words, a cluster
of its size would accommodate for the largest level of parallelism (LoP) in the
workflow and avoid task waits. The factor 0.5 * 𝑁𝑛𝑜𝑑𝑒𝑠 represents the fact that
about 0.5 of vCPU is reserved on each node for the Kubernetes middleware. Let
us note that the Level of Parallelism in a Directed Acyclic Graph (DAG) of tasks
is not necessarily equal to the size of the largest level graph. A better estimation
can be done by simulating the workflow ’execution wave’ [12]. 𝑐𝑝𝑢𝑅𝑒𝑞(𝑝𝑖) denotes
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the CPU request (in vCPUs) of task 𝑝𝑖, while 𝑁𝑣𝑐𝑝𝑢(𝑐𝑙𝑢𝑠𝑡𝑒𝑟1) is the number of
vCPUs in Cluster 1.

Fig. 1 also shows a simplified deployment of components on both clusters. The
HyperFlow engine [2] runs in the home cluster and executes the workflow. Based
on the information on graph partitioning, HyperFlow creates workflow jobs either
in the home or the remote Kubernetes cluster. The Onedata data management
platform [8] is responsible for synchronizing data between the clusters. The
input data of the workflow is initially located on the storage node in the home
cluster. On the remote cluster, Onedata creates a virtual POSIX file system and
synchronizes metadata about the input files, so that the files are visible locally,
even though they physically exist in a remote file system. Onedata transfers the
files only when they are accessed, and only these blocks that were actually read
which is efficient for very large files whose only small parts are read by remote
processes.

3.2 Workflow partitioning

To map workflow tasks to different clusters (clouds), we use graph partitioning
[18]. Graph vertices represent jobs while edges denote communications between
them. Vertex weight denotes the computational cost of a job, in our case the
requested amount of vCPU, e.g. 0.5. Vertex size, on the other hand, represents
the communication cost due to the execution of the job, i.e., transfer of input files
from a storage node and transfer of output files to the storage node. A typical
partitioning algorithm will try to minimize the edge cut metric, i.e. the number of
edges that connect different partitions, while balancing the load (vertex weights)
between the partitions. Fig. 2a shows an example workflow partitioned in this
way which results in a suboptimal mapping of workflow tasks onto clusters. First,
because the volume of communication between clusters is not minimized. Second,
because job parallelism is reduced – jobs run only in the first cluster, then only
in the second one. In the case of scientific workflows, it is important to divide the
computational tasks equally between the partitions at each individual execution
phase of the workflow [22]. The execution phase of a task 𝐸𝑝(𝑝𝑖) corresponds to
its level in the graph, i.e. it is an integer 1..𝐿 defined as follows:

– If task 𝑝𝑖 has no predecessors, 𝐸𝑝(𝑝𝑖) = 1.
– Otherwise 𝐸𝑝(𝑝𝑖) = 𝑚𝑎𝑥([𝐸𝑝(𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑜𝑟𝑠(𝑝𝑖)]) + 1.

While the edge cut metric often minimizes the communication volume, for
certain types of graphs this is not the case. For example, if a vertex has multiple
edges that connect to vertices from another partition, the inter-partition com-
munication would occur once, but the edge cut metric would count each edge
separately. For such graphs, a metric optimizing the number of boundary vertices
works better, because it actually optimizes the communication volume [18]. Fig.
2b shows a partitioning of the same workflow according to this metric. This
partitioning not only reduces the inter-partition communication, but also results
in a better task parallelism. As shown in the figure, the two parallel phases of
the workflow are distributed across two partitions.
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(a) Minimizing the edgecut. (b) Minimizing the communication volume.

Fig. 2: Workflow partitioning between clusters. Colors denote partitions to which
tasks are assigned.

In our case, we assume that the input data of the workflow is located on
a storage node in the home cluster. Therefore, we add an additional, special
storage node to the graph that has weight of 0 (no computational cost) and
represents the transfer of workflow input data to workflow jobs. The storage
node is a special fixed node which is always pre-assigned to the the partition that
represents the cluster where the data is located.

Fig. 3: Workflow graph with the special storage node and unequal partitions
(cluster sizes): cluster 1 = 0.4, cluster 2 = 0.6 * total 𝑣𝐶𝑃𝑈 . Partitioning
optimized for total communication volume. Colors denote partitions to which
tasks are assigned.

A partitioning must also address the problem of different cluster sizes and
allow unequal partitions while minimizing communication volume and maximizing
task parallelism. Fig. 3 shows a partitioning where the storage node is depicted
and the sizes of the partitions vary, such that partition 1 has weight of 0.4, while
partition 2 of 0.6.

