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Abstract. Prior knowledge regarding approximated future traffic re-
quirements allows adjusting suitable network parameters to improve the
network’s performance. To this end, various analyses and traffic predic-
tion methods assisted with machine learning techniques are developed.
In this paper, we study on-line multiple time series prediction for traf-
fic of various frame sizes. Firstly, we describe the gathered real network
traffic data and study their seasonality and correlations between traffic
types. Secondly, we propose three machine learning algorithms, namely,
linear regression, k nearest neighbours, and random forest, to predict the
network data which are compared under various models and input fea-
tures. To evaluate the prediction quality, we use the root mean squared
percentage error (RMSPE). We define three machine learning models,
where traffic related to particular frame sizes is predicted based on the
historical data of corresponding frame sizes solely, several frame sizes,
and all frame sizes. According to the performed numerical experiments
on four different datasets, linear regression yields the highest accuracy
when compared to the other two algorithms. As the results indicate, the
inclusion of historical data regarding all frame sizes to predict summary
traffic of a certain frame size increases the algorithm’s accuracy at the
cost of longer execution times. However, by appropriate input features se-
lection based on seasonality, it is possible to decrease this time overhead
at the almost unnoticeable accuracy decrease.

Keywords: Traffic prediction · Machine learning · Application-aware
network

1 Introduction

With a constant growth of internet traffic, its analysis and prediction can be
beneficial for the network operators in various scenarios. Intuitively, they can
be applied for resources planning during network migration or redimensioning.
In the case of any budget limitations, the most congested links can be properly
? This work was supported by National Science Centre, Poland under Grant
2019/35/B/ST7/04272.
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maintained in the first place. Another application for traffic analysis and predic-
tion could be proactive traffic routing and virtual topology adaptation [14]. The
biggest role is played here by the real-time or on-line models, which adjust their
predictions by analysing live network traffic. In the case of congestion or an un-
expected traffic spike, the network can adjust and reconfigure quickly. Another
noteworthy application of traffic prediction could be energy efficiency. Unused
network links or transponders can be forced into a low power consumption state
for varying intervals to save energy [4].

The traffic in the network’s optical layer is aggregated from the traffic in
the packet layer fulfilled by various services and applications that can have dif-
ferent requirements, e.g., regarding resilience, latency, or security. Multilayer
application-aware networks can identify these various traffic types in the optical
layer and apply suitable optimization methods to mitigate their requirements
[11, 12]. The knowledge about the amount and general patterns of different net-
work traffic types would be a substantial help to the resources planning and
allocation processes.

However, the information about the exact distribution of the network traffic
generated by different applications and services may not be available for the
network operator or its amount may not be effectively processed in real-time. In
such a case, the frame size distribution can be studied as a good representation
of the network traffic diversity. Different frame sizes can be an indication of
different types of traffic. For example, frames bigger in size are used when a
higher amount of data needs to be sent [7], including content traffic, like video [2].
Some in-depth studies indicate also more detailed examples: the maximal DNS
packet size when UDP is used is 580 bytes [7] and signaling traffic in P2P IPTV
uses packets of size up to 127 bytes [2]. More sporadically, other smaller frame
sizes are used, usually representing residual parts of traffic otherwise using larger
frames. However, less utilized frame sizes are not necessarily less important: they
might be also used by some crucial protocols. Studying the number of frames in
different sizes and the amount of traffic using them, and then the most common
traffic patterns can help better utilize the network resources. For that reason, the
analysis and prediction of the network traffic in different frame sizes can be seen
as a step into multilayer application-aware network planning and optimisation.

The main contribution of this work is the analysis and prediction of the
network traffic distinguishing frame sizes. In more detail, we present the data
preparation process along with a seasonality and correlation analysis. Following
that, we investigate different models and input features sets in three machine
learning algorithms for the best compromise between prediction quality and the
time of execution for an on-line traffic prediction. We repeat the experiments on
three additional datasets from different time periods and places, with varying
data granularity to confirm the generalization of the presented methodology and
findings.

The rest of the paper is organized as follows. Literature review can be found in
Section 2. The data analysis is presented in Section 3, followed by the description
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of the proposed models and algorithms in Section 4. Numerical experiments can
be found in Section 5. Finally, Section 6 concludes the paper.

