
Highly Effective GPU Realization of Discrete
Wavelet Transform for Big-Data Problems

Dariusz Puchala1[0000−0001−9070−8042]

and Kamil Stokfiszewski1[0000−0002−2707−7353]

1Institute of Information Technology, Lodz University of Technology
ul. Wolczanska 215, 90-924 Lodz, Poland

{dariusz.puchala,kamil.stokfiszewski}@p.lodz.pl

Abstract. Discrete wavelet transform (DWT) is widely used in the
tasks of signal processing, analysis and recognition. Moreover it’s prac-
tical applications are not limited to the case of one-dimensional signals
but also apply to images and multidimensional data. From the moment
of introduction of the dedicated libraries that enable to use graphics pro-
cessing units (GPUs) for mass-parallel general purpose calculations the
development of effective GPU based implementations of one-dimensional
DWT is an important field of scientific research. It is also important be-
cause with use of one-dimensional procedure we can calculate DWT in
multidimensional case if only the transform’s separability is assumed.
In this paper the authors propose a novel approach to calculation of
one-dimensional DWT based on lattice structure which takes advantage
of shared memory and registers in order to implement necessary inter-
thread communication. The experimental analysis reveals high time-
effectiveness of the proposed approach which can be even 5 times higher
for Maxwell architecture, and up to 2 times for Turing family GPU cards,
than the one characteristic for the convolution based approach in com-
putational tasks that can be classified as big-data problems.

Keywords: Discrete wavelet transform · GPU computations · Mass-
parallel computations · Lattice structure · Time effectiveness.

1 Introduction

Discrete wavelet transform (DWT) is one of the basic tools of digital signal pro-
cessing. It finds wide applications in such areas as processing of multidimensional
data [1]-[2], image compression [3]-[4], image watermarking [5]-[6], analysis and
clustering of high dimensional data [7, 8], data mining [9] and many more (see [10,
11]). It should be noted that even in case of images (or multidimensional data)
one-dimensional wavelet transform procedure is a basic tool used in calculations
due to the fact that two-dimensional (or respectively many dimensional) DWT
can be calculated in a row-column scheme with use of one-dimensional trans-
form. For this reason it is very important to develop time-effective realizations of
one-dimensional DWT. In the recent years we could observe an intense research

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

2 Dariusz Puchala and Kamil Stokfiszewski

on improvement of such algorithms (e.g. see [12]). This trend is especially visible
thanks to the growing popularity of graphics processing units (GPUs) for which
massively parallel algorithms for calculation of DWT were also constructed (c.f.
[13]-[21]).

The solutions found in the literature are focused mainly on the case of two-
dimensional data. For example in paper [18] the authors proposed the approach
to calculation of 2D DWT based on row-column approach and the lifting scheme
(see [10]) which takes advantage of shared memory and registers. In paper [16] the
problem of calculation of 2D and 3D DWT based on row-column approach (and
its extension to three dimensions) using shared memory and registers is addressed
wherein the authors put a great effort on the issues of effective memory access.
Finally in paper [17] we can find an approach based on lifting scheme where row
and column passes are merged into inseparable transform. In selected papers we
can find simple solutions to calculation of 2D DWT based on Haar wavelets and
row-column scheme (e.g. see papers [14] and [15]). The problem of calculation
of one-dimensional DWT was widely addressed in papers [19]-[21]. The authors
of these papers analyzed convolution based approach and the approach taking
advantage of lattice structure with multiple calls of kernel functions (we refer to
this approach as a naive lattice structure in the remaining part of the paper).
To the best knowledge of the authors of this paper the problem of effective
calculation of one-dimensional DWT (i.e. using shared memory and registers) is
not solved.

In this paper we propose a novel approach to calculation of one-dimensional
wavelet transform. The proposed approach is based on the lattice structure and
requires only one call of the kernel function. It also takes advantage of the shared
memory and registers for communication between threads. Thanks to the men-
tioned features it can be characterized by high time-effectiveness. The experi-
mental analysis shows that the proposed approach can be even 5 times faster for
Maxwell architecture GPUs (NVIDIA GTX960), and even 2 times for Turing
architecture (NVIDIA RTX2060), than the approach based on the convolution.
Such acceleration is achieved mainly in case of big-data problems which makes
the proposed approach particularly useful in modern computational tasks.

