
Deep learning driven self-adaptive hp finite
element method

Maciej Paszyński1, Rafa l Grzeszczuk1,
David Pardo2,3,4, and Leszek Demkowicz5

1 AGH University of Science and Technology, Poland
{paszynsk,grzeszcz}@agh.edu.pl

2 The University of the Basque Country, Bilbao, Spain
dzubiaur@gmail.com

3 Basque Center for Applied Mathematics, Bilbao, Spain
4 IKERBASQUE

5 Oden Institute, The University of Texas at Austin, USA
leszek@oden.utexas.edu

Abstract. The finite element method (FEM) is a popular tool for solv-
ing engineering problems governed by Partial Differential Equations (PDEs).
The accuracy of the numerical solution depends on the quality of the
computational mesh. We consider the self-adaptive hp-FEM, which gen-
erates optimal mesh refinements and delivers exponential convergence
of the numerical error with respect to the mesh size. Thus, it enables
solving difficult engineering problems with the highest possible numer-
ical accuracy. We replace the computationally expensive kernel of the
refinement algorithm with a deep neural network in this work. The net-
work learns how to optimally refine the elements and modify the orders
of the polynomials. In this way, the deterministic algorithm is replaced
by a neural network that selects similar quality refinements in a fraction
of the time needed by the original algorithm.

Keywords: Partial Differential Equations, Finite Element Method, Adap-
tive algorithms, Neural networks

1 Introduction

The self-adaptive hp-Finite Element Method (FEM) has been developed for
many years by the community of applied mathematicians working in the field of
numerical analysis [5, 6, 3, 4, 9]. They require extremely high numerical accuracy,
which is difficult to obtain by other numerical methods. In this paper, we refer
to the iterative Algorithm 1 proposed by [3], and we introduce the simplified,
one-step, Algorithm 2 as a kernel for the selection of the optimal refinements
for the interiors of elements. The edge refinements are adjusted by taking the
minimum of the corresponding orders of interiors. We further propose how to
replace Algorithm 2 with a Deep Neural Network (DNN).

The DNN can make similar quality decisions about mesh refinements as Algo-
rithm 2, while the online computational time is reduced. The main motivation for

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_11

https://dx.doi.org/10.1007/978-3-030-77961-0_11


2 M. Paszyński, R. Grzeszczuk et al.

Fig. 1. The convergence of accuracy of training (left) and validation (right) datasets.

this work is the following observation. We have noticed that making random of 10
percent of the decision about element refinements made by the self-adaptive hp-
FEM algorithm does not disturb the algorithm’s exponential convergence. Thus,
the possibility of teaching the deep neural network making decisions optimal up
to 90 percent is enough to keep the exponential convergence.

Algorithm 1: Self-adaptive hp-FEM algorithm

Input: Initial mesh, PDE, boundary conditions, error
Output: Optimal mesh

1 coarse mesh = initial mesh
2 Solve the coarse mesh problem
3 Generate fine mesh
4 Solve the fine mesh problem
5 if maximum relative error > accuracy then
6 return fine mesh solution
7 end
8 Select optimal refinements for every hp finite element from the coarse

mesh (Call algorithm 2)
9 Perform all required h refinements

10 Perform all required p refinements
11 coarse mesh = actual mesh
12 goto 2

2 Self-adaptive hp-FEM with neural network

We focus on the L-shape domain model problem [5, 6] to illustrate the self-
adaptive applicability hp-FEM algorithm for the solution of a model problem
with a singular point. The gradient of the solution tends to infinity, and intensive
mesh refinements are needed to approximate this behavior properly.

We describe in Algorithm 1 the self-adaptive hp-algorithm, initially intro-
duced by [3]. It utilizes Algorithm 2 for the selection of the optimal refinements

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_11

https://dx.doi.org/10.1007/978-3-030-77961-0_11


Deep learning driven self-adaptive hp finite element method 3

over element K. This algorithm delivers exponential convergence of the numer-
ical error with respect to the mesh size, which has been verified experimentally
by multiple numerical examples [3, 4].

Algorithm 2: Selection of optimal refinements over K

Input: Element K, coarse mesh solution uhp ∈ Vhp, fine mesh solution
uh

2 ,p+1 ∈ Vh
2 ,p+1

Output: Optimal refinement V K
opt for element K

1 for coarse mesh elements K ∈ Thp do
2 for approximation space Vopt ∈ K do
3 ratemin = ∞
4 Compute the projection based interpolant w|K of uh

2 ,p+1|K
5 Compute the error decrease rate

rate(w) =

∣∣∣uh
2
,p+1

−uhp

∣∣∣
H1(K)

−
∣∣∣uh

2
,p+1

−w
∣∣∣
H1(K)

∆nrdof(Vhp,V K
opt,K)

6 if rate(w) < ratemin then
7 ratemin = rate(w)

8 Select V K
opt corresponding to ratemin as the optimal

refinement for element K
9 end

10 end

11 end
12 Select orders of approximation on edges as minimum of corresponding

orders from neighboring interiors

Our goal is to replace Algorithm 2 with a deep neural network. The left
column in Figure 2 presents the optimal distribution of refinements, as provided
by the deterministic algorithm. We can see that all the h refinements (breaking
of elements) are performed towards the point singularity. We also see that the
p refinements are surrounding the singularity as layers with a different color.
They change from red, light and dark pink (p = 6, 7, 8), through brown (p = 5),
yellow (p = 4), green (p = 3), blue (p = 2) and dark blue (p = 1) close to the
singularity.

