
New variants of SDLS algorithm for LABS
problem dedicated to GPGPU architectures

Dominik Żurek, Kamil Piętak, Marcin Pietroń, Marek Kisiel-Dorohinicki

AGH University of Science and Technology
al. Adama Mickiewicza 30, 30-059 Krakow, Poland
{dzurek, kpietak, pietron, doroh}@agh.edu.pl

Abstract. Low autocorrelation binary sequence (LABS) remains an
open hard optimisation problem that has many applications. One of the
promising directions for solving the problem is designing advanced solvers
based on local search heuristics. The paper proposes two new heuris-
tics developed from the steepest-descent local search algorithm (SDLS),
implemented on the GPGPU architectures. The introduced algorithms
utilise the parallel nature of the GPU and provide an effective method of
solving the LABS problem. As a means for comparison, the efficiency be-
tween SDSL and the new algorithms is presented, showing that exploring
the wider neighbourhood improves the results.

Keywords: LABS, GPGPU, steepest-descent local search

1 Introduction

This paper concentrates on solving the low autocorrelation binary sequence prob-
lem using efficient parallel computations on the GPGPU. It introduces a new
variant of local search heuristics for LABS together with very efficient realisa-
tions designed for the GPGPU architectures. LABS, one of the hard discrete
problems despite wide research, remains an open optimisation problem for long
sequences. It has wide range of applications including communication engineer-
ing [13, 14], statistical mechanics [2, 10] and mathematics [7, 8].

LABS is an NP-hard combinatorial problem with simple a formulation. It
consists of finding a binary sequence S = {s0, s1, . . . , sL−1} with length L, where
si ∈ {−1, 1} which minimises the energy function E(S):

Ck(S) =

L−k−1∑
i=0

sisi+k and E(S) =

L−1∑
k=1

C2
k(S) (1)

The simplest method of solving LABS is exhaustive enumeration that pro-
vides the best results, but can be applied only to small values of L. Some re-
searchers use partial enumeration, choosing so-called skew symmetric sequences
[11] that are the most likely solutions for many lengths (eg. for L ∈ [31, 65] 21
best sequences are skew symmetric). Enumerative algorithms are obviously lim-
ited to small values of L by the exponential size of the search space. Therefore, a

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_18

https://dx.doi.org/10.1007/978-3-030-77961-0_18


2 Żurek et al.

lot of various heuristic algorithms have been developed. They use some plausible
rules to locate good sequences more quickly. A well-known method for such tech-
niques is steepest descend local search (SDLS) [1] or tabu search [6]. In recent
years, a few modern solvers based on the self-avoiding walk concept have been
proposed. The most promising solvers are lssOrel [3] and xLostavka [4], which
are successfully used for finding skew-symmetric sequences of lengths between
301 and 401 [5]. Another direction of research is using evolutionary multi-agents
systems with local optimisation algorithms [9].

In this paper, we propose two new algorithms that are derived from ba-
sic SDLS and are implemented on the GPGPU. The first algorithm, SDLS-2,
extends the notion of the sequence neighbourhood to a 2-bit distance. The sec-
ond, SDLS deep through (SDLS-DT), introduces the recurrent exploration of
sequences in both the 1-bit and 2-bit neighbourhood. In this paper, we compare
them to the SDLS algorithm implemented on the GPGPU described in [15].

2 New variants of SDLS search algorithms for LABS

The new approach to resolve the LABS problem based on SDLS algorithm relies
upon increasing the search area of searching during each single iteration.

The implementation of the proposed algorithms utilizes the notion of the
neighbourhood of a sequence S with length L obtained by flipping one symbol in
the sequence: N(S) = {flip(S, i), i ∈ {1, .., L}}, where flip(s1 . . . si . . . sL, i) =
s1 . . . si . . . sL [6].

All computed products can then be stored in a (L− 1)× (L− 1) table T (S),
such that T (S)ij = sjsi+j for j ≤ L − i, and saving the values of the different
correlations in a L − 1 dimensional vector C(S), defined as C(S)k = Ck(S) for
1 ≤ k ≤ L− 1. Cotta observed that flipping a single symbol si multiples by −1
the value of cells in T (S) where si is involved, the fitness of sequence flip(S, i)
can be efficiently recomputed in time O(L).