While we found that the communication volume metric often results in
desirable task parallelism, the addition of the storage node may easily disrupt it.
Therefore we have decided to use multiple weights for vertices to ensure that the
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load is equally distributed at each parallel execution phase of the workflow [22].
A vertex has now 𝑛 weights, where 𝑛 is equal to the number of levels in the
workflow graph. For the sake of example, let us assume that a workflow graph
has 7 levels. Job 𝑝, which belongs to graph level 4, and whose computational cost
𝐶𝑝 = 0.5 𝑣𝐶𝑃𝑈 will have the following weights vector:

𝑤𝑝 = [ 0 0 0 0.5 0 0 0 ]

In other words, 𝑤𝑖 = 𝐶𝑝 for 𝑖 = 𝑙𝑒𝑣𝑒𝑙(𝑝), 0 otherwise. As a result, the
partitioning algorithm will perform multi-constraint optimization, trying to
balance each of the weights separately, leading to balanced task parallelism.

4 Evaluation

This section presents evaluation of the proposed solution. Section 4.1 presents
analysis of the workflow partitioning algorithm for different synthetic workflow
graphs, while section 4.2 describes the setup of the experimental evaluation and
shows its results.

4.1 Workflow partitioning analysis

In order to study the impact of different parameters of the algorithm on the
partitioning quality, we have analyzed a number of workflow graphs from the
Pegasus workflow gallery [7]: Cybershake 1000 vertices, Epigenomics 997 vertices,
LIGO 1000 vertices, Sipht 968 vertices, and Montage 2.0 6448 vertices. Fig. 4
presents the results of this analysis, depicting total communication volume of
the workflow graph partitioning depending on two variables:

– distribution of partition sizes: the value on the 𝑥 axis denotes the size of the
first partition in relation to the entire graph.

– allowed load imbalance between partitions (ufactor): 1%, 5%, and 10%.

In addition, the round shape of the marker denotes that the storage node is
assigned to the bigger partition, while the diamond shape means that it is in the
smaller partition.

Several observations can be made from these results. In general, not surpris-
ingly, allowing load imbalance among the partitions results in a better communi-
cation volume. However, the gain heavily depends on the workflow structure. For
Cybershake, for example, it is not significant in any of the partitioning variants,
while in the case of Montage 2.0, the difference can be substantial.

Table 1 shows the distribution of workflow tasks between partitions indi-
vidually for workflow execution phases and for various workflow examples. In
all cases partitions sizes were equal and the partitioning was optimized for the
communication volume, except for Sipht where the result for the edge cut op-
timization is also shown for comparison. As one can see, the optimization for
the communication volume results in approximately equal distribution of tasks
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Fig. 4: Workflow partitioning results for eight different workflow graphs showing
communication volume for different partition size distribution (0.2/0.8, 0.3/0.7,
0.4/0.6, 0.5/0.5 and 0.7/0.3 and allowed load imbalance between partitions (1%,
5%, 10%, denoted by parameter 𝑢𝑓𝑎𝑐𝑡𝑜𝑟 of value 10, 50 and 100, respectively).

among partitions, but some divergences are inevitable due to the structure of
the workflows, as is in the case of the Montage 2.0 workflow which is perfectly
divided when using 3 partitions.

4.2 Experimental runs

For the purpose of experimental runs, we have set up two small Kubernetes
clusters: one in the home cloud in Cyfronet AGH consisting of 4 nodes with 6
vCPU and 21 GB of RAM each, and a remote one in Google Cloud comprising 6
nodes, each with 4 vCPU and 16 GB of RAM. Consequently, both clusters were
approximately equal in terms of the number of virtual CPUs and the amount of
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Table 1: Distribution of workflow tasks between partitions for individual execution
phases and for different partitioning strategies.

Workflow # Tasks Ph1 Ph2 Ph3 Ph4 Ph5 Ph6 Ph7 Ph8 Ph9

Cybershake 1000 5/5
240/

256

240/

254

Epigenomics 997 3/4
119/

126

119/

126

119/

126

119/

126
3/4 1/0 1/0 1/0

Sipht 968
353/

359
44/20 68/60 21/11 12/20

Sipht

(edge cut)
968

265/

447
41/23 128/0 32/0 32/0

Ligo 1000
123/

106

123/

106
6/14

123/

128

123/

128
6/14

Montage 2.0

(dss)
6448

102/

90

3148/

2900
2/1 1/2

64/

128
1/2 1/2 1/3

Montage 2.0

(dss),

3 partitions

6448

64/

64/

64

2016/

2016/

2016

1/1/1 1/1/1

64/

64/

64

1/1/1 1/1/1 2/1/1

RAM per vCPU. For shared storage, we used NFS in the home cluster and Ceph
in the remote one. In both cases, these served as a backed storage for Onedata
that exposed a POSIX virtual file system for the workflow jobs.

In the experimental runs we used the genomic workflow Soykb [14], whose
structure is shown in Fig. 5. The workflow is characterized by a large input
file – the reference genome database, two parallel stages (genotype_gvcfs and
filtering_snp tasks), and a long final task that merges the outputs of previous
tasks (merge_gcvf ). For the purpose of illustration, a small Soykb workflow
consisting of 52 tasks is shown, with a relatively small input genome size (about 1
GB). However, genome analysis workflows (including Soykb) can be much larger
in size and data footprint [11]. The workflow was divided into equal partitions
(with respect to task CPU requests), in a similar way as shown in Fig. 2b.