2 Related work

The topic of network traffic analysis and prediction has been comprehensively
analysed in several papers in the last five years, both stand-alone [9] and as a
chapter of more general surveys on machine learning in optical networks [3, 8,
14, 17]. These machine learning algorithms can be divided into two categories,
namely, supervised and unsupervised learning, and applied to achieve various
goals [14]. On the one hand, in supervised learning, algorithms during the train-
ing phase are aware of expected results and can be applied, e.g., for traffic forecast
based on historical data, quality of transmission estimation [13] or routing [19].
On the other hand, in unsupervised learning, there is no prior knowledge of the
expected results and it can be used to find patterns (similarities) and structures
in the traffic or to extract features, e.g., traffic anomaly detection [5] or attack de-
tection [6]. There are several traffic prediction methods present in the literature,
the majority being based either on autoregressive moving average (ARIMA) or
long short-term memory (LSTM) recurrent neural networks [9]. However, pure
time-series forecasting approaches have recently been indicated as limiting, and
in terms of non-time-series forecasting methods, the results highly depend on
the datasets used [3]. Therefore, there is a need for more creative approaches,
with respect to computational overhead and accuracy.

An interesting way to improve the prediction accuracy is using data analysis
methods to create additional input features to the algorithms, on top of the
amount of network traffic at consecutive points in time. In [15], the authors
add an autocorrelation coefficient to an LSTM-based traffic prediction model to
improve its accuracy. That way, the information about seasonality in the time
series can be captured. Further, in [10], the use of daily and weekly seasonal
patterns is also explored and three data-driven LSTM methods are proposed.

The problem addressed in this work, namely, prediction network traffic for
different frame size ranges separately is a simultaneous multiple time series pre-
diction. Such a problem, for example was addressed in [16] for forecasting the
demand for thousands of products across multiple warehouses. The authors use a
model based on linear regression with additional spike analyser and safety stock
rule engine. Seasonality analysis and information about annual events are used
for designing a self-updating model successfully forecasting multiple time series
in a short time. Encoding events in a multiple time series model was also used for
example in [1] for forecasting UK electricity demand. Categorising the day being
forecasted as a working day or a non-working day and using it as an additional
feature in a kNN model showed advantages over conventional kNN. In [18], it
is shown that not only the seasonality, but also correlations between predicted
time series can be a valuable piece of information added to the model predicting
methane outbreaks in coal mines. In this case, a model based on random forest is
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successfully used, taking into account additional parameters derived from cross
correlations (including autocorrelations) between selected pairs of time series.

To the best of our knowledge, the prediction of network traffic for different
frame sizes separately has not been studied in the literature. To fill this research
gap, in this work we analyse the gathered real network data for various frame
sizes and study their seasonality and correlations. Next, we propose appropriate
machine learning models and algorithms to efficiently forecast traffic based on
the historical data.

3 Data analysis

Data analysis and further experiments were conducted on multiple datasets con-
taining real data. The first dataset is composed of the Seattle Internet Exchange
Point (SIX) data from a four-week period, between the 1st and the 28th of
November 2020. The second dataset consists of SIX data from the succeeding
four-week period – from 28th of November to 26th of December 2020. Both
datasets have 5-minute sampling. To create the third dataset, the SIX dataset
from November was resampled using a maximum of 1 hour aggregation. The
obtained dataset represented the same period as the first one, being significantly
smaller at the same time. The data were collected weekly from the SIX website1,
so that raw 5 minute sampling values are available for the whole investigated
period. Two of the databases published in RRD format are used, namely, ag-
gregated traffic in bits and frame size distribution. The numerical values were
extracted from the databases using RRDtool2. There are 13 frame size ranges in
the original data. For simplicity, in this paper, they are represented by letters,
as shown in table 1. In Fig. 1, the frame size distribution of the gathered input
data is plotted for a sample week.