2 Calculation of one-dimensional DWT

In practical applications discrete one-dimensional wavelet transform is imple-
mented as a two-channel filter bank with the structure shown in Fig. 2 (see e.g.
[22]). Here an input signal X(z) =X0(z2)+z−1X1(z2) (with X0(z) and X1(z)
describing even/odd numbered samples of input data) is in the first place dec-
imated at blocks (↓ 2), which gives [X1(z), X0(z)]T vector, and then the same
vector enters the block of filters defined by polyphase matrix E(z) of the form:

E(z)=

[
H0(z) H1(z)
G0(z) G1(z)

]
,

where H0(z), G0(z) and H1(z), G1(z) represent, respectively, even/odd num-
bered coefficients of impulse responses of the filters. Both filters H(z) and G(z),

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

Highly Effective GPU Realization of the DWT for Big-Data Problems 3

X(z) z
y2

V0(z) x2 z−1 X(z)

y2
V1(z)

x2

E(z) F (z)

Analysis stage Synthesis stage

Fig. 1. The structure of two-stage filter bank in polyphase representation

together with decimators (↓ 2), form the analysis stage. At the output of this
stage we get the signal in the form of [V0(z), V1(z)]T components, where V0(z)
and V1(z) are obtained in the result of low-pass and high-pass filtering respec-
tively (we refer here to the typical configuration of filters). The synthesis stage
consists of filters described by the polyphase matrix F (z). The synthesis and
analysis filters are selected in a way satisfying the perfect reconstruction (PR)
condition F (z)E(z)=I, with I being an identity matrix. With that assumption,
and with use of upsampling blocks (↑2), it is possible to restore the input signal
at the output of the bank, i.e. X(z) = X(z), if only there was no interference
with the components obtained at the output of the analysis stage.

The practical implementations of the block of filters from Fig. 1 can be based
on: (i) convolution approach, (ii) lattice structure, (iii) lifting scheme (see [10]).
Lattice structure and lifting scheme approaches allow for almost two-fold reduc-
tion in the number of additions and multiplications and can be characterized
by the smallest number of parameters required to describe both orthogonal and
biorthogonal wavelet transforms, see e.g. [10]. This feature can be crucial from
the point of view of adaptive parametric structures. In this paper we consider
convolution approach, which is widely used in the literature (see [10]), and lat-
tice structure approach, which was chosen as a basis for the proposed effective
and mass-parallel solution. Morevoer, in the rest of the paper we assume N and
M parameters to describe the size of input data and the length of the impulse
responses of the filters respectively.

2.1 Calculations based on the convolution

The basic approach to calculation of DWT is based directly on the formula
[V0(z), V1(z)]T =E(z)[X1(z), X0(z)]T . In practice it can be realized as the con-
volution of input signal with the impulse responses of both filters H(z) and G(z).
Taking into account the polyphase representation of the bank and the decima-
tion operations (↓ 2) it can be easily verified that the convolution should be
calculated only at the position of even numbered samples of input signal. Such
computational scheme offers good possibilities for mass parallel calculation of
DWT. The approach adopted in this paper assumes the calculation of convolu-
tion in separate threads starting from each even numbered sample of input data.
Moreover in order to reduce the number of memory transactions each thread
realizes calculations for both filters H(z) and G(z) operating on the same data
samples (see Fig. 2). This gives the number of N/2 threads required to process

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

4 Dariusz Puchala and Kamil Stokfiszewski

the data. The results of computations must be written to the additional out-

Fig. 2. Mass parallel computation of DWT based on one-dimensional convolution in
case of periodic signals (M =6).

put table. Moreover all the calculations can be done fully independently, which
means that no additional synchronization mechanism is required. As a result the
implementation of mass-parallel convolution based calculations of DWT requires
one execution of the kernel function. It should be noted that Fig. 2 shows the
case where the periodic repetition of input data is assumed. This is the boundary
condition considered in this paper. The additional analysis of the computational
structure reveals that it can be characterized by a number of approximately 4
arithmetical operations performed for a single data transaction. It is enough to
consider operations within one thread, where we have: 4M−2 arithmetical opera-
tions (additions and multiplications) and M+2 data transactions (data read and
write operations). The total numbers of additions (LADD) and multiplications
(LMUL) required by the convolution approach can be described by the formulas:

LADD =N(M−1), LMUL =NM. (1)

In turn the total number of memory transactions (LMEM), a number of sequen-
tial steps (LSEQ) (considers arithmetical operations when calculations within
all threads can be realized at the same time) and a number of kernel function
calls equal respectively:

LMEM =
1

2
N(M+2), LSEQ =4M−2, LKER =1. (2)

It should be noted that the number of sequential steps that must be performed
is a measure of complexity of parallel algorithm.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

Highly Effective GPU Realization of the DWT for Big-Data Problems 5

2.2 Calculations based on the lattice structure

Although the computations within a filter bank are effective and can be described
by linear complexityO(MN), whereN is the size of input signal, andM describes
the size of filters, its efficiency can be increased even more with use of lattice
structures. Lattice structures allow for almost twofold reduction in the number
of multiplications and additions and allow for accurate parametrization in the
sense of a number of free parameters (see [10]). The construction of a lattice
structure requires factorization of the polyphase matrix E(z) into a product of
simple matrices. Following [10] such factorization can be described as:

E(z)=BDΛ(z−1)

M
2 −1∏

i=2

AM
2 −iDΛ(z−1)

A0, (3)

where the matrices used in formula (2) can be defined as:

B=

[
a b
c d

]
, Ai =

[
1 ti
si 1

]
, Λ(z)=

[
1 0
0 z

]
, D=

[
0 1
1 0

]
.

Matrices B and Ai for i= 0, 1, . . . , M2 −2 represent basic operations within the
lattice structure which are parametrized with the values of a, b, c, d and ti, si for
i=0, 1, . . . , M2 −2 parameters. It should be noted that in case of the orthogonal

bank of filters the following relations take place: si =−ti for i= 0, 1, . . . , M2 −2
and d = ±a, c = ∓b. For example orthogonal Daubechies 4 (db4) wavelet can
be decomposed into the set of parameters: t0 =−0.322276, t1 =−1.23315, t2 =
−3.856628 and a=0.15031, b=0.006914 and d=a, c=−b. In case of biorthogonal
bank of filters all of the parameters are required in general, though the well-
known postulate of multi-resolution analysis, i.e. H0(−1) = 0 and H1(1) = 0
(c.f. [10]), which must be met by any wavelet transform, makes the values of b
and c dependent on the values of the remaining parameters. Then the formula
(3) describes the accurate factorization of matrix E(z) where the number of
free parameters is the smallest possible depending on the considered family of
wavelet transforms. In Fig. 3 we can see the data flow diagram of the lattice
structure based on the decomposition formula (3).

In case of the lattice structure parallelization of calculations is possible due
to the independent character of computations realized within Ai matrices for
i = 0, 1, . . . ,M/2 − 2 and B matrix at each stage of calculations (see Fig. 3).
The operations described by Ai and B matrices are represented graphically as
butterfly operators ’•’ and ’◦’ respectively. It should be noted that at each stage
the operations within butterfly operations are independent, since each butterfly
operator operates on an individual pair of input data. If we assume that each
butterfly operator is implemented by one thread then the total required number
of threads will be N/2. However, it is necessary to synchronize the calculations
between consecutive stages which is possible with use of global synchronization
mechanisms. Hence, the mass-parallel realization of the lattice structure based
directly on the data flow diagram from Fig. 3 requires M/2 calls of the kernel

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

6 Dariusz Puchala and Kamil Stokfiszewski

Fig. 3. Mass-parallel computation of DWT based on one-dimensional lattice struc-
ture in case of periodic signals (’•’ - operations described by matrices Ai for i =
0, 1, . . . ,M/2− 2; ’◦’ - operations described by matrix B).

function. Since the time required to call a kernel function is a thousand times
longer than a time of a single mathematical operation we will call this approach
naive. Further analysis allows to say that the lattice structure described by the
factorization formula (3) can be characterized by a number of 1 (for Ai operators)
and 3/2 (for B operators) arithmetical operations for one data transaction. The
total numbers of additions and multiplications required by the lattice structure
can be expressed respectively as:

LADD =
1

2
NM, LMUL =

1

2
N (M+2) . (4)

Moreover the total number of memory transactions, sequential steps and the
calls of kernel function can be described by:

LMEM =NM, LSEQ =2(M+1), LKER =
1

2
M. (5)

Summarizing, the direct comparison of both described approaches indicates
approximately twofold reduction of the number of arithmetic operations in case
of lattice structure which translates into twofold reduction of the sequential
steps required by the mass parallel realizations of both approaches. However,
the convolution based approach can be characterized by almost twice smaller
number of memory transaction than the lattice structure. Moreover the naive
lattice structure requires much higher number of kernel function calls. It should
be noted that a single kernel function call may take even several thousands of
clock cycles while a single mathematical operation requires around 20 cycles.
Hence such an approach may be characterized by poor time-effectiveness.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