The visualization of the execution of the workflow in the hybrid cloud is
depicted in Fig. 6. Labels on the 𝑌 axis denote nodes on which tasks were executed,
with k8s* / gke* denoting nodes in Cyfronet / Google Cloud, respectively. A given
node may occur multiple times (e.g. k8s3-0 and k8s3-1) if tasks were running in
parallel on this node. Note that in general more tasks were running in parallel
on nodes in Cyfronet since they contained more virtual CPUs per node.

Fig. 7 shows the data distribution among the two experimental clouds after
the execution of the workflow. As one can see, only about 19% of all input and
output files of the workflow were either transferred to or created in the remote
(Google) cloud. On the other hand, almost all files were needed in the home
cloud, where the final merge tasks were executed. Fig. 7b shows that only about
50% of the largest input file was transferred from the home cloud to the remote
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Fig. 5: Structure of the Soykb workflow.

Fig. 6: Example visualization of the Soykb workflow execution in two clouds.

cloud during the execution. This can be explained by looking at the data access
pattern of this file, shown in Fig. 8. The chart shows which blocks of the file
are accessed by individual jobs of the workflow. The type of jobs is denoted by
different colors. The graph reveals that the tasks from the two parallel stages
of the workflow (genotype_gvcfs and filtering_snp) read only small portions
of the genome database, clearly showing a data-parallelism pattern. This is an
opportunity for optimization since it is not necessary to transfer the entire file to
the remote cloud. On the other hand, the two tasks with the ‘gather’ pattern
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(a) All files.

(b) Largest input file.

Fig. 7: Runtime data distribution between two clouds for the Soykb workflow.

(merge_gcvf and combine_variants) read the entire file which hints that these
tasks should run in the home cluster in order to avoid the transfer of the entire
file. To guide the partitioning algorithm into this optimization, the weights of
the graph edges – denoting the cost of communication – should be based on
the number of file blocks read, not the entire input file size. However,
collecting such data on low-level data access patterns is not always straightforward,
requiring instrumentation of low-level file IO subroutines. Because the Onedata
system employs block-level data transfer optimization, and the load is divided
equally into the two clouds, it is expected that about half of the input file will
be transferred to the remote cloud.

4.3 Discussion

The presented method has several limitations. The graph partitioning package
that we have used (Metis) does not allow for defining fixed nodes. As a result,
the obtained communication volume is only reliable when we assume that the
partition to which the storage node was assigned represents the home cluster.
Consequently, it could be difficult to optimize partitioning where the home cluster
is significantly smaller (e.g. 0.2/0.8) because the storage node may tend to be
assigned to the larger partition, depending on the workflow structure.

The method could be improved by introducing information about scheduling of
jobs in which their allocation to time slots is taken into account. Such a scheduling
algorithm could, rather than mapping jobs to a fixed set of nodes, predict the
requirements for resources (vCPUs) in a given point of workflow execution.
Consequently, the required size of the public cluster could be estimated better.
Moreover, combined with auto-scaling capabilities, the remote cluster could be
scaled up and down as needed.

We have focused on balancing the load due to requested vCPUs. The method
could be extended to take into account also other resources, e.g. memory and
storage. Supporting balancing of memory consumption would be relatively easy to
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Fig. 8: Data access pattern of the largest input file of the Soykb workflow. The
graph shows which blocks of the file were read by individual jobs with colors
denoting different job types. The pattern reveals that the tasks from the two
parallel stages of the workflow (genotype_gvcfs and filtering_snp) read only small
portions of the file.

implement – it would require adding memory-request weights to the partitioning
algorithm. The Kubernetes scheduler already supports memory requests and
assigns jobs to nodes based on them.

5 Conclusions and Future Work

We have shown a solution for execution of scientific workflows in hybrid clouds
with cloud bursting and transparent data access. Our solution enables portable
deployment of scientific workflows into two or more clouds as long as they support
Kubernetes clusters, as most large public cloud providers currently do. Trans-
parent data access hides data transfer between clouds and allows for block-level
optimization wherein only the required file blocks are transferred. We have used
graph partitioning to ensure load balancing of the workload across two clouds
while minimizing the communication volume. These capabilities were evaluated
experimentally using the HyperFlow workflow management system integrated
with the Onedata data management platform and deployed in a hybrid cloud com-
prising two Kubernetes clusters located in the Cyfronet AGH’s private cloud and
the Google Cloud. Future work involves more detailed analysis and experiments
to investigate the impact of several factors on the execution performance and
quality of workflow partitioning, including the accuracy of job resource requests,
and accurate graph vertex and edge weights, reflecting data access patterns in
scientific workflows.
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