Table 1: Frame sizes - letter representation
Frame size in
bytes

64 65-
128

129-
256

257-
384

385-
512

513-
640

641-
768

769-
896

897-
1024

1025-
1152

1153-
1280

1281-
1408

1409-
1536

letter repre-
sentation

a b c d e f g h i j k l m

The bit value of traffic in different frame sizes was calculated from the col-
lected databases as follows. Let n be the total number of frames in a given time
point, xi the size of a frame of i-th size in bits, yi the percentage of frames of
i-th size divided by 100, s the aggregate traffic in given time point in bits per
second. From the data, we know the values of xi, yi and s in a given time point.
The aggregated traffic s can be expressed as s =

∑13
i=1 xi · yi · n. Thus, the total

number of frames n and the traffic in frames of i-th size can be easily calculated.
In Fig. 2, we present the calculated traffic for different frame sizes in the

investigated 4 week period. As can be observed, the vast majority of traffic is
1 https://www.seattleix.net/statistics/
2 https://oss.oetiker.ch/rrdtool/
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Fig. 1: Input data - frame size distribution

transmitted in the biggest frames, denoted as size m. Interestingly, the second
most used frame size b, does not carry much traffic, because of its small size.

To test if the conducted methodology can be generalized to use on data
from other sources, we obtained our fourth dataset from a European provider,
containing 1 month worth of data with different frame size ranges. Instead of
SIX’s 13 even ranges, the European dataset uses 7 uneven ones: 64-127 bytes
(a), 128-255 bytes (b), 256-511 bytes (c), 512-1023 bytes (d), 1024-1513 bytes
(e), 1514 bytes (f) and <1515 bytes (g). The received dataset covers a period
from the 1st of November to the 1st of December 2020 and is aggregated to a
3-hour average. In Fig. 3, we present the calculated traffic in different frame sizes
in European dataset.

Further data analysis and modelling were performed in Python, using stan-
dard machine learning, statistical, and plotting packages: Scikit-learn, statsmod-
els, pandas, SciPy, NumPy, seaborn, and matplotlib.

When briefly observing the traffic plots, it can be suspected that the data has
strong seasonality. It can be further explored by checking the autocorrelation for
all the frame sizes. In Fig. 4, we present the autocorrelation function values for
all the frame sizes for 5 different lag values in the SIX November dataset with
5-minute sampling. As can be observed, there is a very strong autocorrelation
for the 5 minutes lag. It means, that with 5-minute sampling, the amount of
traffic in every timestamp is highly correlated with the previous one. The auto-
correlation after 1h lag is also very high. Examining the autocorrelation values in
the succeeding columns, it can be stated that there is daily, two-day and weekly
seasonality in the data. The same dependence was observed for all the other
datasets. The exact values of the autocorrelation function vary for specific frame
sizes but these fluctuations are not radical. That information can be later used
for creating additional features for the machine learning algorithms for better
traffic prediction.
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Fig. 2: Internet traffic in different frame sizes in SIX in November 2020

Despite large differences in traffic values for different frame sizes, it can be
suspected, that there are correlations between them, especially since the traf-
fic for all the frame sizes has similar seasonality. Fig. 5 presents a correlation
plot between the traffic in all the frame sizes and the aggregate traffic in SIX
November dataset. Several correlations with a value higher than 0.9 can be found
between the traffic for some frame sizes. Similar relationships can be observed in
all considered datasets. These correlations are an important piece of information
and will be used as a help for the models and algorithms to better predict the
traffic in specific frame sizes.

4 Proposed models and algorithms

Taking into account information obtained from the conducted data analysis, we
propose three models for network traffic prediction in specific frame sizes. That
is, predicting the traffic in frames of size x based on historical traffic in all the
frame sizes (model 1), predicting the traffic in frames of size x based on historical
traffic in three less correlated frame sizes (model 2) and predicting the traffic in
frames of size x based on historical traffic only in frames of size x (model 3).

To help the models make better predictions, we use additional input features,
which we chose based on the seasonality in the data proved by calculating au-
tocorrelations. That means, that on top of the amount of traffic in a considered
point in time, we add extra features indicating the amount of traffic in important
points in the past, e.g., 5 minutes before, 24 hours before, 1 week before. We
further discuss the choice of specific additional features in Section 5.

Having the models and additional features prepared we need to choose the
machine learning (ML) algorithms. In this work, we forecast a relatively short
period of 5 minutes, so it is important to only take into account the regressors
that are able to be trained and make predictions fast. Although methods like deep
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Fig. 3: Internet traffic in different frame sizes in the European dataset

learning tend to be extremely accurate, they require a lot of training time, which
is not suitable for our scenario. For that reason, after trying several algorithms
including Support Vector Machines and AdaBoost, we chose three relatively
simple and fast regressors described in the subsequent subsections.