2.1 The SDLS-2 algorithm with extended neighbourhood

The SDLS-2 algorithm extends the notion of neighbourhood to sequences that
differ by up to 2 bits. In this case, besides searching for the solution in the
neighbourhood with a distance equal to 1, the best results in a single iteration
are explored among sequences that differ on two bits with regard to the input
sequence. If the best sequence has grater energy than the best sequence from
the current iteration, the last one becomes the reference sequence for the next
iterations. If the best sequence founded in the current iteration is worse than
the input sequence, the algorithm is stopped and the actual reference sequence
is returned as a result. In the case of the sequence with the length L, in the
single step, this algorithm implies the necessity of looking through L(L−1)

2 more
solutions than the traditional SDLS algorithm [15].1

1 The GPGPU implementation of discussed approach is not able to check a large space
so as a result it provides the worst results. For that reason the detailed description
and analysis of this algorithm will be conducted as a future work.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_18

https://dx.doi.org/10.1007/978-3-030-77961-0_18


New variants of SDLS algorithms for LABS problem 3

2.2 Sequential version of the SDLS-DT algorithm

In this approach, it is not possible to estimate the number of generated solutions
in a single step of the algorithm. The searching of solutions in locality one and
two is done in the single step in this case. One step of described algorithm should
be defined as a single run of the external loop (Alg. 1, line 3). Inside the body of
this loop, the energy after changing the value on the position with the index with
the same value as the current loop’s counter is calculated first of all (Alg. 1, line
4). L energies, based on the sequences which are different on two bits comparison
to the original sequence are then calculated (Alg. 1, line 7). The lowest of the
obtained energies is chosen (Alg. 1, line 8) and if its value is lower then the
current reference energy (Alg. 1, line 9), update of the reference energy Er and
the input sequence corresponding to it occurs (Alg. 1, line 10). The new run of
the external loop then begins. In the following loop runs, there is no possible
way to estimate on how many bits the searching space differs comparison to the
input sequence because of its dependence upon the winning sequence, which in
this case can have a different value on one or two positions. The each single step
of the algorithm is done in case of when improvement is not observed (Alg. 1,
line 9) (which is equivalent with breaking the while loop). The number of that
steps is equal to the length of the input sequence. Fig. 1 illustrates two first steps
of the algorithm on a sample sequence.

Algorithm 1 Sequential version of SDLS-DT algorithm
1: function SequntialSDLS-DT(S)
2: Er = compute_reference_energy(S)
3: for i := 0 to len(L) do
4: E[i] = compute_single_energy_by_mutation_ith_bit(S)
5: improvement := true
6: while improvement do
7: Elocal_II = compute_energies_by_mutation_of_two_bits(S)
8: Ebest=compute_lowest_energy(E[i], Elocal_II)
9: if Er < Ebest then improvement := false

10: update_reference_sequence_and_energy()
end while

end for
11: return Ebest

end function

2.3 Parallel version of SDLS-DT for GPGPU

In the GPGPU implementation, the first step is the creation of the external loop
with the length L (Alg. 2, line 2). The first operation in this loop changes the
value to the opposite value on the position with the index equal to the loop’s
counter, which is marked as bit. The change is realised by thread with that index
(Alg. 2, line 3). For that sequence, the structures C(S) and T (S) are created

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_18

https://dx.doi.org/10.1007/978-3-030-77961-0_18


4 Żurek et al.