The refinements performed by the iterative Algorithm 1 are executed first
closer to the singularity. With the iterations, the differences between the coarse
and fine mesh solution tend to zero [3].

Dataset We propose the following samples to train the DNN:

Input variables: coarse mesh solution uhp ∈ Vhp for element K, the element
sizes and coordinates, the norm of the fine mesh solution over element K, the
maximum norm of the fine mesh solution over elements
Output variables: Optimal refinement V K

opt for element K

We construct the dataset by executing the deterministic Algorithm 1 for the
model L-shape domain problem. We perform 50 iterations of the hp-adaptivity,

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_11

https://dx.doi.org/10.1007/978-3-030-77961-0_11


4 M. Paszyński, R. Grzeszczuk et al.

Fig. 2. The mesh provided by the deterministic hp-FEM algorithm and by the deep
learning-driven hp-FEM algorithm. Different colors denote different polynomial orders
of approximation on element edges and interiors. The original L-shape domain. Zoom
1x, 1000x, 100000x towards the center. The sequence of hp refined meshes generated
by deterministic algorithm (left panel) and DNN driven algorithm (right panel).

Fig. 3. Let panel: The comparison of deterministic and DNN hp-FEM on original
L-shape domain. Right panel: The sizes (horizontal h1 / vertical h2 directions) from
10−2 (right) down to 10−8 (left) of the elements where MPL network made incorrect
decisions during verification.

Fig. 4. Left panel: The execution times of the parts of the self-adaptive hp-FEM
algorithm. Right panel: The refinements generated by DNN for a distorted mesh.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_11

https://dx.doi.org/10.1007/978-3-030-77961-0_11


Deep learning driven self-adaptive hp finite element method 5

generating over 10,000 deterministic element refinements, resulting in 10,000
samples. We repeat this operation for rotated boundary conditions (4) by the
following angles: 10, 20, 30, 40, 50, 60, 70, 80, and 90 degrees. Each rotation
changes the solution and the samples. We obtain a total of 100,000 samples. We
randomly select 90% of the samples for training and use the remaining 10% as
a test set. We further sample the training data and use 10% of training data as
a validation set. After one-hot encoding the categorical variables, each sample is
represented by a 136-dimensional vector. Since it is much more common for the
deterministic algorithm to make specific h refinement decisions (nref ) for the
L-shape domain problem, the dataset is imbalanced. To mitigate this, we apply
supersampling of underrepresented nref classes.

DNN architecture. We use a feed-forward DNN[1] with 12 fully-connected layers.
After 8 layers, the network splits into 6 branches, 4 layers each: the first branch
decides about the optimal nref parameter - h refinement, the remaining branches
decide about modifying the polynomial orders - p refinement. Experiments have
shown that further expanding of the network makes it prone to overfitting[8].
Splitting the network into branches assures sufficient parameter freedom for
each variable. This approach also simplifies the model: there is no need to train
a DNN for each variable. Since all possible decisions are encoded as categorical
variables, we use cross-entropy as the loss function. We encoded the input data
as a 136-dimensional normalized vector, as detailed in Table 1. We assume

Feature name data dimensionality

Polynomial degree 1
Element coordinates 2

H1 norms 2
Polynomial orders (one-hot) 10

Polynomial coefficients 121

Table 1. Dimensionality of specific input features to the DNN, encoded in a single
136-dimensional vector. Polynomial coefficients that do not exist in a given polynomial
order are always 0.

that the polynomial degree will not exceed n = 11. We train the network for
up to 200 epochs with validation loss-based early stopping on an Nvidia Tesla
v100 GPGPU with 650 tensor cores available in ACK Cyfronet PROMETHEUS
cluster [2]. To minimize the loss function, we use the Adam optimizer [7], with the
learning rate set to 10e−3. We apply kernel L2-penalty throughout the training
as a means of regularization and dropout [10] with probability 0.5. The network
converges after approximately 110 epochs.

DNN performance. The network achieved over 92% accuracy on the test set. We
run three tests to assess whether such a network can be used in the hp-FEM.

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_11

https://dx.doi.org/10.1007/978-3-030-77961-0_11


6 M. Paszyński, R. Grzeszczuk et al.

First numerical experiment is to reproduce the deterministic Algorithm 2
for the original L-shape domain problem, presented in Figures 1, 2 and left panel
in Figure 3. Both deterministic and DNN-driven algorithms provide exponential
convergence. The verification phase shows that the DNN makes up to 50% of
incorrect decisions when the element sizes go down to 10−7 and less, see the right
panel in Figure 3. Thus, at the zoom of 100,000 times, we see some differences
in Figure 2. Despite that, the algorithm still converges exponentially.