Linear regression (LR) is a simple approach that tries to fit a linear model
to the relationship between observed linear data. The goal is to find the best
generalization so that the prediction error for new data points is the smallest.
This approach was used for example in [16] for designing a self-updating model
forecasting multiple time series with seasonality. The main reason to choose this
particular algorithm is its simplicity, which implies fast training and forecasting.

k nearest neighbours (kNN) is a method of predicting the output for a new
input data point by checking the outputs of its k nearest neighbours. Therefore,
this algorithm can handle non-linearity in the data well, since it predicts the
values of new data points only by checking the most similar (nearest) ones.
This approach was used for example in [1] for creating a multiple time series
model with additional features identifying weekdays and weekends, which have
different seasonality patterns. Again, the main reason to use this algorithm is its
simplicity, which implies speed.

Random forest (RF) is an example of an ensemble method based on deci-
sion trees. Each decision tree uses a random subset of features and their decisions
are averaged to improve the overall accuracy and prevent over-fitting. This is an
example of combining a set of weak models to create one strong model. This ap-
proach was used successfully, for example, in [18] for creating a prediction model
for multiple time series with additional features, including correlations between
the considered time series’. RF proved to make the most accurate predictions
among the algorithms considered in [18]. This method can be time and resource-
consuming in large datasets, however, in our case, the number of features is low,
which means that a small number of trees is sufficient for the prediction.
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Fig. 4: Autocorrelation for traffic in all the frame sizes for different lag values

5 Numerical experiments

In this project, we use Scikit-learn implementation of the ML algorithms. Their
chosen parameters were tuned by grid search and their tested and selected values
are presented in Table 2. In all the algorithms, individual data points represent
the network traffic in specific points in time.

Table 2: Tuning chosen parameters for the algorithms
Algorithm Parameter Tested values Chosen value

kNN weights ’uniform’, ’distnace’ ’uniform’
n_neighbours 1, 3, 5, 8, 10 8

RF n_estimators 3, 5, 10, 15, 20, 50 10

To evaluate and compare the predictions made by different algorithms, a
suitable error metric is needed. Because the amount of traffic in different frame
sizes varies significantly, so do the absolute error metrics. In order to directly
compare the performance of chosen regressors for all considered frame sizes, a
percentage error metric is the most reasonable choice. For that reason, we decided
to use the root mean squared percentage error (RMSPE) for the evaluation.

Multiple experiments were run to find the best model. As the main goal is to
create an on-line traffic prediction model that is able to quickly respond to chang-
ing network conditions, there are two important factors to be considered: pre-
diction quality and time. For that reason, we use additional input features which
we briefly described in section 4. We initially add four extra features indicating
the amount of traffic 5 minutes before (previous_timestamp), 1 hour before
(an_hour_ago), 24 hours before (yesterday) and 1 week before (last_week).
The use of additional features enables us to directly teach the models important
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a b c d e f g h i j k l m total
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Fig. 5: Correlations between traffic in different frame sizes and aggregate traffic

similar datapoints, which makes it possible not to consider them in order. For
that reason, in all the models and algorithms we use 10-fold cross validation.

Table 3: RMSPE comparison in different models and algorithms, SIX November
dataset, 5-minute sampling; best model for each algorithm highlighted
Alg. Frame size

a b c d e f g h i j k l m
Model 1

LR 0.0126 0.0094 0.0115 0.0188 0.0466 0.0444 0.0274 0.0261 0.0781 0.0383 0.0165 0.0163 0.0107
kNN 0.0305 0.0179 0.0364 0.0409 0.0627 0.0566 0.0493 0.0500 0.0952 0.0685 0.0479 0.0267 0.0138
RF 0.0160 0.0128 0.0149 0.0209 0.0580 0.0519 0.0295 0.0284 0.0872 0.0405 0.0194 0.0198 0.0141

Model 2
LR 0.0148 0.0123 0.0161 0.0231 0.0517 0.0479 0.0325 0.0319 0.0866 0.0443 0.0199 0.0171 0.0136
kNN 0.0302 0.0141 0.0185 0.0287 0.0706 0.0692 0.0619 0.0619 0.1071 0.0794 0.0196 0.0182 0.0143
RF 0.0166 0.0132 0.0163 0.0233 0.0648 0.0494 0.0342 0.0338 0.0867 0.0478 0.0207 0.0213 0.0148