Fig. 1: The example of iteration in SDLS-DT algorithm

(Alg. 2, line 4). Based on the actual sequence, the first energy which provides
the first solution in the neighbourhood with distance one is then calculated. This
energy becomes the current reference energy (Alg. 2, line 7). The sequence which
is different on one position comparison with the original sequence, becomes the
input sequence for the second step of the algorithm. The second step of the
proposed method is looking for a solution until the next attempts are unable to
find a better solution than the current solution which is realised by the internal
while loop (Alg. 2, line 6). In each iteration of this loop L energies are calculated
according to the SDLS algorithm (Alg. 2, lines 7-8). In this case, the thread with
ID equal to the counter loop is not blocked because according to this method
this thread calculates the energy for the original sequence. From the energies
calculated in that way the energy with the lowest value Ebest is chosen. If this
value is lower than the value of the current reference energy Er (Alg. 2, line
10) it then becomes the reference energy and its sequence becomes the input
sequence to the next iteration of the while loop (Alg. 2, line 11). In this case,
the winning thread actualises the C(S) and T (S) (Alg. 2, line 12). It should be
noted that the search could be in a space with a distance higher than two bits.
In the second iteration, the input to the internal loop could be the sequence
with two different bits than the original sequence. In each internal iteration, the
distance between its input sequence and the original sequence could increase.
This means that it is not possible to verify which sequence was checked, so there
is no sense in blocking any thread. In the case of the occurrence of a break in
the while loop, the second iteration of the external loop begins which changes
the bit on the position equal to the counter loop. In the case of the ith iteration,
the ith bit is changed and it becomes the input sequence for the next iteration
of the internal loop. In each run of the external loop, the best global energy is
actualised in cases in which an in the improvement is observed (Alg. 2, line 13).

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_18

https://dx.doi.org/10.1007/978-3-030-77961-0_18


New variants of SDLS algorithms for LABS problem 5

Algorithm 2 Parallel version of SDLS-DT on GPGPU
1: function ParallelSDLS-DT(S)
2: for bit := 0 to len(L) do
3: if threadId == bit then Sblock[threadId]∗ = −1 end if
4: create_T (S)_and_C(S)()
5: Er := compute_energy_with_local_one(Sblock)
6: while improvement do
7: mutation_of_threadId_bit(Sblock)
8: ParallelV alueF lip(Sblock, T

′, C′)
9: Ebest := compute_lowest_energy()
10: if Er < Ebest then improvement := false end if
11: update_reference_sequence_and_energy()
12: update_T (S)_and_C(S)()

end while
13: if Ebestglobal < Ebest then Ebestglobal := Ebest end if

end for
14: return Ebestglobal

end function

Sequence
length Method Number of

searched solutions Average Standard
deviation

Number of
running kernels

128 SDLS 20 740 434 073 2807 531.8 57773
128 SDLS-2 16 865 830 144 224 089 41837.6 593
128 SDLS-DT 31 176 794 592 356 752 46302.4 703
256 SDLS 22 380 865 408 11159 2 836 15 661
256 SDLS-2 15 975 437 994 1 657 780 257 819 74
256 SDLS-DT 24 978 089 130 3 019 130 292 121 68

Table 1: The number of explored solutions during one minute computations

3 Effectiveness of the proposed algorithms

In order to measure the effectiveness of the proposed algorithms, each paral-
lel version of them was performed on the Nvidia Tesla V100-SXM2-32GB2.
Each algorithm was seeking the optimal solution for three different input lengths
(128, 256). In the first iteration, the processor randomises 128 different sequences,
one for each GPU block. With data generated in such a way, each kernel starts
searching the minimum value of energy. The moment that the best energy from
each block is found, it is stored as the current best energy Eglobal_optimum. The
processor generates a new set of 128 sequences for which the algorithm repeats
the search process and if applicable, the global energy is updated. The entire
process was run 10 times for one hour each.

Table 1 contains the number of searched solutions along with the average
of searched solutions for the single thread block and the number of individual
kernels that are run. Fig. 2 presents the efficiency of the algorithms. As could
2 https://www.nvidia.com/en-us/data-center/v100/

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_18

https://dx.doi.org/10.1007/978-3-030-77961-0_18


6 Żurek et al.

(a) Energy of LABS L = 128 (b) Energy of LABS L = 256

Fig. 2: Energies achieved by basic SDLS, SDLS-2 and SDLS-DT algorithms

be observed for each size of the problem, the best solution was obtained by
the SDLS-DT algorithm. This fact is due to the parallel implementation of this
algorithm was able to successively explore significantly larger space than SDLS
and SDLS-2 algorithms. Despite the results being similar to those achieved with
SDLS, the efficiency of the SDLS-2 algorithm is weaker. This fact proves that
the efficiency of the algorithm is high but the proposed implementation is not
effective. The improvement of this implementation is considered as future work.