Second numerical experiment. We run the self-adaptive hp-FEM algo-
rithm, and we provide zeros as the coarse mesh solution degrees of freedom. We
get the same convergence. This second test shows that the DNN is not sensitive
with respect to the coarse mesh solution and that the norm of the fine mesh so-
lution, the maximum norm, and the coordinates and dimensions of the elements
are enough to make proper decisions. The DNN looks at the fine mesh solution’s
norms at the given and neighboring elements and, based on these data in de-
cides whether the element is to be broken and how it should be broken. Thus,
we can replace Algorithm 2 and the coarse mesh solution phase with the DNN.
Left panel in Figure 4 presents the execution times of particular parts of the hp-
FEM algorithm. The removal of the coarse mesh solution phase and replacing
Algorithm 2 by the DNN saves up to 50 percent of the execution times.

Third numerical experiment. The third test, illustrated in Figure 5, con-
cerns the L-shape domain algorithm with boundary conditions rotated 45 degrees
(no samples for this case were provided in the training set). The DNN hp-FEM
also provides exponential convergence in this case.

Fourth numerical experiment. The last test, illustrated in the right panel
in Figure 4 concerns randomly disturbed mesh, different from the training set.
The DNN captures both top and bottom singularities. It produces hp refinements
towards the bottom singularity and p refinements towards the top singularity.
The resulting accuracy was 1 percent of the relative error after ten iterations.

3 Conclusions

We replaced the algorithm selecting optimal refinements in the self-adaptive hp-
FEM by a deep neural network. We obtained over 92% of correct answers, the
same accuracy of the final mesh, and exponential convergence of the mesh refine-
ment algorithm. A very interesting observation is that DNN requires coordinates
of elements (to recognize the adjacency between elements), the dimensions of el-
ements (to recognize the refinement level), the H1 norm of the solution over the
element, and the maximum norm of the solutions over elements. The DNN by
”looking” at the norms over adjacent elements, recognizes with 92 percent accu-
racy the proper p-refinement of the element. The replacement of the coarse mesh
solver (line 2 in Algorithm 1) and the optimal refinements selection (Algorithm
2) by the DNN allows for a 50 % reduction of the computational time.

The DNN used is available at

home.agh.edu.pl/paszynsk/dnn hp2d/dnn hp2d.tar.gz

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_11

https://dx.doi.org/10.1007/978-3-030-77961-0_11


Deep learning driven self-adaptive hp finite element method 7

Fig. 5. The convergence for deterministic and DNN hp-FEM algorithms for the L-
shape with b.c. rotated by 45 deg. The meshes of the deterministic hp-FEM algorithm
and by DNN driven hp-FEM algorithm for the L-shape domain with b.c. rotated by
45 deg. Zoom 105x times.

Acknowledgement

This work was partially supported by National Science Centre grant no. 2016/21/
B/ST6/01539 and 2019/35/O/ST6/ 00571. The visit of Maciej Paszyński at the
Odens Institute has been supported by J. T. Oden Research Faculty Fellowship.

References

1. Bebis, G., Georgiopoulos, M.: Feed-forward neural networks. IEEE Potentials
13(4), 27–31 (1994)

2. Bubak, M., Kitowski, J., Wiatr, K.: eScience on Distributed Computing Infrastruc-
ture: Achievements of PLGrid Plus Domain-Specific Services and Tools, vol. 8500.
Springer (2014)

3. Demkowicz, L.: Computing with hp-Adaptive Finite Elements, vol. 1. Chapman &
Hall / CRC Applied Mathematics & Non-linear Science (2006)

4. Demkowicz, L., Kurtz, J., Pardo, D., Paszyński, M., Rachowicz, W., Zdunek, A.:
Computing with hp-Adaptive Finite Elements., vol. 2. Chapman & Hall / CRC
Applied Mathematics & Non-linear Science (2007)

5. Guo, B., Babuška, I.: The hp version of the finite element method, part i: The
basic approximation results. Computational Mechanics 1(1), 21–41 (1986)

6. Guo, B., Babuška, I.: The hp version of the finite element method, part ii: General
results and applications. Computational Mechanics 1(1), 203–220 (1986)

7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Salman, S., Liu, X.: Overfitting mechanism and avoidance in deep neural networks.
arXiv preprint arXiv:1901.06566 (2019)

9. Schwab, C.: p-and hp-finite element methods. The Clarendon Press, Oxford Uni-
versity Press, New York (1998)

10. Srivastava, N.: Improving neural networks with dropout. University of Toronto
182(566), 7 (2013)

ICCS Camera Ready Version 2021
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-77961-0_11

https://dx.doi.org/10.1007/978-3-030-77961-0_11