Model 3
LR 0.0164 0.0131 0.0184 0.0253 0.0555 0.0491 0.0354 0.0351 0.0898 0.0478 0.0225 0.0177 0.0142
kNN 0.0164 0.0131 0.0167 0.0245 0.0579 0.0489 0.0333 0.0337 0.0860 0.0434 0.0212 0.0185 0.0143
RF 0.0175 0.0137 0.0187 0.0261 0.0630 0.0499 0.0353 0.0357 0.0937 0.0489 0.0231 0.0205 0.0152

In Table 3, we present the RMSPE values for three models described in
section 4, for the SIX November dataset with 5 minute sampling. As can be con-
cluded, the choice of the model depends on the choice of the regressor - LR and
RF get their lowest RMSPE values in model 1, and kNN - in model 3. However,
the overall lowest RMSPE values are obtained by LR. As an illustration, in Fig.
6, we present the comparison of the prediction results between model 1 and 3
obtained by LR for a sample frame size. Some differences between the models
can be spotted in the presented zoomed-in fragment, showing that the prediction
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Table 4: RMSPE comparison in different models and algorithms, SIX December
dataset, 5-minute sampling; best model for each algorithm highlighted
Alg. Frame size

a b c d e f g h i j k l m
Model 1

LR 0.0151 0.0110 0.0109 0.0177 0.0336 0.0304 0.0247 0.0258 0.0609 0.0329 0.0155 0.0182 0.0111
kNN 0.0284 0.0181 0.0368 0.0353 0.0501 0.0532 0.0483 0.0485 0.0841 0.0629 0.0448 0.0287 0.0135
RF 0.0180 0.0146 0.0152 0.0206 0.0379 0.0347 0.0268 0.0276 0.0718 0.0356 0.0189 0.0213 0.0144

Model 2
LR 0.0153 0.0140 0.0129 0.0205 0.0374 0.0343 0.0312 0.0321 0.0713 0.0407 0.0174 0.0191 0.0137
kNN 0.0317 0.0150 0.0206 0.0238 0.0606 0.0669 0.0649 0.0663 0.0999 0.0774 0.0186 0.0191 0.0142
RF 0.0185 0.0155 0.0158 0.0226 0.0414 0.0390 0.0323 0.0332 0.0741 0.0419 0.0192 0.0210 0.0148

Model 3
LR 0.0183 0.0152 0.0180 0.0237 0.0411 0.0372 0.0341 0.0352 0.0731 0.0440 0.0215 0.0198 0.0145
kNN 0.0184 0.0148 0.0166 0.0229 0.0414 0.0366 0.0318 0.0328 0.0717 0.0407 0.0208 0.0211 0.0144
RF 0.0196 0.0158 0.0179 0.0247 0.0433 0.0394 0.0345 0.0348 0.0750 0.0439 0.0217 0.0206 0.0152

Table 5: RMSPE comparison in different models and algorithms, SIX November
dataset, 1-hour maximum aggregation; best model for each algorithm highlighted
Alg. Frame size

a b c d e f g h i j k l m
Model 1

LR 0.0236 0.0205 0.0254 0.0315 0.1219 0.0918 0.0424 0.0384 0.1411 0.0706 0.0315 0.0427 0.0225
kNN 0.0598 0.0379 0.1064 0.0996 0.1491 0.1543 0.1437 0.1338 0.2084 0.1986 0.1364 0.0768 0.0406
RF 0.0299 0.0286 0.0344 0.0381 0.1345 0.1347 0.0491 0.0429 0.1450 0.0788 0.0475 0.0556 0.0334

Model 2
LR 0.0249 0.0350 0.0579 0.0635 0.1349 0.1394 0.0643 0.0652 0.1492 0.0909 0.0746 0.0516 0.0394
kNN 0.0477 0.0315 0.0523 0.0647 0.1598 0.1716 0.1580 0.1551 0.2247 0.2325 0.0562 0.0375 0.0343
RF 0.0290 0.0337 0.0490 0.0592 0.1119 0.1289 0.0711 0.0679 0.1714 0.0966 0.0666 0.0355 0.0363