Highly Effective GPU Realization of the DWT for Big-Data Problems 7

3 The proposed lattice structure

In this paper we propose a novel approach to calculation of DWT based on the
lattice structure. We choose the lattice structure as the starting point since it can
be characterized by almost two times smaller number of arithmetic operations
than the convolution based approach. This feature can be crucial in practical
scenarios when operating on big data sets because GPU computations have both
sequential and parallel character. The main goal of introducing a new approach
is to increase the efficiency of DWT calculations. The increase in efficiency is
possible if we reduce a number of kernel function calls and take advantage of
shared memory and effective local synchronization mechanism. The mentioned
objectives can be achieved only if the computations within the entire lattice
structure can be partitioned into separate and independent sets of operations
which can be executed within separate blocks of threads. However, if we look
at the structure from Fig. 3, it is difficult to distinguish separate groups of base
operations due to the specific permutation (cyclic rotation) of data between suc-
cessive stages. Such partitioning is possible, however, if we accept the possibility
of repeating some basic operations. The proposed approach is shown in Fig. 4.

Fig. 4. The organization of calculations in case of the proposed approach to mass-
parallel realization of DWT (M =6).

In the proposed approach, the base operations are grouped into independent
blocks according to the presented partition scheme (see Fig. 4). Each block
contains the set of base operations from successive stages that create trapezoidal
structures (indicated with orange dotted lines). Although adjacent blocks overlap
by K = M−2 elements of the input table, computations across all blocks are
independent and may be performed at the same time. In addition, operations
within a single block can take advantage of shared memory as well as efficient
synchronization mechanism in the form of the syncthreads() function. In Fig.
5 we show the organization of calculations within a single block.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

8 Dariusz Puchala and Kamil Stokfiszewski

Fig. 5. Operations realized within one block in case of the proposed approach.

The size of input data at the input of the block equals 2Nt, where Nt is a
number of threads within a block. It should be noted that every thread in the
block is responsible for realization of one butterfly operator, i.e. realizations of
operations required by Ai for i=0, 1, . . . , M2 −2 and B matrices. However, in the
following stages, the number of threads used decreases by one with each stage.
The final number of active threads depends on the filter size and equals Nt−M

2−1.
Hence, the size of output data for a single block equals L= 2Nt−K with K =
M−2. The role of the base operations in the first stage is to read data from the
global memory, perform appropriate operations and write the results to registers
or shared memory. Since the same threads realize operations in the following
stages, it becomes possible to pass the results directly through the registers
(blue connections between butterfly operations in Fig. 5). In this way, the base
operations within internal stages read data from registers or shared memory
and write the results of calculations at the same localizations. The operations at
the last stage write the results to the global memory. Synchronization between
stages is realized with use of the fast intra-block synchronization.

It should be noted that with such organization of calculations the realization
of the assumed boundary condition requires to extend the input table by M−2
elements and fill them with the first M−2 elements of the input data (see the
green elements of input table in Fig. 4). In this way the size of input table for
the whole structure from Fig. 4 equals N+(M−2), where N is the size of input
data. The size of input data, which is at the same time the size of the output of
the whole structure, can be calculated as N =NbL, where Nb is the number of
blocks of threads. The further analysis of the proposed approach allows to derive
the formulas for the number of additions (LADD) and multiplications (LMUL):

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

Highly Effective GPU Realization of the DWT for Big-Data Problems 9

LADD =
1

2
NM+

(
1

4
NbMK

)
, LMUL =

1

2
N(M+2)+

(
1

2
NbK

(
1

2
K + 1

))
, (6)

and also the numbers of kernel calls (LKER) and the sequential steps (LSEQ)
that must be realized within the algorithm:

LKER =1, LSEQ =2(M+1). (7)

The comparison of formulas (4) and (6) allows to state that the proposed ap-
proach can be characterized by the higher number of arithmetical operations
resulting from the overlaps between the blocks of threads. However, the compar-
ison of formulas (5) and (7) allows to see that the number of sequential steps
stays the same but the number of kernel function calls in the proposed approach
equals 1. Also the analysis of the number of global memory transactions, where
in case of the proposed approach we have:

LGMEM =2N+NbK, LSMEM =
1

2
NbK

(
2Nt−

1

2
K

)

with LGMEM and LSMEM describing the numbers of global and shared mem-
ory transactions respectively, allows to state that the proposed approach reduces
significantly the number of global memory transactions for shared memory trans-
actions and register based data passing.