4 Conclusions and further work

This paper is the next step of our research related to efficient algorithms for
LABS realised using GPGPU architectures. The presented new SDLS algorithms
show a significant improvement in effectiveness compared to the traditional
SDLS approach. They can be further combined with meta-heuristics such as
evolutionary algorithms, which constitute a basis for the concept of a hybrid
environment in the master-slave model that was proposed in [12].

In the near future the authors plan to implement parallel variants of the
self-avoiding walk, lssOrel or xLostavka solvers. We also consider extending the
search neighbourhood in tabu search heuristics and propose new variants of
the algorithm dedicated to the GPGPU. The next interesting and promising
direction of research is to design and implement an evolutionary multi-agent
system with new local optimisation on the GPGPU units.

Acknowledgments The research presented in this paper was realized thanks to
funds of Polish Ministry of Science and Higher Education assigned to AGH
University of Science and Technology.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_18

https://dx.doi.org/10.1007/978-3-030-77961-0_18


Bibliography

[1] Bartholomew-Biggs, M.: The Steepest Descent Method, pp. 1–8. Springer
US, Boston, MA (2008)

[2] Bernasconi, J.: Low autocorrelation binary sequences : statistical mechanics
and configuration space analysis. Journal De Physique 48, 559–567 (1987)

[3] Bošković, B., Brglez, F., Brest, J.: Low-Autocorrelation Binary Sequences:
On Improved Merit Factors and Runtime Predictions to Achieve Them.
arXiv e-prints arXiv:1406.5301 (Jun 2014)

[4] Brest, J., Bošković, B.: A heuristic algorithm for a low autocorrelation bi-
nary sequence problem with odd length and high merit factor. IEEE Access
6, 4127–4134 (2018). https://doi.org/10.1109/ACCESS.2018.2789916

[5] Brest, J., Bošković, B.: In searching of long skew-symmetric binary se-
quences with high merit factors (2020)

[6] Gallardo, J.E., Cotta, C., Fernández, A.J.: Finding low autocorrelation bi-
nary sequences with memetic algorithms. Appl. Soft Comput. 9(4), 1252–
1262 (Sep 2009)

[7] Günther, C., Schmidt, K.U.: Merit factors of polynomials derived from dif-
ference sets (2016)

[8] Jedwab, J., Katz, D.J., Schmidt, K.U.: Advances in the merit factor problem
for binary sequences. Journal of Combinatorial Theory, Series A 120(4), 882
– 906 (2013)

[9] Kowol, M., Byrski, A., Kisiel-Dorohinicki, M.: Agent-based evolutionary
computing for difficult discrete problems. Procedia Computer Science 29,
1039 – 1047 (2014)

[10] Leukhin, A.N., Potekhin, E.N.: A bernasconi model for constructing ground-
state spin systems and optimal binary sequences. Journal of Physics: Con-
ference Series 613, 012006 (may 2015)

[11] Packebusch, T., Mertens, S.: Low autocorrelation binary sequences. Journal
of Physics A: Mathematical and Theoretical 49(16), 165001 (Mar 2016)

[12] Piętak, K., Żurek, D., Pietroń, M., Dymara, A., Kisiel-Dorohinicki, M.:
Striving for performance of discrete optimisation via memetic agent-based
systems in a hybrid cpu/gpu environment. Journal of Computational Sci-
ence 31, 151 – 162 (2019)

[13] Zeng, F., He, X., Zhang, Z., Xuan, G., Peng, Y., Yan, L.: Optimal and
z-optimal type-ii odd-length binary z-complementary pairs. IEEE Commu-
nications Letters 24(6), 1163–1167 (June 2020)

[14] Zhao, L., Song, J., Babu, P., Palomar, D.P.: A unified framework for low au-
tocorrelation sequence design via majorization–minimization. IEEE Trans-
actions on Signal Processing 65(2), 438–453 (Jan 2017)

[15] Żurek, D., Piętak, K., Pietroń, M., Kisiel-Dorohinicki, M.: Toward hybrid
platform for evolutionary computations of hard discrete problems. Proce-
dia Computer Science 108, 877 – 886 (2017), international Conference on
Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_18

https://dx.doi.org/10.1007/978-3-030-77961-0_18