Model 3
LR 0.0411 0.0380 0.0679 0.0688 0.1539 0.1189 0.0816 0.0797 0.1754 0.1084 0.0675 0.0536 0.0517
kNN 0.0419 0.0342 0.0515 0.0599 0.1521 0.1270 0.0781 0.0720 0.1629 0.0966 0.0596 0.0449 0.0452
RF 0.0457 0.0356 0.0452 0.0585 0.1500 0.1477 0.0804 0.0709 0.1793 0.0926 0.0603 0.0541 0.0462

based on the historical traffic from all the frame sizes rather than a single one
is generally closer to the real values.
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Fig. 6: Prediction results for traffic in frames of size i, LR regressor, SIX November
dataset, 5 minute sampling - zoomed-in fragment

The same trends were observed in all the remaining datasets. Table 4 presents
the results for the SIX December dataset, while Table 5 presents for the SIX
November dataset with 1h aggregation, with additional features an_hour_ago,
yesterday and last_week. In Table 6, we present the RMSPE values obtained for
the European dataset. Because of the 3-hour average aggregation, after calculat-
ing the autocorrelation function values we decided to use the following additional
input features: the amount of traffic 24 hours before (yesterday), 48 hours be-
fore (two_days_ago) and 1 week before (last_week). As can be seen, similarly
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to the other datasets, the prediction quality is higher taking into account the
historical traffic in all the frame sizes simultaneously, with LR being the most
accurate among considered regressors.

Table 6: RMSPE comparison in different models, European dataset, 3-hour average
aggregation; best model for each algorithm highlighted

Algorithm Frame size
a b c d e f g

Model 1
LR 0.0156 0.0225 0.0193 0.0247 0.0139 0.0165 0.0306
kNN 0.0262 0.1084 0.0895 0.1220 0.0351 0.0281 0.0332
RF 0.0202 0.0333 0.0299 0.0314 0.0250 0.0257 0.0345

Model 2
LR 0.0236 0.0369 0.0331 0.0386 0.0276 0.0287 0.0350
kNN 0.0323 0.1275 0.1075 0.1283 0.0357 0.0324 0.0487
RF 0.0296 0.0421 0.0411 0.0378 0.0331 0.0340 0.0384

Model 3
LR 0.0300 0.0441 0.0422 0.0370 0.0343 0.0345 0.0422
kNN 0.0307 0.0760 0.0591 0.0618 0.0359 0.0350 0.0398
RF 0.0318 0.0460 0.0440 0.0372 0.0365 0.0382 0.0410

In Table 7, we present the mean percentage advantage of the RMSPE values
obtained by the best regressor, LR, in model 1 over model 3 for all considered
datasets. As can be concluded, the prediction of the amount of traffic in a specific
frame size is better considering the historical data of the traffic for all the frame
sizes when compared to the prediction based only on one frame size.

Table 7: Mean percentage advantage of RMSPE of model 1 over model 3 for the LR
regressor in considered datasets

Dataset Frame size
a b c d e f g h i j k l m

SIX November, 5min sampling 22% 28% 36% 25% 16% 10% 22% 25% 12% 18% 25% 9% 24%
SIX November, 1h aggregation 43% 46% 63% 54% 21% 23% 48% 52% 20% 35% 53% 20% 56%
SIX December, 5min sampling 18% 26% 38% 24% 18% 18% 26% 25% 17% 24% 27% 9% 22%

European, 3h aggregation 48% 49% 54% 33% 60% 52% 27% - - - - - -

Table 8: Time of execution in seconds, SIX November dataset, 5-minute sampling
Algorithm Model 1 Model 2 Model 3 Model 1a Model 1b

LR 0.0084 0.0043 0.0033 0.0095 0.0062
kNN 0.0379 0.0198 0.0155 0.0485 0.0277
RF 0.3931 0.1370 0.0588 0.4790 0.2880

Table 8 presents average time of execution for considered regressors for tested
models (note, model 1a and 1b are described further). The measurements were
performed on a machine with an Intel Core i5-1038NG7 processor with 16 GB
RAM. As can be observed, all the algorithms are the fastest in model 3 because
of the smallest dataset size. Nevertheless, at this stage, the prediction quality is
more important than the time of execution, especially considering the very short
time of execution for the best regressor - LR. For that reason, we chose model 1
for further analysis.
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Table 9: RMSPE comparison in different versions of model 1, SIX November and De-
cember datasets with 5-minute sampling