In the proposed implementation (see Listing 2) the kernel function proposed()

is called only once. The arguments of the kernel function include input[] and
output[] buffers intended for input data and the results of computations re-
spectively, as well as the coeff[] table holding the parameters required by the
operators at the following stages of the lattice structure. The remaining three
parameters are: N2 = N

2 , L – the filter length and m2 = M
2 . It should be noted

that buffer sbuf[] of size Nt elements is located in the shared memory and also
the passing of the intermediate results of computations between stages through
registers is realized with use of fVal[] variable.

In order to avoid a situation in which the elements of input data are first read
by the threads operating on even indexes and next operating on odd indexes, thus
making the memory references not optimally organized, we improve the efficiency
of memory transfers by introducing ll to ff() function (see Listing 1), which
reads two float elements as one 64-bit reference to long long type. Then using
dedicated CUDA API function and bit-shift operation it is possible to extract
two 32-bit float variables from the value of one 64-bit variable.

1 __device__ inline void ll_to_ff(long long* d,float& a, float& b) {
2 long long bb;
3 bb=*((long long*)d);
4 a=__uint_as_float ((unsigned int)bb);
5 b=__uint_as_float ((unsigned int)(bb > >32));
6 }

Listing 1. Function reading two float variables as one 64-bit reference.

Using the function ll to ff() form Listing 1 we come up with the following
kernel code implementing the proposed DWT computation method.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

10 Dariusz Puchala and Kamil Stokfiszewski

1 __global__ void proposed(float* input ,float* output ,
2 float* coeff ,int N2,int L,int m2) {
3 __shared__ float sbuf[Nt]; // Shared memory buffer
4 int iInd0 ,iInd1 ,iInd2 ,iInd3; // Additional variables in registers
5 float a,b,c,d,fX,fY,fVal;
6 // Initialization and mapping of thread coordinates to data index
7 iInd0 =1;
8 iInd1=threadIdx.x;
9 iInd2=L2*blockIdx.x+threadIdx.x;

10 iInd3=blockDim.x-1;
11 // First stage: reading input data and values of operation parameters
12 ll_to_ff ((long long*)coeff ,a,b);
13 ll_to_ff ((long long*)input+iInd2 ,fX ,fY);
14 // Computations within the first stage
15 sbuf[iInd1]=fX+a*fY;
16 fVal=b*fX+fY;
17 __syncthreads (); // Synchronization
18 while(iInd0 <m2) { // Internal stages
19 iInd1 +=1;
20 if (threadIdx.x<iInd3) { // Filtering of unneeded threads
21 // Reading operation parameters
22 ll_to_ff ((long long*)coeff+iInd0 ,a,b);
23 // Computations within stage
24 fY=sbuf[iInd1];
25 sbuf[iInd1]=fVal+a*fY;
26 fVal=b*fVal+fY;
27 }
28 iInd0 +=1;
29 iInd3 -=1;
30 __syncthreads (); // Synchronization
31 }
32 if (threadIdx.x<iInd3) { // Last stage
33 // Reading operator parameters
34 iInd1 +=1;
35 ll_to_ff ((long long*)coeff+iInd0 ,a,b);
36 iInd0 +=1;
37 ll_to_ff ((long long*)coeff+iInd0 ,c,d);
38 // Computations within stage and storing results to global memory
39 fY=sbuf[iInd1];
40 output[iInd2]=a*fVal+b*fY;
41 output[iInd2+N2]=c*fVal+d*fY;
42 }
43 }

Listing 2. Kernel function for the proposed approach.

4 Experimental analysis

In order to verify the effectiveness of the proposed approach a series of experi-
ments was performed including various sizes of filters and input data. During the
experiments we considered filter sizes M changing in a range from 4 to 32 coeffi-
cients and the experimental data of sizes between 1024 and 1024 ·105 elements. In
Fig. 6 we present selected experimental results obtained with NVIDIA GTX960
GPU card (Maxwell family) which is characterized by the total number of 1024
computing cores and 4GB of global memory (128-bit memory bus and 112.2GB/s
of memory bandwidth). The second GPU card used was NVIDIA RTX2060. It is
a representative of the Turing architecture of NVIDIA GPU cards with a number
of 1920 computing cores and 6GB of global memory (192-bit memory bus and
336GB/s of memory bandwidth). The selected results obtained for the second
card are presented in Fig. 6.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

Highly Effective GPU Realization of the DWT for Big-Data Problems 11

Fig. 6. Comparison of time of calculations of DWT for NVIDIA GTX960 and NVIDIA
RTX2060 cards and filter sizes M =4 and M =8.

In Fig. 6 we present the results obtained with NVIDIA GTX960 card for the
popular filter sizes, i.e. M ∈{4, 8}. The analysis of results indicates a huge ad-
vantage of the convolution approach over the approach using the naive lattice for
data sizes up to around 105 elements. The ratio of execution times (convolution
time/lattice time)1 lies between 0.15 and 1.0 depending on the filter and input
data sizes. For example for M = 4 the ratio is below 0.50 for smaller data sizes
(N≤0.5∗105), and grows up to 1 at N≈105 to stay close to 0.9 for the remaining
data sizes. It shows that the naive lattice can be more than 2 times slower than
the convolution based approach. For M = 8 the ratio changes between 0.3 and
0.93 depending on the size of input data. The most favorable results for the naive
lattice are obtained with filters of size M=32 and indicate only 15% advantage
of the convolution approach for data sizes N≥0.25 ∗ 105. On this basis we state
that naive lattice allows to obtain much worse results than the results possible
to obtain with use of convolution. Hence, the naive lattice is characterized by
significantly lower time-efficiency than the convolution approach.

In case of the proposed approach the situation looks differently. For filter
sizes M ∈ {4, 8} (highly practical sizes of filters), and starting from data size

1 We measured times of kernel launch and calculations with NVIDA’s nvprof profiler.
During experiments we used Intel i7-9700, 12 MB cache, 32 GB RAM, Windows 10
platform, and CUDA 10, C++ implementations.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

12 Dariusz Puchala and Kamil Stokfiszewski

of around 104 elements, the proposed approach can be characterized by much
higher effectiveness than the convolution based approach. For the considered
filter sizes the obtained ratios of times of calculations are around 1.9, 2.7 and 3.4
respectively. Even for sizes smaller than 104 the ratio changes between 0.9 and
1.1. In Fig. 7(a) we present the values of ratios of computation times between the
convolution and the proposed approach for all of the considered sizes of filters
and input data. In case of NVIDIA GTX960 card the data size of around 104 is
the lower limit of effectiveness of application of the proposed approach. It should
be noted, however, that the highest advantage of the proposed approach over the
convolution one is above 5 times and is obtained for high filter sizes (M≥24).

Fig. 7. Ratios of times of calculations (convolution time/proposed lattice time) of DWT
for NVIDIA’s (a) GTX960 and (b) RTX2060 cards.

In case of NVIDIA RTX2060 card, see Fig. 6, the naive lattice obtains signif-
icantly worse results. Here the ratios are in a range 0.1 to 0.3. So the convolution
approach is in the worst case even 10 times faster. The proposed approach allows
to obtain better results than the convolution for all data sizes and all sizes of fil-
ters (there are a few exceptions for M ∈{4, 8} and N≈108). For small filter sizes,
like M ∈{4, 8}, the proposed approach is up to 1.25 and 1.5 times faster respec-
tively. The highest advantage can be observed for long filters M ∈{30, 32} and
high sizes of input data and it equals even 2 times, see Fig. 7(b). Moreover, if we
compare results of the proposed approach obtained with both considered GPUs,
then the possible speed-up of computations obtained with NVIDIA RTX2060 is
in the range [1.75, 4.12], while the average value is around 2.68 times. The aver-
aged practical performance of the proposed method is 83 GFlops/s for NVIDIA
GTX960, and 233 GFlops/s for NVIDIA RTX2060.

The results of the proposed approach for NVIDIA RTX2060 card where com-
pared to sequential convolution and lattice CPU implementations. The CPU
variants allowed to obtain better results for small amount of processed data, i.e.
MN≤16384 for convolution, or MN≤32768 for lattice approach. Here, the com-
putation time ratios between CPU and GPU were within the range [0.20, 0.99],
e.g. for lattice approach with M=4, and N=1024, the CPU implementation

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

https://dx.doi.org/10.1007/978-3-030-77961-0_19