Dataset Frame size
a b c d e f g h i j k l m

Model 1
SIX November 0.0126 0.0094 0.0115 0.0188 0.0466 0.0444 0.0274 0.0261 0.0781 0.0383 0.0165 0.0163 0.0107
SIX December 0.0151 0.0110 0.0109 0.0177 0.0336 0.0304 0.0247 0.0258 0.0609 0.0329 0.0155 0.0182 0.0111

Model 1a
SIX November 0.0142 0.0091 0.0115 0.0190 0.0455 0.0431 0.0272 0.0261 0.0827 0.0383 0.0165 0.0156 0.0106
SIX December 0.0149 0.0113 0.0115 0.0177 0.0338 0.0300 0.0244 0.0258 0.0580 0.0338 0.0166 0.0192 0.0111

Model 1b
SIX November 0.0128 0.0094 0.0117 0.0189 0.0466 0.0442 0.0275 0.0265 0.0789 0.0394 0.0168 0.0161 0.0108
SIX December 0.0150 0.0113 0.0111 0.0180 0.0336 0.0305 0.0252 0.0263 0.0609 0.0332 0.0157 0.0180 0.0112

In table 9 we present different choices of input features for model 1 in two
datasets with 5-minute sampling for the best algorithm - LR. In model 1a,
compared to model 1, we change the last input feature: from last_week to
two_days_ago. As can be seen, for some frame sizes the RMSPE values are
marginally lower in model 1a, however, the times of execution are higher, as can
be seen in Table 8. It can be explained by the size of the dataset - the amount
of network traffic "a week before" cannot be obtained for the first week worth
of data while the amount of traffic "two days before" cannot be obtained for
only the first two days worth of data. For that reason, the size of the dataset is
smaller in model 1.

Model 1b has the smallest both dataset and number of features. Comparing
to model 1, we delete the feature an_hour_ago, because the autocorrelation
values for the lag of 5 minutes and 1 hour are both extremely high, so the
information provided by features obtained from both of them are similar. Indeed,
the differences in RMSPE values between model 1 and model 1b are marginal
and the time gains from using a smaller set of features in model 1b are significant.
For that reason, we propose model 1b as the best trade-off between prediction
quality and time of execution. We conducted the analysis described above on
the remaining algorithms and the same trends were observed.

Analysing the predictions made by the models, it can be seen that traffic in
some of the frame sizes is easier to predict than in the other ones. The lowest
RMSPE values are achieved by the models predicting the traffic in frames of
size a, b, c and m, while the highest RMSPE values are obtained by the models
predicting the traffic in frames of size e, f and i - k. That might have been
caused by the traffic in the middle frame sizes being less regular. In Fig. 7 and
8, we present zoomed-in fragments of the actual and predicted amounts of the
network traffic – an easier to predict traffic in frames of size m and more difficult
to predict traffic in frames of size e accordingly.

6 Conclusions and future work

In this paper, we focus on the prediction and analysis of network traffic composed
of various frame sizes. In more detail, the developed model is able to forecast
traffic of a certain type based on the historical data. Firstly, we described gath-
ered real network traffic data and its preparation process required for feature
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Fig. 7: Prediction results for traffic in frames of size m, model 1b, SIX November
dataset, 5 minute sampling - zoomed-in fragment
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Fig. 8: Prediction results for traffic in frames of size e, model 1b, SIX November dataset,
5 minute sampling - zoomed-in fragment

extraction and further analysis. After that, we detected seasonality patterns by
calculating autocorrelations for different lag values showing similar patterns for
different frame sizes. Moreover, the correlations between different traffic types
were investigated, indicating similarities between traffic patterns in certain frame
sizes. Next, we proposed three machine learning algorithms and ran extensive
numerical experiments on four datasets to evaluate their efficiency. According
to the results, linear regression yields the highest accuracy having its RMSPE
values on average 50% lower than kNN and 15% lower than random forest.

Additionally, we investigated the impact of different models and input fea-
tures choices, finding the best compromise between prediction quality and time
of execution.

In future work, we plan to focus on the prediction of traffic for various appli-
cations and services to improve the performance of multilayer application-aware
networks.
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